Modulhandbuch

für den Bachelorstudiengang

Künstliche Intelligenz und Data Science (B.Sc.)

SPO-Version ab: Wintersemester 2020

Sommersemester 2021

erstellt am 31.05.2021

Fakultät Informatik und Mathematik
Regelstudienverlaufsplan im Bachelorstudiengang Kunstliche Intelligenz und Data Science

<table>
<thead>
<tr>
<th>Semester (°)</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Winter</td>
<td></td>
</tr>
<tr>
<td>Mathematik 1</td>
<td>Programmieren 1</td>
</tr>
<tr>
<td>2. Sommer</td>
<td></td>
</tr>
<tr>
<td>Mathematik 2</td>
<td>Programmieren 2</td>
</tr>
<tr>
<td>3. Winter</td>
<td></td>
</tr>
<tr>
<td>Statistik und Wahrscheinlichkeitslehre</td>
<td>Algorithmen und Datenstrukturen</td>
</tr>
<tr>
<td>4. Sommer</td>
<td></td>
</tr>
<tr>
<td>Optimierung</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>5. Winter</td>
<td></td>
</tr>
<tr>
<td>Praktikum im Betrieb</td>
<td>Praktikum im Betrieb</td>
</tr>
<tr>
<td>6. Sommer</td>
<td></td>
</tr>
<tr>
<td>KI-Projekt</td>
<td>Vertiefungsmodul 1</td>
</tr>
<tr>
<td>7. Winter</td>
<td></td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>Bachelorseminar</td>
</tr>
</tbody>
</table>

(*) Gibt das Semesterangebot, Fachsemester 1 bis 7, an und ob die Lehrveranstaltungen in einem Wintersemester oder Sommersemester stattfinden.

Das Modulhandbuch in der vorliegenden Fassung ist noch nicht vollständig. Im Laufe des Studienforschritts werden Modulbeschreibungen komplettiert und die Module des 3. Studienabschnitts ergänzt.

Im Zweifel gelten immer die gültigen und hochschulöffentlichen gemachten Rechtsnormen.
Das vom Fakultätsrat beschlossene semesterbezogene Angebot der Lehrveranstaltungen ist im Studienplan geregelt.

Erläuterungen zum Studienangebot im Sommersemester 2021

Hinweise zu Veranstaltungen im Sommersemester 2021
Aufgrund der aktuellen Sondersituation (Covid-19) startet der Großteil der Lehrveranstaltungen in den Informatikstudiengängen als virtuelle Lehrveranstaltungen.

Hinweise zu Prüfungsleistungen im Sommersemester 2021
Die maßgeblichen Prüfungsformen regeln die Studienpläne für das Sommersemester 2021.
Modulliste

Studienabschnitt 1:

Allgemeinwissenschaftliches Wahlpflichtmodul 1 (Mandatory General Studies Elective Modul 1)......... 5
Allgemeinwissenschaftliches Wahlpflichtmodul 1 (Mandatory General Studies Elective Modul 1)............ 6
Anwendungsorientierte Grundlagen der KI (Fundamentals of Applied AI)... 7
Anwendungsorientierte Grundlagen der KI (Fundamentals of Applied AI)... 8
Betriebswirtschaftliche Kernprozesse von Unternehmen (Core Business Processes in Companies)......... 10
Betriebswirtschaftliche Kernprozesse von Unternehmen (Core Business Processes in Companies)........... 11
Grundlagen der Informatik 1 (Fundamentals of Computer Science 1).. 13
Grundlagen der Informatik 1 (Fundamentals of Computer Science 1).. 14
Grundlagen der Informatik 2 (Fundamentals of Computer Science 2)... 16
Grundlagen der Informatik 2 (Fundamentals of Computer Science 2)... 17
KI-Programmierung (AI Programming)... 19
KI-Programmierung (AI Programming)... 20
Lineare Methoden der KI (Linear Methods of AI)... 22
Lineare Methoden der KI (Linear Methods of AI)... 23
Mathematik 1 (Mathematics 1)... 25
Mathematik 1 (Lineare Algebra).. 26
Mathematik 2 (Mathematics 2)... 28
Mathematik 2 (Analysis).. 29
Programmieren 1 (Programming 1)... 32
Programmieren 1 (Programming 1)... 33
Programmieren 2 (Programming 2)... 35
Programmieren 2 (Programming 2)... 36

Studienabschnitt 2:

Algorithmen und Datenstrukturen (Algorithms and Data Structures)... 38
Algorithmen und Datenstrukturen (Algorithms and Data Structures)... 39
Allgemeinwissenschaftliches Wahlpflichtmodul 2 (Mandatory General Studies Elective Modul 2)......... 41
Allgemeinwissenschaftliches Wahlpflichtmodul 2 (Mandatory General Studies Elective Modul 2)......... 42
Datenbanken (Databases)... 43
Datenbanken (Databases)... 44
Ethik (Ethics).. 46
Ethik... 47
IT-Recht (Information Technology Law)... 49
IT-Recht (Information Technology Law)... 50
Kommunikationssysteme (Networking)... 52
Kommunikationssysteme (Networking)... 53
Machine Learning (Machine Learning).. 55
Machine Learning (Machine Learning).. 56
Neuronale Netze (Neural Networks)... 58
Neuronale Netze (Neural Networks)... 59
Nichtlineare Methoden der KI (Non-linear Methods of AI)... 62
Nichtlineare Methoden der KI (Non-linear Methods of AI)... 63
Optimierung (Optimization)... 65
Optimierung (Optimization)... 66
Praktisches Studiensemester (Practical Semester).. 69
Praktikum (Industrial Placement).. 70
Praxisseminar (Industrial Placement Seminar).. 72
Studienabschnitt 3:

Im Laufe des Studienfortschritts werden die Module des 3. Studienabschnitts ergänzt.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wahlpflicht</td>
<td>2 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

in der Regel keine, außer bei aufeinander aufbauenden Kursen

Empfohlene Vorkenntnisse

in der Regel keine, außer bei aufeinander aufbauenden Kursen

Inhalte

- Vermittlung von Orientierungswissen und Allgemeinbildung
- Vermittlung und Training von Schlüsselkompetenzen (z.B. Zusatzzertifikat "Soft Skills")
- Vermittlung und Training von Fremdsprachen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 1 (Mandatory General Studies Elective Modul 1)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

siehe AW-Katalog
Teilmodul

<table>
<thead>
<tr>
<th>Allgemeinwissenschaftliches Wahlpflichtmodul 1 (Mandatory General Studies Elective Modul 1)</th>
<th>AWPM 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig vom ausgewählten AW-Fach (2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

KI u./o. StA u./o mdl. LN

Inhalte

Abhängig von der jeweiligen Lehrveranstaltung

Lehrmedien

Abhängig von der jeweiligen Lehrveranstaltung.

Literatur

Abhängig von der jeweiligen Lehrveranstaltung.

