Modulhandbuch

für den
Masterstudiengang

Informatik
(M.Sc.)

Basis: SPO v. 22.11.2021; Gültig für Studierende mit Studienstart SoSe 2022

Wintersemester 2022/2023
erstellt am 25.10.2022

Fakultät Informatik und Mathematik
Vorspann

Hinweise zum Modulhandbuch im Masterstudiengang Informatik

Der Masterstudiengang umfasst 5 Schwerpunkte:

- Medizinische Informatik
- Software Engineering
- Technische Informatik
- Wirtschaftsinformatik
- Künstliche Intelligenz und Data Science: Wird zum WiSe 2022/23 noch nicht angeboten

Aufbau des Masterstudiums:

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektmodule</td>
<td>2</td>
</tr>
<tr>
<td>Schwerpunktmodule (pro Schwerpunkt)</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtmodule</td>
<td>4</td>
</tr>
<tr>
<td>Wissenschaftliches Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Masterarbeit und Masterseminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahl der Schwerpunktmodule (schwerpunktbezogen)

Schwerpunktmodule werden aus den Katalogen 1 und 2 der jeweiligen Studienschwerpunkte gewählt. Gewählt werden:

- 2 Module aus dem Schwerpunktkatalog 1: Teil der SPO
- 3 Module aus dem Schwerpunktkatalog 2: Beschluss durch den Fakultätsrat und vom Senat genehmigt, eingestellt auf der Homepage der Fakultät bei jedem Studiengang unter dem Reiter „Studien- und Prüfungsordnung“

Schwerpunktmodule aus dem Katalog 1 können auch Teil des Schwerpunktkatalogs 2 im jeweiligen Schwerpunkt sein. Im Modulhandbuch wird jedes Modul pro Schwerpunkt nur einmal ausgegeben, eine Orientierung gibt die Struktur des Inhaltsverzeichnisses.

Wahl der Wahlpflichtmodule

Wahlpflichtmodule können aus den Schwerpunktkatalogen (1 und 2) aller angebotenen Schwerpunkte gewählt werden. Eine Wahl aus den "eigenen Schwerpunktkatalogen (1 und 2)" ist nur möglich, wenn es im Schwerpunkt in Summe mehr als fünf unterschiedliche Modulangebote in beiden Katalogen gibt und das entsprechende Modul nicht als Schwerpunktmodul gewählt wurde. Ein zusätzliches semesterbezogenes Angebot an Wahlpflichtmodulen ist möglich.

Studienoption Forschung

Im Zweifel gelten immer die gültigen und hochschulöffentlich bekannt gemachten Rechtsnormen. Das vom Fakultätsrat beschlossene semesterbezogene Angebot der Lehrveranstaltungen ist im Studienplan geregelt.
Regelstudienverlaufsplan für den Master Informatik mit den Übersichten pro Studienschwerpunkt

Studienverlaufsplan: 20.11.2021

Struktur Masterstudium Informatik (für alle Studienschwerpunkte)

| Semester | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. | 17. | 18. | 19. | 20. | 21. | 22. | 23. | 24. | 25. | 26. | 27. | 28. | 29. | 30. |
| ECTS | 30 |

Die nichtbetonten Inhalte der Zwischensemester 1-2 und der Wahlpflichtmodul 4-6 richtet sich nach dem Angebot der Lehrveranstaltungen in den Studienschwerpunkten. Es werden pro Studienschwerpunkt in mindestens 2 SchwerpunktmODULE pro Semester angeboten.

Studienschwerpunkt Forschung (für alle Studienschwerpunkte)

| Semester | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. | 17. | 18. | 19. | 20. | 21. | 22. | 23. | 24. | 25. | 26. | 27. | 28. | 29. | 30. |
| ECTS | 30 |

Die nichtbetonten Inhalte der Zwischensemester 1-2 und der Wahlpflichtmodul 4-6 richtet sich nach dem Angebot der Lehrveranstaltungen in den Studienschwerpunkten. Es werden pro Studienschwerpunkt in mindestens 2 SchwerpunktmODULE pro Semester angeboten.

Studienschwerpunkt Software Engineering

Module Schwerpunkt Katalog 1 SE

- Modul 1: Moderne Software-Techniken (Bitwurzel Software-Techniken)
- Modul 2: Software-Techniken (Modern Software Techniques)
- Modul 3: Software-Techniken (Software Development)
- Modul 4: Software-Techniken (Software Engineering)

Module Schwerpunkt Katalog 2 SE

- Modul 1: Modul 1: Moderne Software-Techniken (Bitwurzel Software-Techniken)
- Modul 2: Software-Techniken (Modern Software Techniques)
- Modul 3: Software-Techniken (Software Development)
- Modul 4: Software-Techniken (Software Engineering)

Module Schwerpunkt Katalog 3 SE

- Modul 1: Spezialisierte Inhalte (Software Engineering)
- Modul 2: Spezialisierte Inhalte (Software Development)
- Modul 3: Spezialisierte Inhalte (Software Engineering)
- Modul 4: Spezialisierte Inhalte (Software Development)

Module Schwerpunkt Katalog 4 SE

- Modul 1: Spezialisierte Inhalte (Software Engineering)
- Modul 2: Spezialisierte Inhalte (Software Development)
- Modul 3: Spezialisierte Inhalte (Software Engineering)
- Modul 4: Spezialisierte Inhalte (Software Development)

Studienschwerpunkt Technische Informatik

Module Schwerpunkt Katalog 1 TF

- Modul 1: Moderner Informatik (Modern Informatik)
- Modul 2: Informatik (Informatik)
- Modul 3: Informatik (Informatik)
- Modul 4: Informatik (Informatik)

Module Schwerpunkt Katalog 2 TF

- Modul 1: Moderner Informatik (Modern Informatik)
- Modul 2: Informatik (Informatik)
- Modul 3: Informatik (Informatik)
- Modul 4: Informatik (Informatik)

Module Schwerpunkt Katalog 3 TF

- Modul 1: Spezialisierte Inhalte (Informatik)
- Modul 2: Spezialisierte Inhalte (Informatik)
- Modul 3: Spezialisierte Inhalte (Informatik)
- Modul 4: Spezialisierte Inhalte (Informatik)

Module Schwerpunkt Katalog 4 TF

- Modul 1: Spezialisierte Inhalte (Informatik)
- Modul 2: Spezialisierte Inhalte (Informatik)
- Modul 3: Spezialisierte Inhalte (Informatik)
- Modul 4: Spezialisierte Inhalte (Informatik)

Studienschwerpunkt Medizinische Informatik

Module Schwerpunkt Katalog 1 MI

- Modul 1: Medizinische Informatik (Medical Informatics)
- Modul 2: Medizinische Informatik (Medical Informatics)
- Modul 3: Medizinische Informatik (Medical Informatics)
- Modul 4: Medizinische Informatik (Medical Informatics)

Module Schwerpunkt Katalog 2 MI

- Modul 1: Medizinische Informatik (Medical Informatics)
- Modul 2: Medizinische Informatik (Medical Informatics)
- Modul 3: Medizinische Informatik (Medical Informatics)
- Modul 4: Medizinische Informatik (Medical Informatics)

Module Schwerpunkt Katalog 3 MI

- Modul 1: Spezialisierte Inhalte (Medical Informatics)
- Modul 2: Spezialisierte Inhalte (Medical Informatics)
- Modul 3: Spezialisierte Inhalte (Medical Informatics)
- Modul 4: Spezialisierte Inhalte (Medical Informatics)

Module Schwerpunkt Katalog 4 MI

- Modul 1: Spezialisierte Inhalte (Medical Informatics)
- Modul 2: Spezialisierte Inhalte (Medical Informatics)
- Modul 3: Spezialisierte Inhalte (Medical Informatics)
- Modul 4: Spezialisierte Inhalte (Medical Informatics)

Studienschwerpunkt Wirtschaftsinformatik

Module Schwerpunkt Katalog 1 WI

- Modul 1: Wirtschaftsinformatik (Business Informatics)
- Modul 2: Wirtschaftsinformatik (Business Informatics)
- Modul 3: Wirtschaftsinformatik (Business Informatics)
- Modul 4: Wirtschaftsinformatik (Business Informatics)

Module Schwerpunkt Katalog 2 WI

- Modul 1: Wirtschaftsinformatik (Business Informatics)
- Modul 2: Wirtschaftsinformatik (Business Informatics)
- Modul 3: Wirtschaftsinformatik (Business Informatics)
- Modul 4: Wirtschaftsinformatik (Business Informatics)

Module Schwerpunkt Katalog 3 WI

- Modul 1: Spezialisierte Inhalte (Business Informatics)
- Modul 2: Spezialisierte Inhalte (Business Informatics)
- Modul 3: Spezialisierte Inhalte (Business Informatics)
- Modul 4: Spezialisierte Inhalte (Business Informatics)

Module Schwerpunkt Katalog 4 WI

- Modul 1: Spezialisierte Inhalte (Business Informatics)
- Modul 2: Spezialisierte Inhalte (Business Informatics)
- Modul 3: Spezialisierte Inhalte (Business Informatics)
- Modul 4: Spezialisierte Inhalte (Business Informatics)

Studienschwerpunkt Kunstliche Intelligenz & Data Science: Weit im Wintersemester 2022/2023 nicht angeboten

Erläuterungen zum Wahlpflichtangebot

- Wahlpflichtmodule lassen sich aus den Schwerpunktkatalogen 1-2 auswählen. Es werden pro Studienschwerpunkt in mindestens 2 SchwerpunktmODULE pro Semester angeboten.
- Ihnen als Studierenden stehen 3 Wahlpflichtmodule offen: 1 Module pro Semester. Sie können Ihre Module flexibel wählen, ohne dass dies eine strenge Regelung ist.

Semesterbezogene zusätzliche Wahlpflichtangebote

Modulliste

I. Module des Studiengangs

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1 Projektstudium 1</td>
<td>7</td>
</tr>
<tr>
<td>MIN Projektstudium 1</td>
<td>8</td>
</tr>
<tr>
<td>I.2 Projektstudium 2</td>
<td>10</td>
</tr>
<tr>
<td>MIN Projektstudium 2</td>
<td>11</td>
</tr>
<tr>
<td>I.3 Wahlpflichtmodul 1</td>
<td>13</td>
</tr>
<tr>
<td>I.4 Wahlpflichtmodul 2</td>
<td>15</td>
</tr>
<tr>
<td>I.5 Wahlpflichtmodul 3</td>
<td>17</td>
</tr>
<tr>
<td>I.6 Wahlpflichtmodul 4</td>
<td>19</td>
</tr>
<tr>
<td>I.7 Wissenschaftliches Seminar</td>
<td>21</td>
</tr>
<tr>
<td>MIN Wissenschaftliches Seminar</td>
<td>22</td>
</tr>
<tr>
<td>I.8 Masterseminar</td>
<td>24</td>
</tr>
<tr>
<td>MIN Masterseminar</td>
<td>25</td>
</tr>
<tr>
<td>I.9 Masterarbeit (Thesis)</td>
<td>26</td>
</tr>
<tr>
<td>MIN Masterarbeit (Thesis)</td>
<td>27</td>
</tr>
</tbody>
</table>

II. Studienoption "Forschung"

Forschungsarbeit 1 (Research Thesis 1)	29
Forschungsarbeit 1 (Research Thesis 1)	30
Forschungsarbeit 2 (Research Thesis 2)	32
Forschungsarbeit 2 (Research Thesis 2)	33

III.0 Studienschwerpunkt "Künstliche Intelligenz und Data Science (KI&DS)"

wird noch nicht angeboten

III.1 Schwerpunktkatalog 1 Künstliche Intelligenz und Data Science

wird noch nicht angeboten

III.2 Schwerpunktkatalog 2 Künstliche Intelligenz und Data Science

wird noch nicht angeboten

IV.0 Studienschwerpunkt "Software Engineering (SE)"

IV.1 Schwerpunktkatalog 1 "Software Engineering"

