Computational Fluid Dynamics im Bauingenieurwesen

Windlastermittlung mit CFD-Software von Autodesk

Master-Thesis

don

Tobias Schützmeier

Matrikelnummer: 3078561

Semester: MBB3

Aufgabenstellung/Betreuung: Prof. Dr.-Ing. Othmar Springer

Regensburg, den 14.08.2017
Inhaltsverzeichnis

Inhaltsverzeichnis .. I
Abbildungs- und Tabellenverzeichnis ... V
Abkürzungsverzeichnis ... IX
Symbolverzeichnis ... X
Anhangsverzeichnis ... XII
Kurzfassung ... XIII

1 Einleitung .. 1
 1.1 Aufgabenstellung/Motivation .. 1
 1.2 Aufbau der Arbeit .. 2

2 Hauptteil .. 3
 2.1 Grundlagen der numerischen Strömungsanalyse ... 3
 2.1.1 Vorbemerkungen zu CFD ... 3
 2.1.1.1 Was ist CFD? ... 3
 2.1.1.2 Geschichtliche Hintergründe ... 3
 2.1.1.3 Anwendung .. 4
 2.1.2 Theorie der Strömungsmechanik .. 5
 2.1.2.1 Definition ... 5
 2.1.2.2 Grundbegriffe .. 6
 2.1.2.3 Grenzschicht und Ablösung .. 9
 2.1.2.4 Erhaltungsgleichungen .. 12
 2.1.2.5 Navier-Stokes-Gleichung .. 14
 2.1.2.6 Randbedingungen .. 15
 2.1.2.7 Strömungsmodelle ... 16
 2.1.3 Bestandteile numerischen Lösungsmethoden ... 18
 2.1.3.1 Mathematisches Modell ... 18
 2.1.3.2 Diskretisierungsmethode .. 18
 2.1.3.3 Numerisches Gitter .. 19
2.1.3.4 Finite Approximationen ... 21
2.1.3.5 Lösungsmethode ... 21
2.1.3.6 Konvergenzkriterien .. 22

2.1.4 Simulation turbulenter Strömungen .. 22
2.1.4.1 Allgemeines zu turbulenten Strömungen 22
2.1.4.2 Direkte numerische Simulation (DNS) ... 23
2.1.4.3 Large Eddy Simulation (LES) ... 23
2.1.4.4 Reynolds averaged Navier-Stokes-Gleichungen (RANS) 24
2.1.4.5 Turbulenzmodelle ... 25

2.2 Ausgewählte Kapitel der Bauwerksaerodynamik 28
2.2.1 Struktur des Windes .. 28
2.2.1.1 Entstehung ... 28
2.2.1.2 Vertikales Windprofil ... 29
2.2.1.3 Böenwirkung .. 30

2.2.2 Windwirkung auf Gebäude ... 32
2.2.2.1 Allgemeines .. 32
2.2.2.2 Kräfte und Momente ... 33
2.2.2.3 Baukörper .. 34

2.2.3 Windkanaluntersuchungen ... 37

2.2.4 Empfehlungen für numerische Windlastanalysen 39
2.2.4.1 Turbulenzmodell ... 40
2.2.4.2 Abmessungen des Lösungsgebiets .. 40

2.3 Windlastnorm ... 41
2.3.1 Anwendungsbereich ... 41
2.3.2 Erfassung der Windeinwirkung ... 41
2.3.3 Windgeschwindigkeit und Geschwindigkeitsdruck 41
2.3.4 Mittlerer Wind .. 42
2.3.5 Windturbulenz .. 43
2.3.6 Böengeschwindigkeitsdruck ... 44
2.3.7 Windeinwirkungen auf Bauwerke und Bauteile 45
 2.3.7.1 Winddruck auf Oberflächen .. 45
 2.3.7.2 Windkräfte .. 46
 2.3.7.3 Druckbeiwerte für Gebäude .. 47
2.4 Vorstellung der Software ... 48
 2.4.1 Autodesk Robot Structural Analysis Professional 2017 48
 2.4.1.1 Allgemein .. 48
 2.4.1.2 CFD-Windlastermittlung .. 48
 2.4.2 Autodesk CFD 2016 .. 50
2.5 Windlastanalyse .. 51
 2.5.1 Vorgehensweise Windlastermittlung .. 51
 2.5.2 Windlastermittlung gemäß DIN EN 1991-1-4 mit NA 51
 2.5.3 Windlastermittlung mit RSAP 2017 .. 53
 2.5.3.1 Windkennwerte und Berechnungsparameter 54
 2.5.3.2 Ergebnisse für Wind aus Süden ... 56
 2.5.3.3 Ergebnisse für Wind aus Süd-West .. 61
 2.5.3.4 Zusammenfassung und Gegenüberstellung der Ergebnisse 65
 2.5.4 Windlastermittlung mit CFD 2016 .. 67
 2.5.4.1 Windkennwerte und Berechnungsparameter 67
 2.5.4.2 Bemerkungen zur Ergebnisgewinnung 71
 2.5.4.3 Ergebnisse für Wind aus Süden ... 72
 2.5.4.4 Ergebnisse für Wind aus Süd-West .. 75
 2.5.4.5 Zusammenfassung und Gegenüberstellung der Ergebnisse 78
 2.5.5 Vergleich und Diskussion ... 79
 2.5.6 Beispiel Windlastuntersuchung „Ten Towers München“ 81
3 Schluss .. 86
 3.1 Schlussfolgerungen .. 86
3.2 Ausblick .. 88

Literaturverzeichnis .. 89

Anhang .. 91

Eidesstattliche Versicherung ... 111
Kurzfassung

Im Rahmen dieser Masterthesis wird der Einsatz der numerischen Strömungsanalyse, bekannt unter der Abkürzung CFD für „Computational Fluid Dynamics“, für baupraktische Fragenstellungen im Bereich der Bauwerksaerodynamik untersucht.

Sobald Richtlinien für die Anwendung erstellt wurden, werden sich aus Sicht des Autors in absehbarer Zeit numerische Strömungsanalysen im Bereich der Gebäudeaerodynamik als wichtiges ergänzendes Werkzeug in der Tragwerksplanung etablieren.