Weitere Informationen zur Lehrveranstaltung

Das AW-Modul 1 ist aus dem gesamten AW-Angebot frei wählbar mit folgenden Ausnahmen:
- Module aus dem Bereich EDV
- Module der VHB des Themenbereichs Internetkompetenz oder anderer informatikbezogener Themen.
- Modul „3-D-Druck“ aus dem Bereich Naturwissenschaft und Technik
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendungsorientierte Grundlagen der KI (Fundamentals of Applied AI)</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Brijnesh Jain</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Anwendungsorientierte Grundlagen der KI (Fundamentals of Applied AI)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

| Anwendungsorientierte Grundlagen der KI (Fundamentals of Applied AI) | AGK |

Verantwortliche/r | Fakultät
Prof. Dr. Brijnesh Jain | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Brijnesh Jain |

Lehrform
Seminaristischer Unterricht (2 SWS) mit Übungen und Praktikum (2 SWS)

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Portfolioprüfung (Pf)

Inhalte

• Logik, Wissen, Inferenz
• Entwurfsprinzipien für und Spezifikation von intelligenten Agenten
• Problemlösung durch Suchen (uninformierte/informierte/lokale/heuristische Suche)
• Logische Agenten
• Planen
• Wissensrepräsentation
• Wissensbasierte Systeme und logisches Programmieren
• Prinzip von überwachtetem und unüberwachtetem Lernen
• Maschinelles Lernen (Entscheidungsbäume, Clusteralgorithmen, ...)
• Evolutionäre/Genetische Algorithmen
• Anwendungen der Künstlichen Intelligenz
• Projektarbeit mit überschaubarem Datensatz und Nutzung von KI-Tools

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• grundlegende Konzepte aus den oben genannten Teilgebieten der KI einzuordnen und zu nennen (1)
• Suchprobleme zu formalisieren und zu lösen (2)
• bekannte Suchalgorithmen kritisch zu bewerten und einzuordnen (3)
• Verfahren aus Bereichen wie Schließen mit Unsicherheit und Maschinelles Lernen anzuwenden (2)
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Anwendungsorientierte Grundlagen der KI (Fundamentals of Applied AI)

- Methodisch korrekt KI-Eperimente durchzuführen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- grundlegendende Ideen und Konzepte der KI einzuordnen (1)
- methodisch korrekt KI Systeme empirisch zu evaluieren (2)
- Anwendungsprobleme geeignet zu formalisieren (2)

Lehrmedien

Laptop, Beamer, Tafel

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebswirtschaftliche Kernprozesse von Unternehmen (Core Business Processes in Companies)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Stand: 31.05.2021
Ostbayerische Technische Hochschule Regensburg
Modulname:
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science
Betriebswirtschaftliche Kernprozesse von Unternehmen (Core Business Processes in Companies)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebswirtschaftliche Kernprozesse von Unternehmen (Core Business Processes in Companies)</td>
<td>KP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung mit Vortrag</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

KL, 60 Min

Inhalte

Elemente der operativen Produktionsplanung und –steuerung:
- Prognoseverfahren
- Losgrößenprobleme,
- Materialbedarfsplanung und
- Fertigungssteuerung.

Logistische Prozesse:
- Lagerhaltungssysteme und
- Lagerbetrieb und Güterumschlag,
- Transport- und Tourenplanung.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Kernaufgaben von produzierenden Unternehmen zu erläutern (3).
- die Abläufe zur Herstellung von Gütern und m. E. Dienstleistungen durch ein globales Unternehmen aus planerischer Sicht zu erläutern (3).
- zentrale Planungsaufgaben mit gängigen Verfahren (in Enterprise-Resource-Planning (ERP), wie dem SAP System) zu lösen (3).
- strukturelle Schwächen der Planungsverfahren (in ERP-Systemen) zu benennen (2).
• wesentliche Einflussfaktoren für die effiziente Steuerung von Unternehmensprozessen, mit dem Schwerpunkt auf Produktionsprozesse, zu erklären (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• anspruchsvolle Inhalte eigenständig nachzuarbeiten (3), durch Übungen zu vertiefen (3) sowie durch das Studium von Lehrbüchern zu ergänzen (2).
• zielorientiert im Team zu arbeiten (Teamfähigkeit) und die erarbeiteten Ergebnisse sach- und zielgerecht im Auditorium vorzustellen (3).
• ihren Standpunkt fachlich zu verteidigen (2).
• die Folgen von Entscheidungen zu verstehen und bewusst in ihr eigenes Wertesystem einzuordnen (3).

Lehrmedien

Laptop, Beamer, Tafel, Tools, SAP System

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Informatik 1 (Fundamentals of Computer Science 1)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Grundlagen der Informatik 1 (Fundamentals of Computer Science 1)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Modulname: Grundlagen der Informatik 1 (Fundamentals of Computer Science 1)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name des Studiengangs:PO Bachelor Künstliche Intelligenz und Data Science</td>
<td>GI 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht (2 SWS) mit Übungen und Praktikum (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min

Inhalte

Berechenbarkeit
- Mengen in der Informatik
- Halteproblem
- Reduktionen
- Komplexität

Formale Sprachen und Automatentheorie
- alphabet, Wörter, Sprachen
- Sprachen zur Problembeschreibung (speziell: Entscheidungsprobleme)
- Deterministische und nichtdeterministische Endliche Automaten und deren Äquivalenz,
 Minimierung von Automaten
- Reguläre Ausdrücke und Sprachen
- Grammatiken und Chomsky Hierarchie (CYK)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der Vorlesung behandelten wissenschaftlichen Inhalte anzuwenden (2) und zu erläutern (2). Weiterhin sind ihnen die praktischen Implikationen (82), insbesondere die Möglichkeiten und Grenzen der Anwendung von Computersystemen (83) bewusst und sie sind ausgestattet mit solidem formalen Rüstzeug um praktische Ansätze auf ein solides Fundament zu setzen (2).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, fachlich zu kommunizieren (2), Probleme analytisch/formell und selbstständig zu bearbeiten (2) und haben Berührungsängste zu abstrakt-formellen Werken abgebaut (1).

Lehrmedien

Präsentation, Laptop, Beamer, Tafel, PC (CIP-Pool)

Literatur

- Uwe Schöning: Theoretische Informatik – kurzgefasst, Spektrum Akademischer Verlag, 1995
- Hoffmann: Theoretische Informatik

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Informatik 2 (Fundamentals of Computer Science 2)</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Skornia</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 1.</td>
<td>Pflicht</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Grundlagen der Informatik 1

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Grundlagen der Informatik 2 (Fundamentals of Computer Science 2)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Grundlagen der Informatik 2 (Fundamentals of Computer Science 2)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Informatik 2 (Fundamentals of Computer Science 2)</td>
<td>GI2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Skornia</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht (2 SWS) mit Übungen und Praktikum (2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min

Inhalte

- Von-Neumann-Rechner, Befehlsarbeitung, Befehlstypen, Zahlendarstellungen
- Einführung in Assemblerprogrammierung; Segmentierung, Adressierungsarten, Stack, Interrupt, Polling, Strukturierung,
- Prozeduren,
- Makros, Rekursion, Bedingte Assemblierung, Modulkonzept
- Komponenten von DV-Systemen wie Interrupt-Controller, DMA, Timer, Speicher, Grafikkarten