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.1.1 Moderne Software Techniken</td>
<td>35</td>
</tr>
<tr>
<td>Moderne Software Techniken</td>
<td>36</td>
</tr>
<tr>
<td>IV.1.2 Secure Programming</td>
<td>38</td>
</tr>
<tr>
<td>Secure Programming</td>
<td>39</td>
</tr>
<tr>
<td>IV.1.3 Fortgeschrittene Computergraphik</td>
<td>41</td>
</tr>
<tr>
<td>Fortgeschrittene Computergraphik</td>
<td>42</td>
</tr>
<tr>
<td>IV.1.4 Spezielle Algorithmen</td>
<td>44</td>
</tr>
<tr>
<td>Spezielle Algorithmen</td>
<td>45</td>
</tr>
<tr>
<td>IV.1.5 Distributed Computing</td>
<td>47</td>
</tr>
<tr>
<td>Distributed Computing</td>
<td>48</td>
</tr>
<tr>
<td>IV.1.6 Modellierung und Verifikation</td>
<td>50</td>
</tr>
</tbody>
</table>
Modellierung und Verifikation...51
IV.1.7 Moderne Theoretische Informatik...53
Moderne Theoretische Informatik...54

IV.2 Schwerpunktkatalog 2 Software Engineering
alle Module aus Schwerpunktkatalog 1 SE
IV.2.1 IT-Security hochgradig vernetzter Anwendungen und Systeme..................56
IT-Security hochgradig vernetzter Anwendungen und Systeme..................57

V.0 Studienschwerpunkt "Technische Informatik (IT)"

V.1 Schwerpunktkatalog 1 "Technische Informatik"
V.1.1 Fortgeschrittene Echtzeitsysteme..59
Fortgeschrittene Echtzeitsysteme..60
V.1.2 Embedded Systems Design..62
Embedded Systems Design..63
V.1.3 Hardware Software Codesign..65
Hardware Software Codesign..66
V.1.4 Fortgeschrittene Kommunikationssysteme.....................................68
Fortgeschrittene Kommunikationssysteme.....................................69

V.2 Schwerpunktkatalog 2 "Technische Informatik"
alle Module aus Schwerpunktkatalog 1 IT und Zusatzmodul
V.2.1 Secure Programming..71
Secure Programming..72

VI.0 Studienschwerpunkt "Medizinische Informatik (IM)"

VI.1 Schwerpunktkatalog 1 "Medizinische Informatik"
VI.1.1 Biosignalverarbeitung..74
Biosignalverarbeitung..75
VI.1.2 Digital Health..77
Digital Health..78
VI.1.3 Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung..80
Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung..81
VI.1.4 Quality Management and Medical Controlling................................84
Quality Management and Medical Controlling................................85
VI.1.5 Analyse und Erfassung medizinischer Prozesse................................87
Analyse und Erfassung medizinischer Prozesse................................88

VI.2 Schwerpunktkatalog 2 "Medizinische Informatik"
alle Module aus Schwerpunktkatalog 1 IM und Zusatzmodul
VI.2.1 Moderne Datenbankkonzepte...90
Moderne Datenbankkonzepte...91

VII.0 Studienschwerpunkt "Wirtschaftsinformatik (IW)"
VII.1 Schwerpunktkatalog 1 "Wirtschaftsinformatik"

VII.1.1 Fortgeschrittene Produktionsplanung... 93
VII.1.2 Strategisches IT-Management.. 96
VII.1.3 Moderne Datenbankkonzepte.. 100

VII.2 Schwerpunktkatalog 2 "Wirtschaftsinformatik"
alle Module aus Schwerpunktkatalog 1 IW und Zusatzmodule

VII.2.1 Expertensysteme und Maschinelles Lernen.. 103
VII.2.2 Geschäftsprozessoptimierung... 106
I.1 Projektstudium 1

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1 Projektstudium 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MIN Projektstudium 1</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
MIN Projektstudium 1 | PST 1

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>alle Prüfer/innen des Masterstudiengangs Informatik</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Projektaufgaben z. T. im Labor

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

StA

Inhalte

Fachspezifische Themen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, fachwissenschaftliche Projekte selbstständig zu bearbeiten und deren Ergebnisse zu dokumentieren. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachspezifische Ergebnisse eigener Arbeit in mündlicher und schriftlicher Form zu präsentieren (2)
- Rückfragen und Lösungsansätze im Team zu diskutieren (3)

Lehrmedien

Tafel, Notebook, Beamer, Folien u.a.

Literatur
Weitere Informationen zur Lehrveranstaltung

Der genaue organisatorische Ablauf wird im Rahmen einer Informationsveranstaltung zu Semesterbeginn erläutert.

Vorschläge für Projektthemen finden Sie im ELO-Kurs:
Projektstudium 1 und 2 – Prof. Kucera – MIN – WiSe und SoSe
Das Passwort für diesen Kurs finden Sie unter Ankündigungen im ELO-Kurs:
Studiengangsfachberatung Master Informatik – Prof. Kucera
Darüber hinaus haben Sie die Möglichkeit, die Dozentinnen und Dozenten, die im Master lehren, auch jederzeit direkt anzusprechen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.2 Projektstudium 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MIN Projektstudium 2</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: I.2 Projektstudium 2

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN Projektstudium 2</td>
<td>PST 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>alle Prüfer/innen des</td>
<td></td>
</tr>
<tr>
<td>Masterstudiengangs</td>
<td></td>
</tr>
<tr>
<td>Informatik</td>
<td></td>
</tr>
<tr>
<td>Lehrform</td>
<td></td>
</tr>
</tbody>
</table>

| Projektarbeiten z. T. im Labor |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
<td></td>
</tr>
<tr>
<td>60h</td>
<td>90h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>StA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachspezifische Themen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, fachwissenschaftliche Projekte selbstständig zu bearbeiten und deren Ergebnisse zu dokumentieren. (3)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachspezifische Ergebnisse eigener Arbeit in mündlicher und schriftlicher Form zu präsentieren (2)
- Rückfragen und Lösungsansätze im Team zu diskutieren (3)

<table>
<thead>
<tr>
<th>Lehrmedien</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer, Folien u.a.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Literatur | | |

Stand: 25. 10. 2022
Ostbayerische Technische Hochschule Regensburg
Seite 11
Weitere Informationen zur Lehrveranstaltung

Der genaue organisatorische Ablauf wird im Rahmen einer Informationsveranstaltung zu Semesterbeginn erläutert.

Vorschläge für Projektthemen finden Sie im ELO-Kurs:
Projektstudium 1 und 2 – Prof. Kucera – MIN – WiSe und SoSe
Das Passwort für diesen Kurs finden Sie unter Ankündigungen im ELO-Kurs:
Studiengangsfachberatung Master Informatik – Prof. Kucera
Darüber hinaus haben Sie die Möglichkeit, die Dozentinnen und Dozenten, die im Master lehren, auch jederzeit direkt anzusprechen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Master Informatik (PO: 20221)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
I.3 Wahlpflichtmodul 1 |

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Modulangebot (Studienschwerpunkt)

- Analyse und Erfassung medizinischer Prozesse (IM)
- Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung (IM)
- Beschaffungsprozesse (Lehrimport aus dem Master Logistik)
- Biosignalverarbeitung (IM)
- Digital Health (IM)
- Distributed Computing (SE)
- Embedded Systems Design (IT)
-Expertensysteme und Maschinelles Lernen (IW)
- Fortgeschrittene Computergrafik (SE)
- Fortgeschrittene Echtzeitsysteme (IT)
- Fortgeschrittene Kommunikationssysteme (IT)
- Fortgeschrittene Produktionsplanung (IW)
- Geschäftsprozessoptimierung (IW)
- Hardware Software Codesign (IT)
- Integraltransformationen (Lehrimport aus dem Master Mathematik)
- IT- Security hochgradig vernetzter Anwendungen und Systeme (SE)
- Modellierung und Verifikation (SE)
- Moderne Datenbankkonzepte (IM, IW)
- Moderne Software Techniken (SE)
- Moderne Theoretische Informatik (SE)
- Quality Management and Medical Controlling (IM)
- Grundlagen der Quantenmechanik (Lehrimport Fakultät ANK, beschränktes Platzangebot, Anmeldung im Sekretariat erforderlich)
- Secure Programming (SE, IT)
- Spezielle Algorithmen (SE)

Stand: 25. 10. 2022
• Strategisches IT-Management (IW)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.4 Wahlpflichtmodul 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt</td>
<td>Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Modulangebot (Studienschwerpunkt)

- Analyse und Erfassung medizinischer Prozesse (IM)
- Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung (IM)
- Beschaffungsprozesse (Lehrimport aus dem Master Logistik)
- Biosignalverarbeitung (IM)
- Digital Health (IM)
- Distributed Computing (SE)
- Embedded Systems Design (IT)
- Expertensysteme und Maschinelles Lernen (IW)
- Fortgeschrittene Computergrafik (SE)
- Fortgeschrittene Echtzeitsysteme (IT)
- Fortgeschrittene Kommunikationssysteme (IT)
- Fortgeschrittene Produktionsplanung (IW)
- Geschäftsprozessoptimierung (IW)
- Hardware Software Codesign (IT)
- Integraltransformationen (Lehrimport aus dem Master Mathematik)
- IT- Security hochgradig vernetzter Anwendungen und Systeme (SE)
- Modellierung und Verifikation (SE)
- Moderne Datenbankkonzepte (IM, IW)
- Moderne Software Techniken (SE)
- Moderne Theoretische Informatik (SE)
- Quality Management and Medical Controlling (IM)
- Grundlagen der Quantenmechanik (Lehrimport Fakultät ANK, beschränktes Platzangebot, Anmeldung im Sekretariat erforderlich)
- Secure Programming (SE, IT)
- Spezielle Algorithmen (SE)
• Strategisches IT-Management (IW)

Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>I.5 Wahlpflichtmodul 3</th>
</tr>
</thead>
</table>

Modulverantwortliche/r

| Dekan Fakultät IM | Informatik und Mathematik |

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>1. / 2.</th>
<th>Schwerpunkt Wahlpflichtmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Modulangebot (Studienschwerpunkt)

- Analyse und Erfassung medizinischer Prozesse (IM)
- Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung (IM)
- Beschaffungsprozesse (Lehrimport aus dem Master Logistik)
- Biosignalverarbeitung (IM)
- Digital Health (IM)
- Distributed Computing (SE)
- Embedded Systems Design (IT)
- Expertensysteme und Maschinelles Lernen (IW)
- Fortgeschrittene Computergrafik (SE)
- Fortgeschrittene Echtzeitsysteme (IT)
- Fortgeschrittene Kommunikationssysteme (IT)
- Fortgeschrittene Produktionsplanung (IW)
- Geschäftsprozessoptimierung (IW)
- Hardware Software Codesign (IT)
- Integraltransformationen (Lehrimport aus dem Master Mathematik)
- IT- Security hochgradig vernetzter Anwendungen und Systeme (SE)
- Modellierung und Verifikation (SE)
- Moderne Datenbankkonzepte (IM, IW)
- Moderne Software Techniken (SE)
- Moderne Theoretische Informatik (SE)
- Quality Management und Medical Controlling (IM)
- Grundlagen der Quantenmechanik (Lehrimport Fakultät ANK, beschränktes Platzangebot, Anmeldung im Sekretariat erforderlich)
- Secure Programming (SE, IT)
- Spezielle Algorithmen (SE)
- Strategisches IT-Management (IW)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
I.6 Wahlpflichtmodul 4 | |

Modulverantwortliche/r	Fakultät
Dekan Fakultät IM | Informatik und Mathematik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. / 2. | Schwerpunkt Wahlpflichtmodul | 5 |

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Modulangebot (Studienschwerpunkt)

- Analyse und Erfassung medizinischer Prozesse (IM)
- Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung (IM)
- Beschaffungsprozesse (Lehrimport aus dem Master Logistik)
- Biosignalverarbeitung (IM)
- Digital Health (IM)
- Distributed Computing (SE)
- Embedded Systems Design (IT)
- Expertensysteme und Maschinelles Lernen (IW)
- Fortgeschrittene Computergrafik (SE)
- Fortgeschrittene Echtzeitsysteme (IT)
- Fortgeschrittene Kommunikationssysteme (IT)
- Fortgeschrittene Produktionsplanung (IW)
- Geschäftsprozessoptimierung (IW)
- Hardware Software Codesign (IT)
- Integraltransformationen (Lehrimport aus dem Master Mathematik)
- IT- Security hochgradig vernetzter Anwendungen und Systeme (SE)
- Modellierung und Verifikation (SE)
- Moderne Datenbankkonzepte (IM, IW)
- Moderne Software Techniken (SE)
- Moderne Theoretische Informatik (SE)
- Quality Management and Medical Controlling (IM)
- Grundlagen der Quantenmechanik (Lehrimport Fakultät ANK, beschränktes Platzangebot, Anmeldung im Sekretariat erforderlich)
- Secure Programming (SE, IT)
- Spezielle Algorithmen (SE)
- Strategisches IT-Management (IW)

### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
1.7 Wissenschaftliches Seminar |

### Modulverantwortliche/r	Fakultät
Prof. Dr. Markus Westner | Informatik und Mathematik

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Kenntnisse von Präsentationstechniken (AW-Bereich)

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MIN Wissenschaftliches Seminar</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: I.7 Wissenschaftliches Seminar

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN Wissenschaftliches Seminar</td>
<td>WIS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Westner</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>alle Prüfer/innen des Masterstudiengangs Informatik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehramtform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
</tr>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

StA m. P.