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die grundlegende Struktur, Funktionsweise und Zusammenhänge von Computersystemen
- und ihrer Speichersysteme (memory hierarchy) darzustellen (1) und zu erklären (2)
- die Darstellung von Daten und Informationen zu zeigen(1)
- (Binär)arithmetic anzuwenden (2)
- elementare Befehle von Rechnersystemen zu beschreiben (2), die Verbindung zur
- Architektur zu erklären (2), und die Verbindung zu Hochsprachen (C) zu erklären (2) und
- umzusetzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Inhalte in Kleingruppen zu diskutieren (2)
- fachliche Fragen an den Lehrenden zu stellen (3)
• ihren Lernprozess (Zeitmanagement) selbständig zu organisieren (2)
• neue Inhalte im Selbststudium zu erarbeiten (2)
• individuelle Aufgaben zu lösen (2) und mit konstruktiver Kritik umzugehen (2)
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)

Lehrmedien
Präsentation, Laptop, Beamer, Tafel, PC (CIP-Pool)

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI-Programmierung (AI Programming)</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Brijnesh Jain</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Funktionale Programmierung (PG1)

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>KI-Programmierung (AI Programming)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 31.05.2021
Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>KI-Programmierung (AI Programming)</th>
<th>KIPG</th>
</tr>
</thead>
</table>

Verantwortliche/r

Prof. Dr. Brijnesh Jain

Fakultät

Informatik und Mathematik

Lehrende/r / Dozierende/r

Prof. Dr. Brijnesh Jain

Lehrform

Seminaristischer Unterricht (2 SWS) mit Übungen und Praktikum (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min

Zugelassene Hilfsmittel für Leistungsnachweis

Inhalte

Methoden, Techniken und Werzeuge zur Analyse komplexer Daten, um Muster zu erkennen und Wissen zu extrahieren. Dazu werden die folgenden Themen behandelt:

- Problemverständnis
- Datenselektion
- Datenvorverarbeitung
- Datentransformation
- Modellierung
- Evaluation
- Interpretation
- Kommunikation der Ergebnisse

Anwendungen erfolgen überwiegend unter Verwendung von Python-basierten Programmierwerkzeugen auf realen Datensätzen.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, End-to-End Data Science Projekte zu planen und mit Python-basierten Programmierwerkzeugen durchzuführen. Im Einzelnen können Studierende

- Daten mit Web Scraping und anderen Techniken akquirieren (1)
• fehlerhafte und verrauschte Daten bereinigen (1)
• Daten mit Visualisierungstechniken, Clustermethoden und deskriptiver Statistik analysieren und explorieren (2)
• Daten mit Dimensionsreduktionstechniken transformieren (2)
• Überwachte Machine Learning Verfahren anwenden und evaluieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Data Science Projekte in Teamarbeit durchzuführen (1)
• Ergebnisse der Datanalyse kritisch zu bewerten (2)
• Resultate zu präsentieren und kommunizieren (2)

Lehrmedien

Laptop, Beamer, Tafel

Literatur

Weitere Informationen zur Lehrveranstaltung

Vorkenntnisse:
• Programmierkenntnisse
• Lineare Algebra
• Grundlagen der Künstlichen Intelligenz

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineare Methoden der KI (Linear Methods of AI)</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stefan Körkel</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Martin Weiß</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lineare Methoden der KI (Linear Methods of AI)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Lineare Methoden der KI (Linear Methods of AI)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineare Methoden der KI (Linear Methods of AI)</td>
<td>LMKI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Weiß</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Stefan Körkel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit integrierten Übungen (gesamt: 4 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>schrP, 90 Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zerlegung von Matrizen, LR-Zerlegung, Cholesky-Zerlegung, Lösung von linearen Gleichungssystemen</td>
</tr>
<tr>
<td>• Überbestimmte lineare Gleichungssysteme, lineare Regression, Normalgleichungssystem, QR-Zerlegung, Identifizierbarkeit, Singularwerte, Sensitivitätsanalyse</td>
</tr>
<tr>
<td>• Vertiefung Eigenwerte und Eigenvektoren, Diagonalisierbarkeit, symmetrische Matrizen, orthogonale Matrizen, positiv definite Matrizen, Spektarsatz, Normalformen, Vektoriteration, QR-Methode</td>
</tr>
<tr>
<td>• KI-Anwendungen: trennende Hyperebenen, lineare Klassifikation, Perzepton, Hauptkomponentenanalyse</td>
</tr>
<tr>
<td>• Praktische Implementierung der Algorithmen, z.B. mit Matlab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• fortgeschrittene Konzepte der Linearen Algebra zu verstehen (3),</td>
</tr>
<tr>
<td>• diese Methoden auf Fragestellungen aus der KI anzuwenden (2),</td>
</tr>
<tr>
<td>• geeignete numerische Algorithmen zu implementieren (3) und einzusetzen (2).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• fachlich zu kommunizieren (2)</td>
</tr>
</tbody>
</table>
• Probleme analytisch und selbständig zu bearbeiten (2),
• numerische Verfahren zu implementieren (3) und einzusetzen (2).

Lehrmedien
afel, Beamer, mathematische Software

Literatur
tba.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1 (Mathematics 1)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Löschel</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brückenkurse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>
Modul: Mathematik 1 (Lineare Algebra)

Lehrumfang

- Grundlagen der Logik: Mengenlehre, Aussagenlogik und Beweismethoden
- Algebraische Strukturen: Relationen, Gruppen, Ringe, Körper
- Lineare Gleichungssysteme: homogen, inhomogen; Gaußsches Eliminationsverfahren
- Vektoren und Matrizen: Linearkombinationen, lineare Unabhängigkeit
- Vektorräume: Unterräume, Basis und Dimension, Norm und Skalarprodukt
- Lineare Abbildungen: Bild, Kern, Komposition; orthogonale Abbildungen
- Quadratische Matrizen: Inverse Matrix, Determinante, Hauptachsentransformation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Konzepte der Linearen Algebra zu verstehen (3),
- die Zusammenhänge mit anderen Gebieten (z.B. Analysis, Numerische Mathematik, Technik und Wirtschaftswissenschaften) zu erkennen (1),
- Methoden der Linearen Algebra anwenden zu können (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachlich zu kommunizieren (2),
- Probleme analytisch und selbstständig zu bearbeiten (2).
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Mathematik 1 (Mathematics 1)

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Beamer, mathematische Software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>7</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r	Fakultät
Prof. Dr. Martin Pohl | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Mathematik 1 und Brückenkurse

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 2 (Analysis)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>

Stand: 31.05.2021
Ostbayerische Technische Hochschule Regensburg
Teilmodul	TM-Kurzbezeichnung
Mathematik 2 (Analysis) | MA2

Verantwortliche/r	Fakultät
Prof. Dr. Martin Pohl | Informatik und Mathematik

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Dr. Hans Kiesl |
Prof. Dr. Stefan Körkel |
Prof. Dr. Rainer Löschel |
Prof. Dr. Martin Pohl |
Dr. Gabriela Tapken (LBA) |
Prof. Dr. Martin Weiß |
Prof. Dr. Peter Wirtz |

Lehreform
Seminaristischer Unterricht mit integrierten Übungen (gesamt: 6 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium: 90h, Eigenstudium: 120h

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 - 120 min

Inhalte
- Folgen und Reihen (u.a. Konvergenzbegriffe - Konvergenzkriterien für Folgen und Reihen - Funktionenreihen)
- Stetigkeit (u.a. Stetigkeitsbegriffe - Zwischenwertsatz)
- Differentialrechnung (u.a. Differentiationsregeln - Mittelwertsatz der Differentialrechnung - Extremwerte)
- Integralrechnung (u.a. Riemannsches Integral - Mittelwertsatz der Integralrechnung - Hauptsatz der Differential- und Integralrechnung - Integrationsregeln)
- Mehrdimensionale Analysis (u.a. Funktionen in mehreren Veränderlichen - Grenzwerte und Stetigkeit - Differenzierbarkeit, totale und partielle Ableitung - Extremwerte)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- das Verhalten einer gegebenen Zahlenfolge zu ermitteln (2).
- Zahlenreihen auf die Anwendbarkeit der verschiedenen Konvergenzkriterien zu untersuchen (3) und das Konvergenzverhalten zu bestimmen (2).
- die Definition elementarer Funktionen mittels Potenzreihen zu erläutern (1).
• das Konzept der Ableitung zu beschreiben (1) und die Bedeutung der Ableitung zu erklären (2).
• die Ableitungen vorgegebener Funktionen zu berechnen (2).
• das Verhalten von Funktionen mit Hilfe der zentralen Sätze der Analysis (z.B. Zwischenwertsatz oder Mittelwertsatz) zu analysieren (3).
• Anwendungsaufgaben zur Differentialrechnung zu lösen (2) und die Lösung auf Plausibilität hin zu untersuchen (3).
• die Definition des Riemann-Integrals zu beschreiben (1) und die Bedeutung des Riemann-Integrals in unterschiedlichen Anwendungsbereichen zu erklären (2).
• die elementaren Integrationsmethoden (z.B. partielle Integration und Integration durch Substitution) durchzuführen (2).
• die Zusammenhänge zwischen Differentialrechnung und Integralrechnung zu erkennen (2).
• Anwendungsaufgaben zur Integralrechnung zu lösen (2) und das Ergebnis auf Plausibilität hin zu untersuchen (3).
• das Konzept der partiellen Differenzierbarkeit zu beschreiben (1).
• die geometrische Bedeutung von Gradienten zu erklären (2) und in Anwendungsaufgaben einzusetzen (2).
• Methoden zur Berechnung lokaler und globaler Extrema zu benennen (1).
• Anwendungsaufgaben zur Extremwertberechnung zu analysieren (3) und zu lösen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• fachliche Inhalte in Lerngruppen zu diskutieren (2).
• die Argumente anderer zu analysieren (3).
• den Lernprozess in Lerngruppen zu bewerten (3).
• verschiedene Lernmethoden zu benennen (1).
• genau zu formulieren, was sie nicht verstanden haben (2).
• neue Inhalte im Selbststudium zu erarbeiten (2).
• den persönlichen Nutzen verschiedener Lernmethoden zu bewerten (3).
• den eigenen Lernfortschritt und Lernbedarf zu analysieren (3).
• ihren Lernprozess (Zeitmanagement) selbständig zu organisieren (2).
• mathematische Zusammenhänge mit eigenen Worten darzustellen (2).
• ihren Wissensstand und Lernbedarf zu erkennen (2).

Lehrmedien

Tafel, Beamer, Einsatz mathematischer Software
Literatur

- Hachenberger, D.: Mathematik für Informatiker, Pearson Studium
- Hartmann, P.: Mathematik für Informatiker, Springer Vieweg Verlag (*)
- Heuser, H: Lehrbuch der Analysis (2 Bände), Vieweg + Teubner Verlag
- James Stewart, J.: Essential Calculus, Brooks/Cole
- Teschl, G. und S.: Mathematik für Informatiker, Band 2: Analysis und Statistik, Springer Verlag (*)
- Weitz, E.: Konkrete Mathematik (nicht nur) für Informatiker, Springer Verlag (*)

Für die mit (*) gekennzeichneten Bücher ist der Zugriff auf die pdf-Version über die Hochschulbibliothek der OTH Regensburg möglich.
Für das mit (**) gekennzeichnete Buch ist ein online-Zugriff für drei Nutzer gleichzeitig über die Hochschulbibliothek der OTH Regensburg möglich.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmieren 1 (Programming 1)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Programmieren 1 (Programming 1)</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
Programmieren 1 (Programming 1) | PG 1

Verantwortliche/r | Fakultät
Prof. Dr. Daniel Jobst | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Beate Mielke (LBA) |

Lehrform

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>150h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP, 90 Min

Inhalte

- Problemanalyse und Algorithmusbeschreibungen
- Ausdrücke, Operatoren und Operanden
- Variablen und Datentypen, Arrays und Zeiger
- Kontrollstrukturen
- Funktionen
- Modularisierung von Programmen
- Elementare und rekursive Datenstrukturen (z. B. verkettete Listen)
- Iteration und Rekursion
- Dynamische und statische Speicherverwaltung
- Modularisierung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Konzepte prozeduraler Programmiersprachen zu verstehen (1)
- einfache Probleme zu analysieren und Algorithmen zur Lösung in der prozeduralen Programmiersprache C zu entwickeln, zu implementieren und zu testen (3)
- elementare Datenstrukturen zu kennen und selbständig anzuwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- beharrlich an einer Aufgabe zu arbeiten (2)
- die Bedeutung von Details in Problemstellungen und Lösungen zu erkennen (2)
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Programmieren 1 (Programming 1)

- kreativ und experimentierfreudig an neue Aufgabenstellungen heranzugehen (2)
- sorgfältig zu arbeiten (2)

Lehrmedien

- Tafel
- Notebook
- Beamer

Literatur

z. B. können diese Bücher hilfreich sein:
- Kirch-Prinz und Pinz: C, kurz und gut, O'Reilly, 2002
- Goll und Dausmann: C als erste Programmiersprache, Springer Vieweg, 2014
- Schellong: Moderne C Programmierung, Xpert.press, 2014

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmieren 2 (Programming 2)</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Programmieren 1

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Programmieren 2 (Programming 2)</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science
Modulname: Programmieren 2 (Programming 2)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmieren 2 (Programming 2)</td>
<td>PG 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium
90h

Eigenstudium
150h

Studien- und Prüfungsleistung
schrP, 90 Min

Inhalte
- Klassen, Objekte, Klassenhierarchien (Einfach- und Mehrfachvererbung)
- Lebenszyklus von Objekten
- Templates, abstrakte Klassen
- Polymorphie
- GUI-Programmierung (z. B. mit Qt)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die grundlegenden Konzepte objektorientierter Programmiersprachen zu verstehen (1) und diese zur praktischen Problemlösung einzusetzen (2)
- einfache Probleme mit Techniken der objektorientierten Analyse zu analysieren (2) sowie Algorithmen und Datenstrukturen zur Lösung einfacher Probleme in der objektorientierten Programmiersprache C++ zu formulieren (3) und deren Korrektheit zu validieren (2)
- sich zügig in vorhandene objektorientierte Bibliotheken einzuarbeiten (1) und unbekannten Programmcode auf seine Funktionsweise hin zu analysieren (3)
- einfache grafische Benutzeroberflächen (GUI) zu entwerfen und mit Programmcode zu verknüpfen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Fragen an Dozierende zu stellen und Inhalte aus der Vorlesung oder Übung in korrekter Fachsprache wiederzugeben (2). Sie sind außerdem in der Lage, sich zu
Übungsaufgaben eine Lösungsstrategie zu erarbeiten (3). Ergebnisse von Übungsaufgaben können vor Publikum dargestellt werden (1) und deren Qualität im Vergleich zu anderen Lösungsvorschlägen eingeschätzt werden (2).