Inhalte

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich selbstständig in ein vorgegebenes eingegrenztes Spezialgebiet der Informatik mit Bezug zu den Schwerpunkten des Studiengangs, einzuarbeiten und darin vertiefte Kenntnisse zu erlangen (3)
- eine Themenstellung aus dem o.g. Spezialgebiet wissenschaftlich zu bearbeiten und in angrenzende thematische Gebiete einzuordnen. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Literatur selbstständig zu recherchieren und effizient mit (auch englischsprachiger) Fachliteratur umzugehen (2)
Name des Studiengangs: Master Informatik (PO: 20221)
Modulname: I.7 Wissenschaftliches Seminar

- fachspezifische Ergebnisse eigener Arbeit in mündlicher und schriftlicher Form zu präsentieren (2)
- Rückfragen und Lösungsansätze im Team zu diskutieren (3)

Lehrmedien
Tafel, Notebook, Beamer, Folien, u.a

Literatur
Fachspezifische Literatur (Journal Paper, Lehrbücher), abhängig vom Thema

Weitere Informationen zur Lehrveranstaltung
Der genaue organisatorische Ablauf wird im Rahmen einer Informationsveranstaltung zu Semesterbeginn erläutert.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.8 Masterseminar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Siehe hierzu auch die Ausführungen zur Lehrveranstaltung / Masterseminar: "Studien- und Prüfungsleistung"

Empfohlene Vorkenntnisse

Keine

Inhalte

Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MIN Masterseminar</td>
<td>2 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kürzelbezeichnung
--- | ---
MIN Masterseminar | MAS

Verantwortliche/r	Fakultät
Prof. Dr. Frank Herrmann | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
alle Prüfer/innen des Masterstudiengangs Informatik
Lehrform

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
3. | 2 SWS | deutsch/englisch | 4

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- Präsentation der eigenen Masterarbeit, Zulassungsvoraussetzung: Anmeldung der eigenen Masterarbeit
- Teilnahme an 5 weiteren Seminarvorträgen: Die Zulassung erfolgt mit dem Eintritt in das Masterstudium, eine Anmeldung der eigenen Masterarbeit ist nicht erforderlich.

Inhalte

Fachwissenschaftliche Themen

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachspezifische Ergebnisse eigener Arbeit in mündlicher und schriftlicher Form zu präsentieren (2)
- Rückfragen und Lösungsansätze im Team zu diskutieren (3)

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Sprache: Deutsch / Englisch

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.9 Masterarbeit (Thesis)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>26</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

45 Kreditpunkte aus den ersten beiden Studiensemestern

Empfohlene Vorkenntnisse

Alle Pflicht-Module

Inhalte

Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MIN Masterarbeit (Thesis)</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: I.9 Masterarbeit (Thesis)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM–Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN Masterarbeit (Thesis)</td>
<td>MTH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Kucera</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle Prüfer/innen des Masterstudiengangs Informatik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Selbständige Bearbeitung eines fachwissenschaftlichen Problems</td>
</tr>
<tr>
<td>• Erstellen einer schriftlichen Ausarbeitung</td>
</tr>
<tr>
<td>• Vorbereiten einer Präsentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>[SWS oder UE]</td>
<td>deutsch/englisch</td>
<td>26 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterarbeit: Ausarbeitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachwissenschaftliches Thema</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
</table>

In der Veranstaltung werden die Kompetenzen auf Niveaustufe 3 erworben.

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Bearbeitung einer komplexen, wissenschaftlichen Aufgabe eigenständig in Arbeitspakete zu untergliedern, deren Abarbeitung zu planen, den Arbeitsstand fortlaufend zu verfolgen und termingerecht abzuschließen.</td>
</tr>
</tbody>
</table>

In der Veranstaltung werden die Kompetenzen auf Niveaustufe 3 erworben.

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache: Deutsch / Englisch</td>
</tr>
<tr>
<td>Medienform: Papier, CD/DVD, PDF-Datei u.a.</td>
</tr>
<tr>
<td>Zeitaufwand 780 h: 725 h zur Bearbeitung und Ausarbeitung, 55 h zur Vorbereitung der Präsentation</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1 Forschungsarbeit 1 (Research Thesis 1)</td>
<td>F1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: II.1 Forschungsarbeit 1 (Research Thesis 1)

Teilmodul	TM-Kurzbezeichnung
Forschungsarbeit 1 (Research Thesis 1) | F1

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
</tr>
<tr>
<td>1. / 2.</td>
<td>3 SWS</td>
<td>deutsch</td>
<td>15</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium | Eigenstudium

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>StA m.P.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbstständiges wissenschaftliches Arbeiten</td>
</tr>
<tr>
<td>Anwendung methodischer Entwicklungsverfahren</td>
</tr>
<tr>
<td>Erstellung von Modellen und Vorbereitung von Simulation</td>
</tr>
<tr>
<td>Verifizierung und Validierung von Modellen und Simulation</td>
</tr>
<tr>
<td>Regeln zur Dokumentation und Veröffentlichung wissenschaftlicher Arbeiten</td>
</tr>
<tr>
<td>Grundlagen MS Project oder ähnliche Tools zum Projektmanagement</td>
</tr>
<tr>
<td>Projektstrukturplanung, Terminplanung, Kommunikationsplanung</td>
</tr>
<tr>
<td>Ressourcenplanung, Risikoidentifikation, kritischer Pfad</td>
</tr>
<tr>
<td>Projektpräsentation</td>
</tr>
</tbody>
</table>

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- experimentelle Erfahrung widerzugeben (1)
- experimentelle Ergebnisse zu beurteilen (2)
- Gesetzmäßigkeiten und wesentliche Eigenschaften eines technischen Zusammenhangs zu erkennen (2)
- Modellbildung und Simulation zu beschreiben (1) und ggf. anzuwenden (2)
- Kenntnisse zur Planung, Veröffentlichung und Präsentation ingenieurwissenschaftlicher Arbeiten anzuwenden (2)
- Komplexe Aufgabenstellungen zu strukturieren (3) und Projektabläufe effizient zu planen (3)
- Projektpläne darzustellen (2) und die Gestaltung einer Projekt­dokumentation mithilfe von MS Project oder vergleichbaren Management-Tools auszuführen (2)

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg Seite 30
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Aufgaben zu analysieren (2) und zu dokumentieren (2)
- komplexe Aufgaben zu strukturieren (2) und zu managen (2)
- Randbedingungen zur Projekterfüllung zu identifizieren (2)
- Projektmitglieder einzubinden (2)
- Projektplanungen zu dokumentieren (2)
- Projektmanagement anzuwenden (2) und zu dokumentieren (2)
- Projektergebnisse in Präsentationen wissenschaftlich darzustellen (3)
- Projektergebnisse in Dokumentationen wissenschaftlich darzustellen (3)

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.2 Forschungsarbeit 2 (Research Thesis 2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>15</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Forschungsarbeit 2 (Research Thesis 2)</td>
<td>3 SWS</td>
<td>15</td>
</tr>
</tbody>
</table>
Teilmodul

Forschungsarbeit 2 (Research Thesis 2)

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

<table>
<thead>
<tr>
<th>Projekt</th>
</tr>
</thead>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>3 SWS</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>StA m.P.</th>
</tr>
</thead>
</table>

Inhalte

- Selbstständiges wissenschaftliches Arbeiten
- Anwendung methodischer Entwicklungsverfahren
- Erstellung von Modellen und Vorbereitung von Simulation
- Verifizierung und Validierung von Modellen und Simulation
- Regeln zur Dokumentation und Veröffentlichung wissenschaftlicher Arbeiten
- Grundlagen MS Project oder ähnliche Tools zum Projektmanagement
- Projektstrukturplanung, Terminplanung, Kommunikationsplanung
- Ressourcenplanung, Risikoidentifikation, kritischer Pfad
- Projektpräsentation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- experimentelle Erfahrung widerzugeben (1)
- experimentelle Ergebnisse zu beurteilen (2)
- Gesetzmäßigkeiten und wesentliche Eigenschaften eines technischen Zusammenhangs zu erkennen (2)
- Modellbildung und Simulation zu beschreiben (1) und ggf. anzuwenden (2)
- Kenntnisse zur Planung, Veröffentlichung und Präsentation ingenieurwissenschaftlicher Arbeiten anzuwenden (2)
- Komplexe Aufgabenstellungen zu strukturieren (3) und Projektabläufe effizient zu planen (3)
- Projektpläne darzustellen (2) und die Gestaltung einer Projekt/documentation mithilfe von MS Project oder vergleichbaren Management-Tools auszuführen (2)

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg

Seite 33
• Projektrisiken zu analysieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Aufgaben zu analysieren (2) und zu dokumentieren (2)
• komplexe Aufgaben zu strukturieren (2) und zu managen (2)
• Randbedingungen zur Projekterfüllung zu identifizieren (2)
• Projektmitglieder einzubinden (2)
• Projektplanungen zu dokumentieren (2)
• Projektmanagement anzuwenden (2) und zu dokumentieren (2)
• Projektergebnisse in Präsentationen wissenschaftlich darzustellen (3)
• Projektergebnisse in Dokumentationen wissenschaftlich darzustellen (3)

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	**Modul-KzBez. oder Nr.**
IV.1.1 Moderne Software Techniken | |

Modulverantwortliche/r	**Fakultät**
Prof. Dr. Michael Bulenda | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
SW-Engineering aus den Bachelorstudiengängen

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Moderne Software Techniken</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022
Ostbayerische Technische Hochschule Regensburg
Seite 35
Teilmodul

<table>
<thead>
<tr>
<th>Moderner Software Techniken</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Dr. Michael Bulenda</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
</tbody>
</table>

Lehrform

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min

Inhalte

- Kommunikation in Software Projekten
- Software Qualität
- Software Test
- Vorgehensmodelle
- Requirements Engineering
- Konfigurationsmanagement
- Software Architektur und -Design

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fortgeschrittene Methoden, Vorgehensmodelle, Standards und Arbeitsformen des Software Engineering anzuwenden (2).
- Chancen und Risiken bei der Software Entwicklung einzuschätzen (2).
- Planung, Entwurf, Durchführung, Test und Qualitätssicherung bei der Entwicklung von komplexen Software Systemen zu übernehmen.(1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Bedeutung von Teamwork wertzuschätzen. (2)
- Risikobewusstsein in Projekten einzubringen. (2)
- selbstständig zu arbeiten. (1)
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notebook und Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirk W. Hoffmann: Software-Qualität, 2 Auflage, Springer Vieweg</td>
</tr>
<tr>
<td>Andreas Spillner, Tilo Linz: Basiswissen Softwaretest, dpunkt.verlag</td>
</tr>
<tr>
<td>Klaus Pohl, Chris Rupp: Basiswissen Requirements Engineering, dpunkt.verlag</td>
</tr>
<tr>
<td>Chris Rupp & die Sophisten: Requirements-Engineering und – Management, 6. Auflage, Hanser, 2014</td>
</tr>
<tr>
<td>Mahbouba Gharbi, Arne Koschel, Andreas Rausch und Gernot Starke: Basiswissen für Softwarearchitekten, dpunkt.verlag</td>
</tr>
<tr>
<td>G Starke: Effektive Software Architekturen, 3. Auflage, Hanser</td>
</tr>
<tr>
<td>G. Popp: Konfigurationsmanagement mit Subversion, Maven und Redmine, 4. Auflage, dpunkt.verlag</td>
</tr>
<tr>
<td>B. Gloger: Scrum, Hanser, 2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung) Modul-KzBez. oder Nr.

<table>
<thead>
<tr>
<th>IV.1.2 Secure Programming</th>
</tr>
</thead>
</table>

Modulverantwortliche/r Fakultät

<table>
<thead>
<tr>
<th>Prof. Dr. Christoph Skornia</th>
<th>Informatik und Mathematik</th>
</tr>
</thead>
</table>

Studiensemester gemäß Studienplan Studienabschnitt Modultyp Arbeitsaufwand [ECTS-Credits]

| 1. / 2. | Schwerpunkt Pflichtmodul | 5 |

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

- Kommunikationssysteme
- Grundlagen der Informatik
- Programmieren (1 und 2)
- Informationssicherheit

Inhalte

Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Secure Programming</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg Seite 38
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: IV.1.2 Secure Programming

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure Programming</td>
<td>SPG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Skornia</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Christoph Skornia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsentzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>schrP, 90 Min.</td>
</tr>
</tbody>
</table>

Inhalte

- Main security flaws in C, C++ and Java programs
- In depth analysis of data types and memory management
- Overflows on several levels
- Risks in data-type-conversions
- Counting and loops
- Secure Input and Output (including preprocessor inputs)
- Concept of least privilege and its application
- Encrypted temporary data (File and RAM)
- Principles of Code Audit and Secure Software Engineering

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, After completing the module the students are able to:

- understand the root causes of vulnerabilities in C and C++ code and how insecure applications can be exploited (2)
- identify and analyze insecurities in code (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, After completing the module the students are able to:

- apply general rules for secure coding and create secure code (2)
- apply design principles of secure coding in software engineering (3)

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg
Seite 39
Lehrmedien
Tafel, Beamer, Notebook

Literatur
- Robert Seacord, Secure Coding in C and C++ Addison-Wesley Professional; 1 edition (September 9, 2005)
- Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, David Svoboda, The CERT Oracle Secure Coding Standard for Java Addison-Wesley Professional; 1 edition (September 18, 2011)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
IV.1.3 Fortgeschrittene Computergraphik |

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Programmieren, Mathematik

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fortgeschrittene Computergraphik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: IV.1.3 Fortgeschrittene Computergraphik

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortgeschrittene Computergraphik</td>
<td>FCG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW mit Übungen</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch/englisch 5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min.

Inhalte

In der Veranstaltung wird die Bildsynthese in der Computergrafik aus Sicht des Ray Tracings betrachtet. Dabei werden zuerst grundlegende Begriffe der Computergrafik und die Mechanik des Ray Tracings besprochen. Danach wird auf das Modell der globalen Beleuchtungssimulation eingegangen und dieses (aufbauend) am Beispiel Path Tracing besprochen und in den Übungen umgesetzt.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, eigenständig Ray Tracing Code zu schreiben (3) und mit Hilfe von Fachliteratur Methoden der globalen Beleuchtung damit umzusetzen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, fachlich zu kommunizieren (2) und Probleme analytisch, technisch und selbständig zu bearbeiten (3).

Lehrmedien

Tafelanschrieb, Tex-Folien, Programmcode
Literatur

Hauptliteratur:
- Pharr, Jakob and Humphreys – Physically Based Rendering: From Theory To Implementation Sekundär
- Shirley, Marschner – Fundamentals of Computer Graphics
- Foley, van Dam, Feiner, Hughes – Computer Graphics: Principles and Practice in C

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Spezielle Algorithmen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: IV.1.4 Spezielle Algorithmen

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezielle Algorithmen</td>
<td>SAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

SUW

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Lehrumfang

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Lehrumfang

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min.

Inhalte

Ausgewählte Themen aus der Algorithmik, z.B.
- Approximationsalgorithmen
- Algorithmen für drahtlose Netzwerke
- Algorithmische Geometrie
- Randomisierte Algorithmen
- Online Algorithmen
- Graphalgorithmen
- Algorithmen fürs Internet
- Parallele und verteilte Algorithmen
- Algorithmen in der Computergrafik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die theoretischen Aspekte fortgeschrittener algorithmischer Methoden wiederzugeben (Niveaustufe 1). Sie können Algorithmen mit fortgeschrittenen mathematischen Methoden charakterisieren und analysieren (Niveaustufe 2-3). Sie können fortgeschrittene algorithmische Verfahren zur Lösung praktischer Aufgabenstellungen einsetzen und diese Lösungen implementieren (Niveaustufe 3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, fortgeschrittene algorithmische Problemstellungen zu anspruchsvollen Themen in der Informatik selbstständig alleine und in Gruppenarbeit wiederzugeben (Niveaustufe 1), zu bearbeiten (Niveaustufe 2) und zu lösen (Niveaustufe 3). Sie können eigene und andere Lösungen bewerten und vergleichen.

Lehrmedien
Tafel, elektronische Folien, Demo-Software

Literatur
- Aktuelle Forschungsartikel
- Ottmann, T., Widmayer, P.: Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag, 2002
- Schöning, U.: Algorithmik, Spektrum Akademischer Verlag, 2001

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.1.5 Distributed Computing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
- Objektorientierte Programmierung
- Datenbanken
- Software Engineering
- Webtechnologien und Internetprotokolle
- Verteilte Systeme (Grundlagen)
- Rechnernetze (Grundlagen)

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Distributed Computing</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Master Informatik (PO: 20221)

Modulname:
IV.1.5 Distributed Computing

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Computing</td>
<td>DCO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>schrP, 90 Min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Selected Programming Principles and Paradigms for Distributed Computing</td>
</tr>
<tr>
<td>• Selected Algorithms of Distributed Computing</td>
</tr>
<tr>
<td>• Selected Software Engineering Paradigms for Distributed Systems and Computing</td>
</tr>
<tr>
<td>• Selected Distributed Computing Frameworks and API</td>
</tr>
<tr>
<td>• Principles of Scalable, Reactive Systems; Reactive Programming and the Reactive Manifesto</td>
</tr>
<tr>
<td>• Distributed Data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, [after successful participation students are able to...]</td>
</tr>
<tr>
<td>• understand the principles of distributed computing, distributed systems, and corresponding programming paradigms (1) and can reason about their benefit for distributed computing (2)</td>
</tr>
<tr>
<td>• recognize and apply design patterns of distributed computing and reactive systems and know how to use state of the art libraries and API (2)</td>
</tr>
<tr>
<td>• reason about use cases for distributed data and can implement solutions for a given scenario (2)</td>
</tr>
<tr>
<td>• reason about the use cases for clustering and scaling and implement those scenarios (2)</td>
</tr>
<tr>
<td>• design, implement, and deploy small distributed software components in a given state-of-the-art programming language and framework (3)</td>
</tr>
</tbody>
</table>
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
[after successful participation students are able to...]
• reflect the aspects of distributed computing and develop a personal standpoint on its effects on technology, society, or environment (2)
• self-motivate and acquire knowledge by reading up on new fields of technology independently and in a structured way (2)
• use one’s own imagination and creativity to reflect given problem sets or solution proposals to situations in one’s own private or professional context (3)
• identify deficits in the personal learning progress and communicate them and requests for support (1)

Angebotene Lehrunterlagen
Slide copies, code samples, problem sets

Lehrmedien
White/black board, Notebook, Projector presentation; in case of remote lectures: videoconferences, mutual screen sharing

Literatur
• Odersky, Martin; Spoon, Lex and Venners, Bill (2011): Programming in Scala, 2nd ed., Walnut Creek: Artima Press
• Kuhn, Roland (2017): Reactive Design Patterns, Shelter Island: Manning
• Allen, Jamie (2013): Effective Akka, Sebastopol: O’Reilly
• Various online documentation of programming languages and frameworks as stated in the course platform

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	**Modul-KzBez. oder Nr.**
IV.1.6 Modellierung und Verifikation |

Modulverantwortliche/r	**Fakultät**
Prof. Dr. Carsten Kern | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
- Objektorientiertes Programmieren
- Software Engineering
- Theoretische Informatik

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Modellierung und Verifikation</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modellierung und Verifikation</td>
<td>MOV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Carsten Kern</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Carsten Kern</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrenform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>englisch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>schrP, 90 Min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Business process modelling using BPMN and tools</td>
</tr>
<tr>
<td>- Understanding BPMN, design process with gateway, lanes, events, sub processes, poolsand message flow etc.</td>
</tr>
<tr>
<td>- Execution and implementation of business processes and web services using a BPMN process engine</td>
</tr>
<tr>
<td>- Modelling using EPCs</td>
</tr>
<tr>
<td>- Theory and modeling of Petri nets, application of Petri Nets, Colored Petri Nets</td>
</tr>
<tr>
<td>- Comparison of and transformation into different modeling languages</td>
</tr>
<tr>
<td>- Theory and modeling of message passing systems (MSCs, MSGs, CFMs)</td>
</tr>
<tr>
<td>- Modeling using logics like OCL (Object Constraint Language) and PDL (Propositional Dynamic Logic) and temporal logics (CTL, LTL, CTL*)</td>
</tr>
<tr>
<td>- Formal verification using above logics, model checking techniques and -tools</td>
</tr>
</tbody>
</table>

Lernziele: Fachkompetenz

Nach der erfolgreich Absolvierung des Teilmoduls sind die Studierenden in der Lage, [after successful participation students are able to...]

- independently understand (1), model, implement and execute business processes. (2)
- select and create models for different purposes and to evaluate the use of different models for given problems. (2)
- implement simple web services using modeling languages and the OO programming language Java and to integrate them into self-designed business processes. (2)
- formally understand (1) and model (2) distributed systems using advanced modeling notations (such as, e.g., EPCs, Petri nets, communicating automata, transition system etc.).
• remember the syntax and semantics of discussed logics (1) and are able to deduce own formulas for given problems. (3)
• apply tools like model checkers to verify properties (specified in logics) on given systems. (2)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, [after successful participation students are able to...]
• play a part in professional discussions about modeling different distributed systems (2) and may present professional topics to an audience. (3)
• justify their actions using theoretical and methodical knowledge, reflect on their own skills and decisions and challenge and question their own results. (3)

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, black-/whiteboard, notebook</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amongst others the following literature will be used during this course:</td>
</tr>
<tr>
<td>English:</td>
</tr>
<tr>
<td>• Object Management Group (OMG): Object Constraint Language (V2.4, 2014)</td>
</tr>
<tr>
<td>• Michael Huth, Mark Ryan: Logics in Computer Science (2018)</td>
</tr>
<tr>
<td>• Christel Baier, Joost-Pieter Katoen, Principles of Model Checking (2008)</td>
</tr>
<tr>
<td>German:</td>
</tr>
<tr>
<td>• Jakob Freund, Bernd: Rücker Praxishandbuch BPMN 2.0 (2014)</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.1.7 Moderne Theoretische Informatik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Mauerer</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Moderne Theoretische Informatik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
Moderne Theoretische Informatik | MTI

Verantwortliche/r	Fakultät
Prof. Dr. Wolfgang Mauerer | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Dr. Wolfgang Mauerer
Prof. Dr. Klaus Volbert

Lehrform
SUW

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
[SWS oder UE]			[ECTS-Credits]
1. / 2. | 4 SWS | deutsch | 5

Zeitaufwand:
Präsenzstudium	Eigenstudium
60 h | 90 h

Studien- und Prüfungsleistung
schrP, 90 Min.