Lehrmedien
- Tafel, Notebook, Beamer

Literatur
- z. B. können diese Bücher hilfreich sein
 - Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
 - Breymann: Der C++ Programmierer, Hanser, 2015
 - Loudon: C++ kurz & gut, O'Reilly, 2013
 - Lippmann, Lajoie, Moo: C++ Primer, Addison-Wesley, 2012

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmen und Datenstrukturen (Algorithms and Data Structures)</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt
Empfohlene Vorkenntnisse
wird noch ergänzt

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Algorithmen und Datenstrukturen (Algorithms and Data Structures)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Algorithmen und Datenstrukturen (Algorithms and Data Structures)</th>
<th>AD</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Klaus Volbert</th>
<th>Informatik und Mathematik</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Prof. Dr. Klaus Volbert</th>
</tr>
</thead>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen (6 SWS)

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 Min

Inhalte

- Komplexitätsanalyse (Modelle zur Laufzeit- und Speicherplatzanalyse, Best-, Average- und Worst-Case-Analyse, Komplexitätstklassen, Asymptotische Komplexität)
- Entwurfsmethoden (Divide and Conquer, Dynamische Programmierung, Greedy-Algorithmen, Backtracking)
- Algorithmen für Standard-Probleme:
 - Elementare, fortgeschrittene und schlüsselbasierte Sortierverfahren,
 - Datenstrukturen zur Verwaltung von Mengen (z.B. binäre Suchbäume, balancierte Bäume, Queues),
 - Suchen in Mengen und Zeichenketten,
 - einfache Graph-Algorithmen (z.B. Tiefen- und Breitensuche, kürzeste Pfade, minimale Spannbäume)

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, algorithmische Problemstellungen zu grundlegenden Themen in der Informatik selbstständig alleine und in Gruppenarbeit wiederzugeben (1), zu bearbeiten (2) und zu lösen (3). Sie können eigene und andere Lösungen bewerten und vergleichen.

Lehrmedien
Tafel, Notebook, Beamer

Literatur
- Folienkopien
- Kurt Mehlhorn, Datenstrukturen und effiziente Algorithmen, Band1, Suchen und Sortieren, Teubner Verlag, 1988

Weitere Informationen zur Lehrveranstaltung
Vorlesung und Übungen zusammen 6 SWS
Zuordnung zu Ausbildungszielen:
- G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik.
- G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung.
- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Allgemeinwissenschaftliches Wahlpflichtmodul 2 (Mandatory General Studies Elective Modul 2) | 24

Modulverantwortliche/r	Fakultät
Prof. Dr. Gabriele Blod | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4. / 5.</td>
<td>2.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
in der Regel keine, außer bei aufeinander aufbauenden Kursen

Empfohlene Vorkenntnisse
in der Regel keine, außer bei aufeinander aufbauenden Kursen

Inhalte
- Vermittlung von Orientierungswissen und Allgemeinbildung
- Vermittlung und Training von Schlüsselkompetenzen (z.B. Zusatzzertifikat "Soft Skills")
- Vermittlung und Training von Fremdsprachen

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 2 (Mandatory General Studies Elective Modul 2)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 2 (Mandatory General Studies Elective Modul 2)</td>
<td>AW 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig vom ausgewählten AW-Fach (2 SWS)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 30h
- Eigenstudium: 30h

Studien- und Prüfungsleistung
- Klausur und/oder Studienarbeit und/oder mündlicher Leistungsnachweis

Inhalte
Abhängig von der jeweiligen Lehrveranstaltung

Lehrmedien
Abhängig von der jeweiligen Lehrveranstaltung.

Literatur
Abhängig von der jeweiligen Lehrveranstaltung.

Weitere Informationen zur Lehrveranstaltung
- W-Modul 2: Anerkannt werden folgende Veranstaltungen: Sozial- und Methodenkompetenz: Blöcke 1 - 4 (nicht Block 5)
- Soziale Kompetenz
- Zusatzstudium Internationale Handlungskompetenz (wenn mindestens zwei Kurse besucht wurden, nicht nur die Vorlesung im WiSe)
- Internationale rhetorische Kompetenz (IRK): Kommunizieren mit Anderen (Gespräch und Moderation G1 - G5)
- Mündliche Kommunikation und Sprecherziehung: Mündliche Kommunikation II

Stand: 31.05.2021
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Datenbanken (Databases)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken (Databases)</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Johannes Schildgen</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Datenbanken (Databases)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Datenbanken (Databases)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken (Databases)</td>
<td>DB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Johannes Schildgen</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP 90 Min

Inhalte

SQL: Datenbankzugriffssprache DML, Datenbankbeschreibungssprache DDL, Sichten, Schemata, Besonderheiten in speziellen Datenbanken.
Datenbankprogrammierung: Benutzerdefinierte Routinen, Trigger, Transaktionen, Zugriff auf Datenbanken mit geeigneten Programmiersprachen, Fehlerbehandlung.
Datenbankoptimierung: Optimierung der Zugriffe, Indextiere

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- ... den Aufbau und die Funktionsweise von Datenbanken wiederzugeben (1)
- ... Anfragen in der Datenbanksprache SQL zu formulieren (2)
- ... kleinere bis mittlere Datenbanken zu entwerfen (2)
- ... diese Datenbanken zu erzeugen, einzurichten und zu verwenden (2)
- ... Datenbankanwendungen mit JDBC zu entwickeln (2)
- ... Konzepte der Sprache SQL (Sichten, UDFs, Trigger) zu bewerten und auszuwählen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Probleme analytisch und selbstständig zu bearbeiten (2)
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johannes Schildgen. Sprachkurs SQL - Das Datenbanken-Hörbuch</td>
</tr>
<tr>
<td>A. Kemper, A. Eickler. Datenbanksysteme - Eine Einführung</td>
</tr>
<tr>
<td>A. Heuer, K.-U. Sattler, G. Saake. Datenbanken: Konzepte und Sprachen</td>
</tr>
<tr>
<td>C. J. Date. An Introduction to Database Systems</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethik (Ethics)</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Kriza</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Das Nähere regelt der Angebotskatalog der Regensburg School of Digital Sciences

Empfohlene Vorkenntnisse
Das Nähere regelt der Angebotskatalog der Regensburg School of Digital Sciences

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ethik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 31.05.2021 Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Kriza</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrlinge/verantwortliche/r</th>
</tr>
</thead>
</table>

Verantwortliche/r | Fakultät
Prof. Dr. Thomas Kriza | Angewandte Natur- und Kulturwissenschaften
Lehrende/r / Dozierende/r | Angebotsfrequenz
N.N. | Die Nähere regelt der Angebotskatalog der Regensburg School of Digital Sciences

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrlumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Das Nähere regelt der Angebotskatalog der Regensburg School of Digital Sciences

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen und Diskussion einführender Beispiele</td>
</tr>
</tbody>
</table>
| • Technische Aspekte der Digitalisierung (u.a. künstliche Intelligenz, Big Data, soziale Netzwerke ...)
| • Gesellschaftliche Auswirkungen der Digitalisierung |
| • Bewusstsein für ethisch verantwortliches Handeln (Themen u.a.: grundlegende Wertvorstellungen, modernes Menschenbild, Fundamente ethischer Argumente)
| • Diskussion ethischer Positionen bei konkreten Anwendungsfällen der Digitalisierung (z.B. „Datenschutz und Privatsphäre“ u.v.m.) |

Anschließende Vertiefung der Grundlagen, Diskussion weiterführender Beispiele, Ausrichtung auf spezielle Anwendungsfelder der KI und Data Science.

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Das Nähere regelt der Angebotskatalog der Regensburg School of Digital Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Das Nähere regelt der Angebotskatalog der Regensburg School of Digital Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Nähere regelt der Angebotskatalog der Regensburg School of Digital Sciences</td>
</tr>
</tbody>
</table>
Literatur

<table>
<thead>
<tr>
<th>Das Nähere regelt der Angebotskatalog der Regensburg School of Digital Sciences</th>
</tr>
</thead>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT-Recht (Information Technology Law)</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2.</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IT-Recht (Information Technology Law)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Stand: 31.05.2021
Ostbayerische Technische Hochschule Regensburg
Seite 49
Teilmodul

<table>
<thead>
<tr>
<th>Name des Studiengangs:</th>
<th>PO Bachelor Künstliche Intelligenz und Data Science</th>
</tr>
</thead>
</table>

Modulname:

IT-Recht (Information Technology Law)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT-Recht (IT-Recht)</td>
<td>ITR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

Angebotsfrequenz

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht

Studiensemester

gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Prüfungstermine</th>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td></td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Kl. 60 Min

Inhalte

Die Lehrveranstaltung behandelt vor allem folgende Themen:

- Schutz geistigen Eigentums (Designrecht, Urheberrecht, Markenrecht)
- Vertragsrecht (Vertragsarten, Vertragsschluss, Recht der Allgemeinen Geschäftsbedingungen, Gewährleistung für Software, Haftungsrecht)
- Wettbewerbsrecht (Schutz vor unlauterem Wettbewerb, Zulässige Werbung)
- Recht der Telemedien, Internetrecht
- Recht bei Open-Source-Software und Open-Content
- Datenschutz und Datensicherheit
- Compliance und Haftung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die wichtigsten Rechtsgrundlagen des IT- und Datenschutz-Rechts zu benennen (1), sowie die Voraussetzungen ausgewählter Anspruchsgrundlagen insbesondere aus dem Vertragsrecht, dem Marken- und Urheberrecht, dem Internetrecht sowie dem Datenschutzrecht zu beschreiben (1). Die Studierenden können mit der juristischen Fachsprache umgehen (2) und einzelne, ausgewählte Fälle anhand der einschlägigen Gesetze einer strukturierten rechtlichen Lösung zuführen (2). Kleinere unbekannte Fallgestaltungen aus den genannten Rechtsbereichen können sie selbständig lösen (3).
<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, mögliche IT- und Datenschutz-Probleme als solche zu erkennen (1) und auf eine strukturierte Art und Weise in Gesetzen und Urteilen nach einer Lösung zu suchen (2). Des Weiteren sind die Studierenden in der Lage, zwischen rechtlichen und moralischen Argumenten zu differenzieren und berufliche Sachverhalte juristisch darzustellen (2) sowie ihre rechtliche Lösung sachlich zu vertreten (3). Die Studierenden sind des Weiteren in der Lage, sich mit unterschiedlichen rechtlichen Ansichten konstruktiv auseinander zu setzen (3) und trauen sich zu, auch gegen überzeugend klingende Argumente strukturiert, klar und sachlich zu erwidern (3).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerPoint-Folien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunikationssysteme (Networking)</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Datenverarbeitungssysteme
Programmieren 1

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kommunikationssysteme (Networking)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Kommunikationssysteme (Networking)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunikationssysteme (Networking)</td>
<td>KS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP 90 Min

Inhalte

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmodules sind die Studierenden in der Lage,
- Netzwerk-Komponenten, deren Rolle und die Kommunikations-Protokolle zwischen Komponenten anzugeben (1),
- das Standard ISO-OSI Architektur-Modell im Vergleich zum TCP/IP-Modell zu benennen (1), sowie verschiedene Netzwerk-Dienste der Anwendungs-Schicht (wie z. B. DNS, DHCP) zu benutzen (2).
mittels Analyse-Tools im Labor die Meldungsinhalte zu analysieren (3) und zu identifizieren (1),
die Protokolle der Transportschicht (TCP, UDP) und die wichtigsten Dienste der Netzwerkschicht, wie Routing und globale Adressierung, zu benennen (1) und können diese praktisch auf die Netzwerk-Komponenten, wie Router und Switch, anwenden (2),
die meist verwendeten Verfahren für die Meldungsübertragung auf die Data-Link-Ebenen aufzuzählen (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Inhalte vor einem Publikum darzustellen (2),
- fachliche Fragen zu stellen (3) und
- netzwerktechnische Zusammenhänge in korrekter Fachsprache wiederzugeben (3).

Lehrmedien
Tafel, Notebook, Beamer

Literatur
- Skript/Foliensatz und On-Line Tutorials
- D.E. Comer: „Computernetzwerke und Internets“ Pearson
- Fred Halsall: Computer Networking and the Internet, Addison Wesley, Reading, MA
- Behrouz Forouzan: Data Communications and Networking, McGrawHill, Boston

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Machine Learning (Machine Learning) | 18

Modulverantwortliche/r	Fakultät
Prof. Dr. Jürgen Frikel | Informatik und Mathematik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. / 4. | 2. | Pflicht | 7 |

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Mathematische Voraussetzungen: MA 1 & 2, Lineare Methoden des KI, Nichtlineare Methoden des KI

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang [SWS o. UE]	Arbeitsaufwand [ECTS-Credits]
1. | Machine Learning (Machine Learning) | 6 SWS | 7 |
Teilmodul

<table>
<thead>
<tr>
<th>Modulname: Machine Learning (Machine Learning)</th>
<th>TM-Kurzbezeichnung: ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche/r: Prof. Dr. Jürgen Frikel</td>
<td>Fakultät: Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r: N.N.</td>
<td>Angebotsfrequenz:</td>
</tr>
</tbody>
</table>

| Lehrform: Seminaristischer Unterricht mit Übungen (gesamt: 6SWS) |

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>semester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- Portfolioprüfung (Pf)

Inhalte

- Grundprinzipien des ML (ML als Funktionsapproximation, probabilistische Grundannahmen, Over- und Underfitting, Überwachttes und Unüberwachtetes Lernen)
- Lineare Regression
- Entscheidungsbäume
- Nachbarschaftsbasierte Klassifikatoren (z.B. K-Nearest)
- Clusteringverfahren (z.B. K-Means)
- Allgemeine Lineare Klassifikatoren
- Support Vector Machines
- Dimensionsreduktion (PCA)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die grundlegenden Algorithmen und Methoden des maschinellen Lernens zu benennen und ihre Funktionsweise zu verstehen; (1), (2)
- die zugrundeliegenden mathematischen Konzepte und Aussagen zu benennen und ihre Implikationen für ML zu verstehen; (1), (2)
- die ML-Algorithmen der richtigen Problemklassen zuzuordnen und auf Probleme mittlerer Komplexität anzuwenden; (1), (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die gelernten Inhalte den Kommilitonen zu kommunizieren; (1)
- fachliche Diskussion zu ML Themen zu führen; (1), (2)
- selbständig weiterführende Literatur zu lesen und kritisch zu bewerten; (3)