Inhalte
- Wiederholung und Grundstruktur Berechnungskomplexität, P und NP, NP-Vollständigkeit, Polynomiale Hierarchie.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der Vorlesung behandelten wissenschaftlichen Inhalte verstehen und anwenden zukönnen. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
die in der Vorlesung behandelten wissenschaftlichen Inhalte selbständig verstehen und anwenden zu können. (3)

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Folien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Moore und St. Mertens, The Nature of Computation, Oxford University Press.####.</td>
</tr>
<tr>
<td>M. Mitzenmacher, E. Upfal, Probability and Computing, Cambridge University Press.#####.</td>
</tr>
<tr>
<td>S. Arora und B. Barak, Computational Complexity, Cambridge University Press.#####.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.2.1 IT-Security hochgradig vernetzter Anwendungen und Systeme</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Hackenberg</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IT-Security hochgradig vernetzter Anwendungen und Systeme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

IT-Security hochgradig vernetzter Anwendungen und Systeme

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>ITSN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Hackenberg</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Rudolf Hackenberg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>SUW</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SchrP. 90 Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mögliche Inhalte:</td>
</tr>
<tr>
<td>- Standards/Normen, z.B. ISO21434, UNECEWP29 u.a.</td>
</tr>
<tr>
<td>- Risikoanalyse, z.B. modellbasiert, SysML 2.0 o.a.</td>
</tr>
<tr>
<td>- Sicherheits-Testing und Testautomatisierung</td>
</tr>
<tr>
<td>- KI-basierte Datenanalyse für Intrusion Detection Systeme (IDS) und Forensik</td>
</tr>
<tr>
<td>- Analyse von Seitenkanalldaten</td>
</tr>
<tr>
<td>- Rückkopplung in den Systementwicklungszyklus, z.B. ALM Tools</td>
</tr>
<tr>
<td>- Level 4 automatisiertes Fahren (Rollen, Prozesse, Infrastruktur…)</td>
</tr>
<tr>
<td>Mögliche Übungsbeispiele:</td>
</tr>
<tr>
<td>- Durchführung standardisierter Risikoanalyse</td>
</tr>
<tr>
<td>- Durchführung von Penetrationstests (z.B. Automotive UDS Scanning…)</td>
</tr>
<tr>
<td>- SmartHome / IoT Aufbau, Durchführung Security Tests</td>
</tr>
<tr>
<td>- Automatisierung von Security Tests</td>
</tr>
<tr>
<td>- Netzwerk-Traffic Analyse für KI-basiertes IDS System</td>
</tr>
<tr>
<td>- Gewinnung und Analyse von Seitenkanalldaten</td>
</tr>
<tr>
<td>- Anwendung von Sicherheitsmaßnahmen (jeweils)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Anforderungen von CPS an die Informationssicherheit (1) und den aktuellen Stand der Forschung (1) kennenzulernen und zu verstehen. Sie erarbeiten sich anhand verschiedener Anwendungsbereiche Wissen aktueller Sicherheitsstandards (2), ein Verständnis der</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg
Sicherheitsrisiken (2), Methoden und Verfahren zum Testing (3) und zur Verbesserung der Informationssicherheit im Systementwicklungszyklus (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, sich intensiv und angewandt mit Problemen und Lösungen (2) der Informationssicherheit hochgradig vernetzter Systeme auseinanderzusetzen (3).

Lehrmedien
- Tafel, Beamer, Notebook
- Übungs- und Testaufbauten der Labore ISC und CarSec

Literatur

Weitere Informationen zur Lehrveranstaltung

Die Zeit ist geprägt von hochgradig vernetzten und volatilen Systemen (sog. Cyberphysikalische Systeme – CPS). Anwendungsbereiche sind z.B. Automobil und multimodale Mobilität, der Energiebereich mit Smart Grid Lösungen, Smart Home, Industrie 4.0 und allgemein IoT Anwendungen, etc.

CPS liefern besondere Herausforderungen an die Informationssicherheit, z.B. was die Skalierbarkeit und Systemreaktion von heutigen bzw. zukünftigen Methoden und Lösungen betrifft. Informationssicherheit und Safety verschmelzen.

In diesem Zusammenhang greift der Kurs ausgewählte Themen auf und vermittelt aktuelles methodisches Wissen und Vorgehen wie sie in o.g. Anwendungsbereichen eingesetzt, entwickelt bzw. erforscht werden. Übungen vertiefen das Erlernte. Aktuelle Forschung wird aufgezeigt.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.1.1 Fortgeschrittene Echtzeitsysteme</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Kucera</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
- Echtzeitsysteme
- Betriebssysteme
- Computerarchitektur

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fortgeschrittene Echtzeitsysteme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul Fortgeschrittene Echtzeitsysteme TM-Kurzbezeichnung FES
Verantwortliche/r Fakultät
Prof. Dr. Markus Kucera Informatik und Mathematik
Lehrende/r / Dozierende/r Angebotsfrequenz
Prof. Dr. Markus Kucera
Lehrform
SUW mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5 (ECTS-Credits)</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
schrP, 90 Min.

Inhalte
- Konsequenzen von Computerfehlern (Beispiele)
- Konzepte und Terminologie
- Fehlerarten und Fehlermodelle
- Modellierung fehlertoleranter Echtzeitsysteme
- Systemaspekte
- Beispiele für fehlertolerante Echtzeitsysteme

Lernziele: Fachkompetenz

Die Studierenden kennen Eigenschaften und Konzepte fehlertoleranter Echtzeitsysteme.
Sie verstehen die Ursachen für mangelnde Zuverlässigkeit.
Sie sind befähigt zum Bau von zuverlässigen Echtzeitsystemen.

Die Kompetenzen werden auf Niveaustufe 3 vermittelt.

Lernziele: Persönliche Kompetenz

Studierende entwickeln ein berufliches Selbstbild, das sich an Zielen und Standards professionellen Handelns in vorwiegend außerhalb der Wissenschaft liegenden Berufsfeldern orientiert. Sie begründen das eigene berufliche Handeln mit theoretischem und methodischem Wissen und können die eigenen Fähigkeiten einschätzen, sie reflektieren autonom sachbezogene Gestaltungs- und Entscheidungsfreiheiten und nutzen diese unter Anleitung. Studierende erkennen situationsadäquat Rahmenbedingungen beruflichen Handelns und begründen ihre Entscheidungen verantwortungsethisch. Sie reflektieren ihr berufliches Handeln kritisch in Bezug auf gesellschaftliche Erwartungen und Folgen.

Die Kompetenzen werden auf Niveaustufe 3 vermittelt.

Lehrmedien
Tafel, Beamer, z.T. Gruppenarbeit

Literatur
- Aktuelle Literatur aus dem Umfeld sicherheitsrelevanter Echtzeitsysteme.
- Birolini A.: Reliability Engineering. Theory and Practice, Springer Verlag
- Trivedi KS.: Probability and Statistics With Reliability, Queuing and Computer Science Applications, John Wiley & Sons

Weitere Informationen zur Lehrveranstaltung
Sprache: Deutsch / Englisch

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: V.1.2 Embedded Systems Design

Modulbezeichnung (ggf. englische Bezeichnung) Modul-KzBez. oder Nr.
V.1.2 Embedded Systems Design

Modulverantwortliche/r Fakultät
Prof. Dr. Alexander Metzner Informatik und Mathematik

Studiensemester gemäß Studienplan Studienabschnitt Modultyp Arbeitsaufwand [ECTS-Credits]
1. / 2. Schwerpunkt Pflichtmodul 5

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
- Embedded Systems
- Echtzeitsysteme
- Theoretische Informatik
- Software-Engineering

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Embedded Systems Design</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Informatik (PO: 20221)
Modulname: V.1.2 Embedded Systems Design

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Systems Design</td>
<td>ESD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alexander Metzner</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Alexander Metzner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehraufgaben</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien- und Prüfungsleistung</td>
<td></td>
</tr>
<tr>
<td>schrP, 90 Min.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Inhalte

- Entwurfsprozesse und modellbasierte Entwürfe eingebetteter Systeme
- Risiko- und Sicherheitsanalysen für sicherheitskritische eingebettete Systeme
- Virtuelle Integration
- Syntax, Semantik und Einsatzbereiche von Spezifikationssprachen (State Charts, Signalflussgraphen, UML, etc.)
- Verifizierung, Simulation, Validierung
- Interoperabilität von Werkzeugen im Entwurfsprozess

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die typischen Probleme beim Entwurf von eingebetteten Systemen zu identifizieren und die dafür notwendigen Analysemethodiken anzuwenden (2)
- Sicherheitsanalysen für sicherheitskritische Systeme durchzuführen und in den Entwurfsprozess einzuordnen (2)
- unterschiedliche Modellierungskonzepte zu benutzen (3), ihre Einsatzbereiche und ihre Vor- und Nachteile zu benennen (2)
- die Semantik unterschiedlicher Modellierungssprachen zu verstehen und zu formulieren (3)
- Interoperabilität unterschiedlicher Werkzeuge im Entwurfsprozess herzustellen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• sich selbständig und motiviert in neue Themenbereiche einzuarbeiten und diese strukturiert und Schritt für Schritt mit gegebenen Unterlagen zu erarbeiten (3)
• erlernte Lösungsansätze auf Basis vorgegebener Übungs- und Beispielaufgaben mit Hilfe der eigenen Kreativität und Vorstellungskraft auch auf andere Szenarien des eigenen Erfahrungsbereichs anzuwenden (3)
• eigene Defizite im Lernfortschritt zu erkennen, dies zu kommunizieren und die Möglichkeiten der angebotenen Hilfestellungen zu nutzen (2)

Lehrmedien
Tafel, Notebook, Beamer

Literatur
• Eigene Folien
• Marwedel: Embedded System Design, Springer 2005
• Oestereich: Analyse und Design mit UML2.1, Oldenbourg, 2006

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.1.3 Hardware Software Codesign</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Münch</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Kenntnisse in C Programmierung, Objektorientierte Programmierung (idealerweise C++), Allgemeines Grundlagenwissen zu Hardware (idealerweise Digital Design, Rechnertechnik)

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hardware Software Codesign</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Hardware Software Codesign</th>
<th>TM-Kurzbezeichnung</th>
<th>HSC</th>
</tr>
</thead>
</table>

Verantwortliche/r

Prof. Dr. Daniel Münch
Informatik und Mathematik

Lehrende/r / Dozierende/r

Prof. Dr. Daniel Münch
Tobias Straubinger

Lehrform

SUW

Studiensemester

gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Lehrform

SUW

Studiensemester

gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

- Präsenzstudium
 60 h

- Eigenstudium
 90 h

Studien- und Prüfungsleistung

schrP, 90 Min.

Inhalte

- Überblick von Randbedingungen, Zielarchitekturen und Komponenten von Hardware/Software-Systemen
- Design Methoden und Prozesse
- Spezifikation, Verifikation, Validierung, Simulation
- Motivationsbeispiel: Als größere Übung / Schwerpunkt des Praktikumteils (Geführte Fallstudie): Umsetzung eines Beschleunigers für AES-Verschlüsselung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Hardware/Softwarearchitekturen zu benennen (1) und zu beschreiben (2)
- Hardware/Softwarearchitekturen zu analysieren (2) und zu entwerfen (3) (ArchitectureExploration und Virtual Prototyping)
- Algorithmen/Funktionen als Hardware (beschleuniger) umzusetzen (3)
- Hardwarebeschleuniger an die CPU / an das Rechnersystem anzubinden (HW/SW interfacing) (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Inhalte in Kleingruppen zu diskutieren (2)
- fachliche Inhalte vor einem Publikum darzustellen (2)
- fachliche Fragen an den Lehrenden zu stellen (3)
Lehrmedien

Tafel, Notebook, Beamer, Folien/Skript

Literatur

Eigene Folien/Skript in PDF (ausreichend)
Ausgewähltes Zusätzliches Material für interessierte Studierende:
- Stroustrup, B., The C++ Programming Language
- Adams, Michael D. Lecture Slides for Programming in C++
- Gessler, R. et al., Hardware-Software-Codesign, Vieweg
- Teich, J. et al., Digitale Hardware/Software Systeme: Synthese und Optimierung, Springer
- Black, D. et al., SystemC: From the Ground Up, Springer
- Kesel, F. et al., Modellierung von digitalen Systemen mit SystemC Von der RTL-zurTransaction-Level-Modellierung, Oldenbourg
- Schaumont, P., A Practical Introduction to Hardware/Software Codesign, Springer
- Stringham, G., Hardware Firmware Interface Design

Weitere Informationen zur Lehrveranstaltung

- Folien / Unterlagen auf Englisch
- Unterrichtssprache und Prüfungssprache auf Deutsch

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.1.4 Fortgeschrittene Kommunikationssysteme</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
• Kommunikationssysteme
• OSI-Referenzmodell

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fortgeschrittene Kommunikationssysteme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
Fortgeschrittene Kommunikationssysteme | FKS

Verantwortliche/r | Fakultät
Prof. Dr. Thomas Waas | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Dr. Michael Deubzer (LB) | Arlinda Elmazi (LB)

Lehrform
SUW mit Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
</table>
1. / 2. | 4 SWS | englisch | 5 |

Zeitaufwand:
Präsenzstudium | Eigenstudium
60 h | 90 h

Studien- und Prüfungsleistung
schrP, 90 Min.