Lehrmedien
Tafel, Beamer, Laptop

Literatur

Weitere Informationen zur Lehrveranstaltung
Mathematische Voraussetzungen: MA 1 & 2, Lineare Methoden des KI, Nichtlineare Methoden des KI

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Neuronale Netze (Neural Networks) | 14

Modulverantwortliche/r	**Fakultät**
Prof. Dr. Brijnesh Jain | Informatik und Mathematik

Studiensemester gemäß Studienplan	**Studienabschnitt**	**Modultyp**	**Arbeitsaufwand [ECTS-Credits]**
3. / 4. | 2. | Pflicht | 5

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Neuronale Netze (Neural Networks)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuronale Netze (Neural Networks)</td>
<td>NN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Brijnesh Jain</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Brijnesh Jain</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht (3 SWS) mit Praktikum (1 SWS)

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>3. / 4.</th>
<th>Lehraufwand</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schrP 90 Min
Inhalte

1. Neurale Netze
 Lineare Regression
 Klassifikation mit neuronalen Netzen
 Perzeptron
 Logistische Regression
 Tiefes Neuronales Netz
 Aktivierungsfunktionen

2. Training von Tiefen Neuronalen Netzen
 Cross Validation
 Gradientenabstiegsverfahren
 Backpropagation
 Regularisierung

3. Faltungsnetze
 Konzept
 Augmentierung
 Beispiele

4. Rekurrente Neuronale Netzwerke
 Konzept
 Long Short Term Memory (LSTM)
 Beispiele

5. Netz-Architekturen
 Beispiele von Faltungsnetzwerken (z.B. AlexNet, VGG, Residual Net, Inception Net)
 Beispiele von LSTM Netzen

6. Projektarbeit
 Einführung in ein aktuelles Framework zu Neuronalen Netzen (z.B. PyTorch, Keras/Tensorflow, ...)
 Praktische Projektarbeit

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Explicite Anwendungsgebiete Neuronaler Netze zu nennen (1)
- etablierte Architekturen von Neuronalen Netzen und ihre grundlegende Idee zu beschreiben, ihren Anwendungszweck bestimmen und sie hinsichtlich ihrer Leistungsfähigkeit einzuordnen (2)
- die Rolle und Wirkung verschiedener Hyperparameter und Entwurfsentscheidungen zu beschreiben (2)
- die praktischen Probleme beim Training Neuronaler Netze zu benennen (2)
- einfache Neurionale Netze selbst zu implementieren (3)
- komplexere Architekturen mit einem geeigneten Framework zusammenzustellen und anzuwenden (3)
- Experimente methodisch korrekt durchzuführen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- inhaltliche Zusammenhänge in Fachsprache wiederzugeben (2)
- in einem Team eine gemeinsame Lösungsstrategie für eine Projektarbeit zu erarbeiten (1)
- Lösungen für konkrete Anwendungsprobleme zu entwickeln, evaluieren, analysieren und zu präsentieren (2)

Lehrmedien

Laptop, Beamer, Tafel

Literatur

- Charu Aggarwal: Neural Networks and Deep Learning, Springer 2018.
- François Chollet: Deep Learning with Python, Manning, 2018.

Weitere Informationen zur Lehrveranstaltung

Mathematische Voraussetzungen:
- Gradienten (mehrdimensionale, partielle Ableitungen)
- Matrix-Vektor-Multiplikation
- Entropie
- Statistische Testverfahren
- Zufallsvariablen und multivariate Verteilungen (Verbundverteilungen, bedingte Verteilungen)
- Abstände
- Konzept der Stochastischen Unabhängigkeit
- Bayes’sche Entscheidungsregel
- Maximum-Likelihood-Methode

Programmiervoraussetzungen: KI-Programmierung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichtlineare Methoden der KI (Non-linear Methods of AI)</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Frikel</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Oliver Stein</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Keine

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Nichtlineare Methoden der KI (Non-linear Methods of AI)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Nichtlineare Methoden der KI (Non-linear Methods of AI)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichtlineare Methoden der KI (Non-linear Methods of AI)</td>
<td>NMKI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Stein</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Jürgen Frikel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>schrP 90 Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Allgemeine Abstands- und Längenbegriffe im Mehrdimensionalen; Anwendung: z.B. k-nearest Neighbors Verfahren</td>
</tr>
<tr>
<td>• Vertiefung der mehrdimensionalen Differentialrechnung (insbesondere mehrdimensionale Kettenregel)</td>
</tr>
<tr>
<td>• Gradientenabstiegsverfahren; Anwendung: z.B. Training des Perzeptron</td>
</tr>
<tr>
<td>• Extrema im Mehrdimensionalen mit und ohne Nebenbedingungen</td>
</tr>
<tr>
<td>• Polynominterpolation; Anwendung: z.B. numerische Integration im Eindimensionalen)</td>
</tr>
<tr>
<td>• Approximation mit Funktionen; Anwendung: z.B. lineare Regression, Polynomapproximation</td>
</tr>
<tr>
<td>• Fourier-Reihen und trigonometrische Approximation</td>
</tr>
<tr>
<td>• Mehrdimensionale Integralrechnung (mit Anwendungen in der Statistik)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• fortgeschrittene Konzepte der mehrdimensionalen Differentialrechnung, insbesondere im Zusammenhang mit der Lösung von Optimierungsproblemen zu verstehen, (2)-(3)</td>
</tr>
<tr>
<td>• verschiedene Konzepte der Approximation von Funktionen zu verstehen und anzuwenden, (2)</td>
</tr>
<tr>
<td>• die Definition von Integralen in mehreren Veränderlichen zu verstehen und die Berechnung solcher Integrale vorzunehmen,</td>
</tr>
<tr>
<td>• die o. g. Methoden auf Fragestellungen der KI anzuwenden. (2)-(3).</td>
</tr>
</tbody>
</table>
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• fachlich hinsichtlich der erlernten Inhalte und Kompetenzen zu kommunizieren, (1)-(2)
• Probleme aus dem o. g. Themenkreis, insbesondere aus der KI, zu verstehen und mit den erlernten Methoden zu analysieren und zu bearbeiten. (3)
• Algorithmen zur Lösung von relevanten Problem zu implementieren (2)-(3).

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>ModulkzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimierung (Optimization)</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Stefan Körkel</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Mathematik 1 und 2 sowie Mathematik für KI 1 und 2.

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Optimierung (Optimization)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Optimierung (Optimization)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimierung (Optimization)</td>
<td>OPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stefan Körkel</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3. / 4.</td>
<td>6 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrumfang

Lehrform

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3. / 4.</td>
<td>6 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrumfang

3. / 4. 6 SWS deutsch 7

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>schrP 90 Min</th>
</tr>
</thead>
</table>

Inhalte

Teil Optimale Lösungsverfahren – Professor Dr. S. Körkel.
- Optimalität.
- Gradientenverfahren
- Newton-Typ-Verfahren.
- Nichtlineare Ausgleichsprobleme.
- Ableitungsberechnung.
- Ableitungsfreie Optimierungsverfahren.
- Implementierung von Lösungsalgorithmen.