Inhalte
- Functional characteristics of communication systems
 - Principles of Communication (Principles, physical layers, models, safety & security aspects in communication)
 - Different communications media/approaches in electronics
 - Software based communication in machines
- Non-functional aspect
 - Timing characteristics and analysis methods in communication systems
- Practice of Communication systems
 - Communication protocols in vehicles (e.g. CAN, Ethernet)
 - Communication in AUTOSAR Control Units
 - Safety in Vehicle Communication
 - Security in Vehicle Communication
 - Gateways in Vehicle Communication

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, After successful completion of the course, the students will be able to understand (1) and apply (2), and critically assess and use (3):
- discuss the different functional and non-functional properties of communication systems (2)
- critically assess the peculiarities of the different communication channels and their influence on the higher communication layer (3)
- analyze communication systems in the vehicle (3)
- select basic concepts of vehicle communication (2)
- differentiate safety and security issues (2)
- select safety and security concepts in vehicle communication (2)
- apply methods for analysis and evaluation of communication systems (3)
- select automotive gateway concepts (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, After successful completion of the course, students are able to
- present in-depth technical content in front of an audience (2)
- ask technical questions (3)
- reproduce advanced network technical contexts in correct technical language (3)

Lehrmedien
Tafel, Overheadprojektor, Notebook, Beamer, Übungsequipment

Literatur
- Arbeitsunterlagen, Eigene Folien als PDF
- Graegert, Steve: „Das Etherbook. Eine umfassende Einführung in die Netzwerktechnik.“
- Werner, Martin: „Netze, Protokolle, Schnittstellen und Nachrichtenverkehr: Grundlagen und Anwendungen“
- Charles M. Kozierok, Robert B. Boatright, Jeffrey Quesnelle: “Automotive Ethernet - The Definitive Guide”
- Matheus, Kirsten and Königseder, Thomas: „Automotive Ethernet“

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung) Modul-KzBez. oder Nr.

| Modulname: | V.2.1 Secure Programming |

Modulverantwortliche/r Fakultät

| Prof. Dr. Christoph Skornia | Informatik und Mathematik |

Studiensemester gemäß Studienplan Studienabschnitt Modultyp Arbeitsaufwand [ECTS-Credits]

| 1. / 2. | | Schwerpunkt Pflichtmodul | 5 |

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

- Kommunikationssysteme
- Grundlagen der Informatik
- Programmieren (1 und 2)
- Informationssicherheit

Inhalte

Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Secure Programming</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022 Ostbayerische Technische Hochschule Regensburg Seite 71
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>Secure Programming</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Christoph Skornia</th>
</tr>
</thead>
</table>

Fakultät

<table>
<thead>
<tr>
<th>Informatik und Mathematik</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Prof. Dr. Christoph Skornia</th>
</tr>
</thead>
</table>

Angebotsfrequenz

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW mit Übungen</td>
</tr>
</tbody>
</table>

Lehrform

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW mit Übungen</td>
</tr>
</tbody>
</table>

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zuteilung:

<table>
<thead>
<tr>
<th>Praxisstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>schrP, 90 Min.</th>
</tr>
</thead>
</table>

Inhalte

- Main security flaws in C, C++ and Java programs
- In depth analysis of data types and memory management
- Overflows on several levels
- Riscs in data-type-conversions
- Counting and loops
- Secure Input and Output (including preprocessor inputs)
- Concept of least privilege and its application
- Encrypted temporary data (File and RAM)
- Principles of Code Audit and Secure Software Engineering

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, After completing the module the students are able to:

- understand the root causes of vulnerabilities in C and C++ code and how insecure applications can be exploited (2)
- identify and analyze insecurities in code (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, After completing the module the students are able to:

- apply general rules for secure coding and create secure code (2)
- apply design principles of secure coding in software engineering (3)
Name des Studiengangs: Master Informatik (PO: 20221)
Modulname: V.2.1 Secure Programming

Lehrmedien
Tafel, Beamer, Notebook

Literatur
- Robert Seacord, Secure Coding in C and C++ Addison-Wesley Professional; 1 edition (September 9, 2005)
- Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, David Svoboda, The CERT Oracle Secure Coding Standard for Java Addison- Wesley Professional; 1 edition (September 18, 2011)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 25. 10. 2022
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.1.1 Biosignalverarbeitung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Sichere Programmierkenntnisse

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Biosignalverarbeitung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022
Name des Studiengangs:
Master Informatik (PO: 20221)

Modulname:
VI.1.1 Biosignalverarbeitung

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosignalverarbeitung</td>
<td>BSV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>schrP, 90 Min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Erfassung, Quantisierung und Abtastung von Biosignalen</td>
</tr>
<tr>
<td>• Statistische Signalparameter</td>
</tr>
<tr>
<td>• Filterentwurfsverfahren, Optimalfilter, Adaptive Filter</td>
</tr>
<tr>
<td>• Parametrische und nicht-parametrische Signalanalyse</td>
</tr>
<tr>
<td>• Zeit – Frequenz – Analyse</td>
</tr>
<tr>
<td>• Verfahren der Blind Source Separation (Principal Component Analysis, Independent Component Analysis)</td>
</tr>
<tr>
<td>• Klassifikation / Segmentierung von Signalen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• besondere Probleme und Herausforderungen bei der Erfassung und Analyse von Biosignalen zu erkennen (1)</td>
</tr>
<tr>
<td>• Parameter zur Qualitätsbewertung von Biosignalen zu benennen (1) und für konkrete Signale zu ermitteln (2)</td>
</tr>
<tr>
<td>• geeignete Signalmodelle auszuwählen (2) und deren Tauglichkeit und Zuverlässigkeit zu bewerten (3)</td>
</tr>
<tr>
<td>• Verfahren zur Anpassung und Analyse linearer Modelle für stochastische Biosignale anzuwenden und in MATLAB zu implementieren (3)</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022
Ostbayerische Technische Hochschule Regensburg
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich in einem interdisziplinären Team bei der Lösung von Aufgaben der Biosignalanalyse und -verarbeitung selbstständig zu orientieren und effizient zu kommunizieren (1)
- sich weitere Methoden und Ansätze des Fachgebiets selbstständig zu erarbeiten (2) und in Informatik-Methoden umzusetzen (3)
- Möglichkeiten und Grenzen der automatisierten Verarbeitung von Biosignalen kritisch zu bewerten (3)

Angebotene Lehrunterlagen

- Foliensatz (Powerpoint)
- Übungsaufgaben
- MATLAB LiveScript

Lehrmedien

- Folien
- Tafelvortrag
- MATLAB LiveScript, MATLAB Codebeispiele

Literatur

- Blinowska, Zygierek. Practical Biomedical Signal Analysis using MATLAB, CRC Press 2012
- Webster (ed.) Medical Instrumentation. Application and Design. Wiley 2010

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: VI.1.2 Digital Health

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.1.2 Digital Health</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Georgios Raptis</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
- Medizinische Informationssysteme
- Einführung in die Medizin
- E-Health Grundlagen

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Digital Health</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Master Informatik (PO: 20221)
Modulname: VI.1.2 Digital Health

Teilmodul	TM-Kurzbezeichnung
Digital Health | DHA

Verantwortliche/r	Fakultät
Prof. Dr. Georgios Raptis | Informatik und Mathematik
Lehrender/r / Dozierender/r | Angebotsfrequenz
---|---
Prof. Dr. Georgios Raptis |

Lehrform
SUW mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium	Eigenstudium
60 h | 90 h |

Studien- und Prüfungsleistung
schrP, 90 Min.

Inhalte
- Administrative und medizinische E-Health Anwendungen
- Elektronische Patientenakte, elektronische Fallakte
- eRezept, eMedikationsplan, eVersichertenstammdaten, eArzneimitteltherapiesicherheit
- Elektronische Gesundheitskarte, Telematik-Infrastruktur des Gesundheitswesens
- Identity-Management in E-Health
- E-Health und Interoperabilität, Standards und Prozesse, HL7, IHE
- Aspekte der Telemedizinischen Patientenversorgung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- versorgungsrelevante, administrative und medizinische E-Health Anwendungen zu kennen (1), auszuführen (2), zu entwerfen (2) und zu analysieren (3).
- die Ziele und Relevanz von E-Health Anwendungen im regionalen, nationalen und internationalen Kontext und Vergleich zu analysieren (3) und zu bewerten (3).
- die Struktur, Akteure, Komponenten und Anwendungen der landesweiten E-Health-Infrastruktur in Deutschland (Telematikinfrastruktur) zu kennen (1), zu untersuchen (2) und zu beurteilen (3).
- Identity Management Methoden, Prozesse und Werkzeuge im Gesundheitswesen zu nennen (1), für geeignete Use Cases auszuwählen (2) und zu evaluieren (3).
- relevante Standards wie HL7 / IHE und die dazugehörigen Prozesse zu kennen (1) und handzuhaben (2).
- Werkzeuge und Methoden der telemedizinischen Patientenversorgung zu kennen (1) und zu entwerfen (2).

Stand: 25. 10. 2022
Ostbayerische Technische Hochschule Regensburg
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• die ethisch-moralischen Implikationen in der Konzeption und den Technikfolgen von E-Health Anwendungen zu verstehen und zu evaluieren (3).
• die eigene Verantwortung in der Entwicklung von Zielen und technischen Vorgaben von E-Health Anwendungen nachzu vollziehen (2) und zu bewerten (3).
• E-Health Anwendungen im Team zusammen zu entwickeln (3).

Literatur
• Haas, Gesundheitstelematik - Grundlagen, Anwendungen, Potenziale. Springer Verlag 2006
• Fischer F., Krämer A. (Hrsg.), eHealth in Deutschland, Anforderungen und Potentiale innovativer Versorgungsstrukturen, Springer Vieweg, 2016
• Haas, Elektronische Patientenakten, Bertelsmann Stiftung, DOI 10.11586/2017018, 2017

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modul-KzBez. oder Nr.</th>
<th>Modulname: VI.1.3 Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung</th>
</tr>
</thead>
</table>

Modulverantwortliche/r

| Prof. Dr. Christoph Palm | Fakultät: Informatik und Mathematik |

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Falls Vorkenntnisse nicht vorhanden sind:
Zu Beginn werden die Grundlagen ganz kurz wiederholt. Darüber hinaus können sich Studierende die nötigen Grundlagen vorlehrungsbegleitend selbst erarbeiten durch ausgewählte BVV-Lehrvideos, die zur Verfügung gestellt werden.

Empfohlene Vorkenntnisse

Keine

Inhalte

Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Themen der KI-basierten Medizinischen Bildverarbeitung</td>
<td>KIBV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verantwortliche/r</td>
<td>Fakultät</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>nur im Wintersemester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminaristischer Unterricht (3 SWS) mit Übungen (1 SWS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min.
Inhalte

Wiederholung der Grundlagen des Deep Learning
Aufbau und Training von tiefen Neuronalen Netzen Regression und Klassifikation, inkl. Fehlermaße Faltungsnetze

Segmentierungsnetzwerke
- U-Net
- DeepLab

Objektdetektion
- Grundlagen
- Single-Stage Detektoren
- Multi-Stage Detektoren

Unüberwachtes Lernen
- Variational Autoencoder
- Generative Adversarial Networks

Attention and Transformer Netzwerke
- Attention Konzept
- Transformer Architektur

Dimensionsreduktion in Merkmalsräumen
- Principle Component Analysis
- Multidimensional scaling
- Distributed Stochastic Neighbor Embedding

Erklärbarkeit von Neuronalen Netzen
- Gradientenbasierte Ansätze
- Propagationsbasierte Ansätze
- Pertubationsbasierte Ansätze

Nützliches
- zu Fehlerfunktionen
- zur Schrittweite beim Training zum Transfer Learning
- ...

Übung
- Schrittweiser Aufbau und Evaluierung eines Segmentierungsnetzes

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- ... den Unterschied zwischen Single- und Multi-Stage Objektdetektoren zu erläutern, Beispiele zu nennen und diese im Detail darzustellen (2)
- ... den grundlegenden Aufbau von Segmentierungsnetzen zu beschreiben (2), ein solches Netz auf Basis eines Frameworks zu entwickeln (3) und die Wirkung einzelner Module und Parameter zu evaluieren (3)
- ... Möglichkeiten des unüberwachten Lernens zu nennen und für praktische Beispiele geeignete Verfahren vorzuschlagen (3)
• ... die Charakteristika verschiedener Möglichkeiten zur Dimensionsreduktion in Merkmsräumen zu benennen und den Zusammenhang zur Visualisierung von Merkmalen darzustellen (2)
• ... das Attention-Konzept zu erläutern und den Unterschied zwischen Faltungsnetzen und Transformern darzustellen (2)
• ... das Problem der Erklärbarkeit von Neuronalen Netzen zu erfassen, Lösungsansätze vorzustellen und deren Grenzen aufzuzeigen (3)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• ... sich fachliche Inhalte aus kuratierten Materialien wie Lehrvideos, Mitschriften und Literatur selbstständig zu erarbeiten (2)</td>
</tr>
<tr>
<td>• ... fachliche Fragen an den Dozenten zu stellen (2)</td>
</tr>
<tr>
<td>• ... ihr vertieftes Verständnis von Deep Learning zur Bildanalyse in Diskussionen unter Beweis zu stellen (3)</td>
</tr>
<tr>
<td>• ... ein eigenes Segmentierungsnetz zu erarbeiten und zu evaluieren (3)</td>
</tr>
<tr>
<td>• ... die Ergebnisse der Segmentierung in der Übungsgruppe zu präsentieren (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrvideos, Aufzeichnungen der Präsenzvorlesung, Folien zur Vorlesung mit und ohne Mitschriften, Literaturstellen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrvideos, Folien als interaktives Whiteboard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani: An Introduction to Statistical Learning with Applications in R, 2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Die Vorlesung setzt KEINE Vorkenntnisse aus der Medizin oder der Medizinischen Bildverarbeitung voraus. Die Medizin dient als Anwendungsgebiet, aber die dargestellten Methoden sind ebenso z.B. im Automotive Bereich einzusetzen.</td>
</tr>
<tr>
<td>• Die Vorlesung setzt zwar rudimentäre Grundkenntnisse des Maschinellen Lernens voraus, startet aber zunächst mit einer kurzen Wiederholung der wichtigsten Dinge. Studierende ganz ohne Vorkenntnisse bekommen zusätzlich Lehrvideos zur Verfügung gestellt und können sich die nötigen Grundlagen in kurzer Zeit selbst erarbeiten.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Master Informatik (PO: 20221)
Modulname: VI.1.4 Quality Management and Medical Controlling

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.1.4 Quality Management and Medical Controlling</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022
Ostbayerische Technische Hochschule Regensburg
Seite 84
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: VI.1.4 Quality Management and Medical Controlling

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Management and Medical Controlling</td>
<td>QM-MC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Dr. Julia Maurer (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min.

Inhalte

- Qualitätsmanagement im Gesundheitswesen
- Einführung und Überprüfung eines QM-Systems
- Qualitätswerkzeuge
- Fehlermanagement
- Zertifizierung
- Klinisches Risikomanagement
- Operatives und strategisches Medizincontrolling

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Werkzeuge und Modelle des Qualitätsmanagements zu benennen (1)
- die Notwendigkeit der Implementierung eines klinischen Risikomanagementsystems zu erkennen (1)
- zu Fragen der Überprüfung und Zertifizierung von klinischen Risikomanagementsystemen Stellung zu nehmen (3)
- typische Aufgaben des operativen und des strategischen Medizincontrollings zu nennen und über Detailfragen dazu Auskunft zu geben (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Lehrinhalte kritisch zu reflektieren (3)
- ihr Fachwissen auf aktuelle Themen des Qualitäts- und Risikomanagements sowie des Medizincontrollings anzuwenden (2)

Lehrmedien
- Tafel, Beamer, Notebook

Literatur
- Eigene Folien als PDF

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
VI.1.5 Analyse und Erfassung medizinischer Prozesse | |

Modulverantwortliche/r	Fakultät
Dr. Michael Reng (LB) | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Analyse und Erfassung medizinischer Prozesse</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: VI.1.5 Analyse und Erfassung medizinischer Prozesse

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse und Erfassung medizinischer Prozesse</td>
<td>AMP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td></td>
</tr>
<tr>
<td>Lehrform</td>
<td></td>
</tr>
<tr>
<td>SUW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>schrP, 90 Min.</td>
</tr>
</tbody>
</table>

Inhalte

- Darstellung klinischer und wissenschaftlicher Prozesse durch die Vertreter unterschiedlicher medizinischer Fachgebiete
- Vorstellung beispielhafter Anwendungen der Medizin-Informatik in Klinik und Wissenschaft, die prozessunterstützend eingesetzt werden
- Diskussion der Fachspezifischen Probleme bei der Interaktion Informatik – Medizin

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- medizinische Prozesse in Klinik und Wissenschaft nachzuvollziehen (1)
- medizinische Prozesse in Klinik und Wissenschaft inhaltlich und strukturell zu erfassen (1)
- medizinische Prozesse in Klinik und Wissenschaft logisch abzubilden (2)
- in Kooperation mit Partnern aus dem jeweiligen medizinischen Fachgebiet Konzepte für den Einsatz elektronischer Verfahren zu erarbeiten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Anforderungen aus Klinik und Wissenschaft an medizinische Verfahren der Informationstechnologie zu formulieren (1)
- die Struktur einer prototypischen Anwendung zu erarbeiten (2)
- das GUI einer prototypischen Anwendung zu erarbeiten (2)
Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.2.1 Moderne Datenbankkonzepte</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Johannes Schildgen</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
- Datenbanken
- Solide Programmierkenntnisse
- Betriebssysteme

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Moderne Datenbankkonzepte</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
Moderne Datenbankkonzepte | MDK

Verantwortliche/r	Fakultät
Prof. Dr. Johannes Schildgen | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Dr. Johannes Schildgen

Lehrform
SUW mit Übungen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
1. / 2. | 4 SWS | englisch | 5

Zeitaufwand:
Präsenzstudium	Eigenstudium
60 h | 90 h

Inhalte
- Speicherung von großen Datenmengen in BigTable-basierten Systemen wie HDFS
- Verarbeitung von großen Datenmengen in MapReduce-basierten Systemen wie Hadoop
- Datenformate (CSV, JSON, XML) und deren Integration in SQL
- Advanced SQL: Composite Types, rekursives SQL
- Geodatenbanken
- Temporal Data Management

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- ... Konzepte zur verteilten Speicherung und Verarbeitung von großen Datenmengen zu erklären (1)
- ... moderne Konzepte der Sprache SQL einzusetzen (2)
- ... geeignete moderne Technologien zur Speicherung und Verarbeitung von Daten zuvergleichen, zu evaluieren und auszuwählen (3)

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- sich in moderne Datenbanktechnologien einzuarbeiten (2)
- den Nutzen und die Grenzen von Systemen zu erkennen und zu erklären (1)

Lehrmedien
Tafel, Beamer mit Notebook
Literatur

- Auswahl wissenschaftlicher Publikationen zu Google File System, BigTable, Hadoop.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.1.1 Fortgeschrittene Produktionsplanung</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Prof. Dr. Frank Herrmann

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Grundlagenvorlesungen zur Lösung von Planungsproblemen in der Logistik (z.B. "Produktion und Logistik" im Studiengang "Wirtschaftsinformatik") oder Operations Research (im Studiengang "Informatik") oder vergleichbare Vorlesungen

Inhalte

Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fortgeschrittene Produktionsplanung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Master Informatik (PO: 20221)

Modulname:
VII.1.1 Fortgeschrittene Produktionsplanung

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortgeschrittene Produktionsplanung</td>
<td>FPP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform: Projektarbeit

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsentstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022

Inhalte

- Planungshierarchie zur operativen Produktionsplanung und -steuerung
- Grundlagen und Verfahren zur (linearen) Optimierung in der Produktionslogistik (und ihre Verwendung im Simplexverfahren, Planungsprobleme)
- Grundlegende Lösungsverfahren zur stochastischen Lagerhaltungspolitik
- Einstufige Losgrößenprobleme: Verfahren zur optimalen Lösung ohne Kapazitätsrestriktionen, grundsätzliche Problemverschärfung durch Kapazitätsrestriktionen und Heuristiken zu ihrer Lösung.
- Mehrstufige Losgrößenprobleme: Grundsätzliche Verfahren wie das Verfahren von Heinrich (ohne Berücksichtigung von Kapazitätsrestriktionen), grundsätzliche Problemverschärfung durch Kapazitätsrestriktionen und ihrer Lösung, beispielsweise durch ein Dekompositionsverfahren.
- Spezialverfahren zur Ressourcenbelegungsplanung (wie shifting bottleneck Algorithmus oder einem Branch-and-Bound-Verfahren zur Lösung eines Einstationenproblems)
- Prognoseverfahren
- Fallstudien zu typischen Problemstellungen in der industriellen Praxis der Produktionslogistik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- grundlegende Modelle und Algorithmen für die Produktionsplanung und -steuerung und das Supply Chain Management zu benennen (1).
- neuere Ergebnisse aus der anwendungsorientierten Forschung zur algorithmischen Lösung von Planungsproblemen in der Produktionslogistik aus der Literatur zu extrahieren (2).
- typische Problemstellungen in der industriellen Praxis der Produktionslogistik zu lösen (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• zielorientiert im Team zu arbeiten (Teamfähigkeit) und die erarbeiteten Ergebnisse sach- und
 zielgerecht vorzutragen (3) (Präsentationskompetenz).
• ihren Standpunkt fachlich zu verteidigen (3) (Argumentationskompetenz).
• anspruchsvolle Aufgaben im Bereich der Produktionsplanung und –steuerung zu lösen (3),
 und sie sind sich den Folgen ihrer getroffenen Entscheidungen im beruflichen Umfeld bewusst.
 (3)

Lehrmedien

• PowerPoint Präsentation, PC und Beamer
• Software: Vom Labor für Informationstechnik und Produktionslogistik entwickelte
 Programme zur Lösung von quantitativen Verfahren in der Produktionslogistik, ILOG
 (System zur Lösung linearer Optimierungsprobleme) und das SAP System, insbesondere
 APO, die Simulationssoftware eM-Plant.
• Gruppenarbeit.

Literatur

Pflichtliteratur

• Herrmann, Frank: Logik der Produktionslogistik. Oldenbourg, Regensburg
• Herrmann, Frank: Operative Planung in IT-Systemen für die Produktionsplanung und
 -steuerung – Wirkung, Auswahl und Einstellhinweise von Verfahren und Parametern.
 Vieweg + Teubner Verlag, Regensburg
• Herrmann, Frank; Manitz, Michael: Materialbedarfsplanung und
 Ressourcenbelegungsplanung – Durchführung in Produktionsplanungs- und

Zusätzlich empfohlene Literatur

• Claus, Thorsten; Herrmann, Frank; Manitz, Michael: Produktionsplanung und -steuerung
 – Forschungsansätze, Methoden und deren Anwendungen, Springer-Verlag
• Herrmann, Frank: Übungsbuch - Losbildung und Fertigungssteuerung. Springer Gabler,
 Regensburg
• Zeitschriften wie PPS-Management, ERP-Management, Industrie Management und
 Wirtschaftsinformatik
• Zeitschriften wie Journal of Intelligent Manufacturing, International Journal of Flexible
• jeweils in aktueller Auflage

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
## Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
VII.1.2 Strategisches IT-Management |

### Modulverantwortliche/r	Fakultät
Prof. Dr. Markus Westner | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Grundlagen der Betriebswirtschaftslehre

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Strategisches IT-Management</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
Strategisches IT-Management | SITM

Verantwortliche/r	Fakultät
Prof. Dr. Markus Westner | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Dr. Andreas Drechsler (LB) |
Prof. Dr. Markus Westner |

Lehrform |
---|---
SUW mit Übungen |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Portfolioprüfung

Inhalte

- Linking Systems to Strategy and the Organization: Business Strategy Frameworks; Organizational Strategies; IS Strategy
- Strategic Use of Information Resources in a Global Economy: Evolution of Information Resources; Usage of Information Resources as Strategic Tools; Strategic Alliances; Risks.
- Organizational Strategy - Managerial Levers: IS and Organizational Design; IS and Management Control Systems; IS and Culture.
- Information Systems Strategy - Architecture and Infrastructure: From Vision to Implementation; From Strategy to Architecture to Infrastructure; Architectural Principles; Enterprise Architecture; Other Managerial Considerations.
- Cost Recovery of Information Systems: Organizing to Respond to Business Demand; Understanding the IT Organization; CIO; Business Case; IT Portfolio Management; Valuing IT investments; Monitoring IT Investments; Funding IT Resources; IT Costs.
- Sourcing Information Systems around the World: Sourcing Decision Cycle Framework; Outsourcing and Strategic Networks.
- Perspectives on current issues and trends in IT Controlling and Strategic Management of IS.
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, [after successful participation students are able to...]

Understand (1) and apply (2) the main IT-Controlling concepts and methods that are pertinent to Strategic Management of Information Systems:

- Linking Systems to Strategy and the Organization: Determine the role general managers must take in decisions about IS (2); Understand the alignment between decisions of business strategy, information systems, and organizational design (1); Identify and define the various business strategy frameworks (1); Explain the information system strategy matrix (1); Understand and apply these models to different organizations (2).
- Strategic Use of Information Resources in a Global Economy: List the identifying factors of the eras of information usage (1); Know what makes an information resource valuable (1); Explain how information resources are used strategically in context of the 5-forces model (1); Understand how information resources can be used to alter the value chain (1); Explain the importance of strategic alliances (1); Know the risks of information resources (1).
- Organizational Strategy - Managerial Levers: Understand how the use of information technology impacts an organization (1); Identify the type of organizational structure that tends to be most willing to embrace technological change and sophistication (2); List the advantages and disadvantages of the networked organizational structure (1); Discuss how IT has changed the way managers monitor and evaluate (3); Define the challenges that are faced by virtual teams (1).
- Work Design - Enabling Global Collaboration: Understand how IT has changed the nature of work (1); Define virtual organizations and how they work (1); Discuss how managers need to manage virtual teams and the challenges this creates (3); Understand how attitudes impact technology acceptance in organizations (1).
- Building and Changing Global Business Processes: List how IT enables business change (1); Identify ways in which IT can impede business change (1); Understand the problems that are caused by the functional (silo) perspective of a business (1); Identify how the process perspective keeps the big picture in view and how IT can be used to facilitate this perspective (2); Define TQM and BPR, and explain how they are used to transform a business (2); Explain an enterprise system and how it is used to implement organizational change (1).
- Information Systems Strategy - Architecture and Infrastructure: Understand how strategy drives architecture, which then drives infrastructure (1); Identify and define the three configurations for IT architecture (1); Define how business goals can be translated into IT architecture and then into infrastructure (2); Know the different types of frameworks used to design and build the IT architecture and infrastructure (1); Understand the importance of knowing the details of the existing architecture and infrastructure of the organization (1).
- Cost Recovery of Information Systems: Understand the business of IT and the customers it serves; Understand the balancing act between IS supply and business demand (1); Describe key IT organization activities and how the leadership within the IT organization ensures that the various activities are conducted efficiently and effectively (1); List the business processes within the IT department including building a business case, managing an IT portfolio, and valuing and monitoring IT investments (1); Describe funding models and total cost of ownership (1).
- Governance of the Information Systems Organization: Understand how governance structures define the way decisions are made in an organization (1); Describe the three models of governance based on organization structure (centralized, decentralized, and federal), decision rights, and control (e.g., COSO, COBIT, ITIL) (1); Discuss examples and strategies for implementation (3).
- Sourcing Information Systems around the World: Describe the Sourcing Decision Cycle Framework (1); Explain the differences between insourcing and outsourcing, inshoring and offshoring, and nearshoring and farshoring (1); Describe how offshoring must be managed (1);
Define the different ways of outsourcing including ASPs (1); Understand the difference between full and selective outsourcing (1); Describe the risks and strategies utilized to mitigate risks (1).

Read, prepare, and critically discuss case studies in the field of “IT-Controlling”. (2, 3) Read, understand, and critically reflect selected academic articles in their original language in the field of “IT-Controlling” (2, 3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
[after successful participation students are able to...]
- Discuss constructively and critically in class among peers (3).
- Apply analytic problem structuring and solving (3).
- Practically use oral and written English as a language for instruction and learning regarding “IT-Controlling” issues (3)

Lehrmedien
Tafel, Folien, Literatur, Projektor

Literatur
- Eigenes Skript

Die Zahlen in Klammern geben die zu erreichenden Niveaus an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Master Informatik (PO: 20221)

Modulname:
VII.1.3 Moderne Datenbankkonzepte

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.1.3 Moderne Datenbankkonzepte</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Johannes Schildgen</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
- Datenbanken
- Solide Programmierkenntnisse
- Betriebssysteme

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Moderne Datenbankkonzepte</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Master Informatik (PO: 20221)

Modulname:
VII.1.3 Moderne Datenbankkonzepte

Teilmodul	TM-Kurzbezeichnung
Moderne Datenbankkonzepte | MDK

Verantwortliche/r	Fakultät
Prof. Dr. Johannes Schildgen | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Dr. Johannes Schildgen

Lehrform
SUW mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Preisenzstudium	Eigenstudium
60 h | 90 h

Studien- und Prüfungsleistung
schrP, 90 Min.

Inhalte
- Speicherung von großen Datenmengen in BigTable-basierten Systemen wie HDFS
- Verarbeitung von großen Datenmengen in MapReduce-basierten Systemen wie Hadoop
- Datenformate (CSV, JSON, XML) und deren Integration in SQL
- Advanced SQL: Composite Types, rekursives SQL
- Geodatenbanken
- Temporal Data Management

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- ... Konzepte zur verteilten Speicherung und Verarbeitung von großen Datenmengen zu erklären (1)
- ... moderne Konzepte der Sprache SQL einzusetzen (2)
- ... geeignete moderne Technologien zur Speicherung und Verarbeitung von Daten zu vergleichen, zu evaluieren und auszuwählen (3)

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- sich in moderne Datenbanktechnologien einarbeiten (2)
- den Nutzen und die Grenzen von Systemen zu erkennen und zu erklären (1)

Lehrmedien
Tafel, Beamer mit Notebook

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg
Literatur

- Auswahl wissenschaftlicher Publikationen zu Google File System, BigTable, Hadoop.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.2.1 Expertensysteme und Maschinelles Lernen</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Thomas Wölfl</th>
</tr>
</thead>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Keine

Inhalte

Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Expertensysteme und Maschinelles Lernen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
Expertensysteme und Maschinelles Lernen | EML

Verantwortliche/r	Fakultät
Prof. Dr. Thomas Wölfl | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Thomas Wölfl

Lehrform
SUW mit Übungen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
1. / 2. | 4 SWS | deutsch | 5

Zeitaufwand:

Präsenzstudium	Eigenstudium
60 h | 90 h |

Inhalte

- Maschinelles Lernen mit Support Vektor Maschinen
- (optional) Maschinelles Lernen mit Neuronalen Netzen
- Aussagenlogik und Prädikatenlogik erster Stufe
- Logikprogrammierung in PROLOG

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, moderne Verfahren des maschinellen Lernens zu verstehen und anzuwenden (3). Weiterhin lernen die Teilnehmer die Grundzüge der Logikprogrammierung kennen und können diese für eigene Anwendungsfälle nutzen (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der Vorlesung behandelten wissenschaftlichen Inhalte selbstständig verstehen und anwenden zu können (3).
Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)
VII.2.1 Geschäftsprozessoptimierung

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gregor Zellner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Betriebswirtschaftliches Grundverständnis. Idealerweise BW1 und BW2.

Empfohlene Vorkenntnisse
Grundlagenvorlesung zu Geschäftsprozessen, z. B. im Bachelor-Studiengang Wirtschaftsinformatik der OTH Regensburg: Geschäftsprozessanalyse und -design.

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Geschäftsprozessoptimierung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Informatik (PO: 20221)

Modulname: VII.2.1 Geschäftsprozessoptimierung

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschäftsprozessoptimierung</td>
<td>GPO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gregor Zellner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gregor Zellner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUW mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Portfolioprüfung

Zugelassene Hilfsmittel für Leistungsnachweis

Keine, außer nichtprogrammierbarer Taschenrechner

Inhalte

- Grundlagen der Geschäftsprozessoptimierung – Einführung und Definitionen
- Organisationsübergreifende Geschäftsprozesse im Supply Chain Management – Definitionen, Ziele, Komponenten und Entstehungsgründe (u. a. Bullwhip Effekt)
- Supply Chain aus Prozesssicht – SCOR-Modell
- Ausgewählte Methoden der Geschäftsprozessoptimierung (u. a. Six Sigma)
- Ausarbeitungen und Präsentationen zu ausgewählten Themen der Geschäftsprozessoptimierung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die strukturellen Bestandteile eines Geschäftsprozesses zu benennen (1) und zwischen organisationsinternen und -übergreifenden Prozessen zu unterscheiden (1).
- die Bedeutung von Geschäftsprozessen und den Zusammenhang zwischen Strategie, Prozess und Informationssystem zu verstehen (2).
- ausgewählte Methoden zur Optimierung von Geschäftsprozessen zu erläutern (2) und anzuwenden (3).
- Geschäftsprozesse und Lieferketten mit Hilfe von Notationen gezielt zu erfassen, auf Schwachstellen zu analysieren und diese vor dem Hintergrund der Unternehmensziele zu bewerten und zu verbessern (3).

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg
Seite 107
- ausgewählte Methoden zur Geschäftsprozessoptimierung auf vorgegebene Sachverhalte anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Folgen von Veränderungen und Optimierungen im Ablauf von Geschäftsprozessen bewusst einschätzen zu können und dies in ihr eigenes Wertesystem einbauen zu können (3).
- zielorientiert im Team zu Themen rund um die Geschäftsprozessoptimierung zu arbeiten (Teamfähigkeit) und die erarbeiteten Ergebnisse sach- und zielgerecht im Auditorium vorzutragen (Präsentationskompetenz) (2).
- ihren Standpunkt fachlich verteidigen (Argumentationskompetenz) zu können (2).

Angebotene Lehrunterlagen

PDF, Screencasts, Literatur

Lehrmedien

PowerPoint Präsentation, PC und Beamer, Konferenztool, PINGO, Forum, Chat

Literatur

Pflichtliteratur

Skript/Foliensatz

Zusätzlich empfohlene Literatur

- Gadatsch, A., Grundkurs Geschäftsprozess-Management: Analyse, Modellierung, Optimierung und Controlling von Prozessen

jeweils in aktueller Auflage

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 25. 10. 2022

Ostbayerische Technische Hochschule Regensburg