Teil Modellierung und toolgestützte Lösung – Professor Dr. F. Herrmann.
- Sensitivitätsanalysen.
- Dualität.
- Interpretation optimaler Lösungen.
- Grundmodelle für praxisrelevante Probleme.
- Implementierung in ILOG.
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- praxisrelevante Probleme, auch aus dem Bereich der KI, zu modellieren und durch kommerziell-verfügbare Tools zur Optimierung zu lösen (3).
- Klassen optimal lösbarer Probleme zu beschreiben (2).
- optimale Lösungsverfahren und ihre Eigenschaften zu erläutern (3).
- die optimale Lösbarkeit praxisrelevanter Probleme zu erkennen (2).
- die Eigenschaften optimaler Lösungen, einschließlich ihrer Interpretation, zu erkennen. (3)
- eigenständig aus realen Problemen Modelle zu abstrahieren (3)
- Fallstudien zu bearbeiten – und kennen (dadurch) Grundmodelle für praxisrelevante Probleme (2).
- grundlegende Algorithmen zu implementieren (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- zielorientiert im Team zu arbeiten (Teamfähigkeit) und die erarbeiteten Ergebnisse sach- und zielgerecht vorzutragen (3) (Präsentationskompetenz).
- ihren Standpunkt fachlich zu verteidigen (3) (Argumentationskompetenz).
- anspruchsvolle Aufgaben im Bereich der Produktionsplanung und -steuerung zu lösen (3), und sie sind sich den Folgen ihrer getroffenen Entscheidungen im beruflichen Umfeld bewusst. (3)

Lehrmedien

PowerPoint Präsentation, PC und Beamer
Software: Solver CPLEX von IBM-ILOG

Literatur

Pflichtliteratur
- Tbd
- Herrmann, Frank: Logik der Produktionslogistik. Oldenbourg, Regensburg

Zusätzlich empfohlene Literatur
- Claus, Thorsten; Herrmann, Frank; Manitz, Michael: Produktionsplanung und -steuerung – Forschungsansätze, Methoden und deren Anwendungen, Springer-Verlag

jeweils in aktueller Auflage
Weitere Informationen zur Lehrveranstaltung

Organisation
Das Modul besteht aus zwei Teilen:
- a) Optimale Lösungsverfahren – Professor Dr. S. Körkel.
- b) (Ganzzahlige) lineare Modellierung: Verfahren, Anwendungen und toolgestützte Lösung – Professor Dr. F. Herrmann.

Beide Module haben jeweils 3 SWS (im Kern: 2 SWS Vorlesung und 1 SWS Übung).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktisches Studiensemester (Practical Semester)</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2.</td>
<td>Pflicht</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
90 Kreditpunkte aus den vorangegangenen 4 Semestern oder:
vollständiges Ablegen der Grundlagenmodule (Erwerb von 60 Kreditpunkten) und Absolvierung mindestens eines weiteren Studiensemesters in Vollzeit.

Inhalte
Im Rahmen von DV-Projekten ist die Mitarbeit in möglichst allen Projektphasen (Systemanalyse, Systemplanung, Implementierung und Systemeinführung) sicherzustellen.

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum (Industrial Placement)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Praxisseminar (Industrial Placement Seminar)</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Praktisches Studiensemester (Practical Semester)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum (Industrial Placement)</td>
<td>PS</td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät |
Prof. Dr. Klaus Volbert | Informatik und Mathematik |
Lehrende/r / Dozierende/r | Angebotsfrequenz |
N.N. |

Lehrform
Praktikum (18 Wochen Vollzeit im Betrieb)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung
Nachweis über 18 Wochen Praktikum im Betrieb

Inhalte
Im Rahmen von DV-Projekten ist die Mitarbeit in möglichst allen Projektphasen (Systemanalyse, Systemplanung, Implementierung und Systemeinführung) sicherzustellen

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, typische, in einem Unternehmen anfallende Arbeiten/Aufgaben aus der Informatik alleine und in Teams wiedzugeben (1), zu bearbeiten (2) und zu lösen (3). Sie können eigene und andere Lösungen bewerten und vergleichen. Sie haben einen ersten Eindruck, wie sie die zukünftige Arbeitswelt mit eigenen Beiträgen mitgestalten können.

Literatur

Stand: 31.05.2021
Ostbayerische Technische Hochschule Regensburg
Weitere Informationen zur Lehrveranstaltung

Praktikum: 18 Wochen, die tägliche Arbeitszeit entspricht der üblichen Arbeitszeit der Ausbildungsstelle für Vollbeschäftigte. siehe: §3 Abschnitt 4 der APO, ca. 38,5h Vollzeit im Betrieb (gesamt: ca. 693h)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 31.05.2021
Teilmodul

<table>
<thead>
<tr>
<th>Praxisseminar (Industrial Placement Seminar)</th>
<th>PS</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
</tr>
</tbody>
</table>

Lehrform

<table>
<thead>
<tr>
<th>Praxisseminar (1 Tag)</th>
</tr>
</thead>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitssaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>deutsch/englisch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Seminarvortrag mit Erfolg und Praktikumsbericht mit Erfolg</th>
</tr>
</thead>
</table>

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, typische, in einem Unternehmen anfallende Arbeiten/Aufgaben aus der Informatik alleine und in Teams wiedergugeben (1), zu bearbeiten (2) und zu lösen (3). Sie können eigene und andere Lösungen bewerten und vergleichen. Sie haben einen ersten Eindruck, wie sie die zukünftige Arbeitswelt mit eigenen Beiträgen mitgestalten können.

Lehrmedien

<table>
<thead>
<tr>
<th>Praxisseminar: Tafel, Notebook, Beamer</th>
</tr>
</thead>
</table>

Literatur

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praxisseminar: Präsenz im Seminar, (Vor- und Nachbereitung)</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistik und Wahrscheinlichkeitstheorie (Statistics and and Probability Theory)</td>
<td>13</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Hans Kiesl</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

- Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

- Mathematik 1 und 2

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Statistik und Wahrscheinlichkeitstheorie (Statistics and Probability Theory)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science Statistik und Wahrscheinlichkeitstheorie (Statistics and Probability Theory)

Modulname: Statistik und Wahrscheinlichkeitstheorie (Statistics and Probability Theory)

Verantwortliche/r: Prof. Dr. Hans Kiesl
Fakultät: Informatik und Mathematik
Lehrende/r / Dozierende/r: Angebotsfrequenz
N.N. nur im Wintersemester
Lehrform
Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan
3. / 4. [SWS oder UE] 6 SWS
Lehrumfang
Lehrsprache deutsch
Arbeitsaufwand 7 [ECTS-Credits]

Zeitaufwand:
Präsenzstudium
90h
Eigenstudium
120h

Inhalte
- Beschreibende Statistik (u.a. Merkmale, Darstellung von Messreihen, Maßzahlen für ein- und zweidimensionale Messreihen).

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Definitionen, Begriffe und Sätze der Wahrscheinlichkeitstheorie mit eigenen Worten zu erläutern (1), wahrscheinlichkeitstheoretische Fragestellungen selbstständig und planvoll zu bearbeiten (2), grundlegende Verfahren der deskriptiven Statistik anzuwenden (2), die Methodik statistischer Schätz- und Testverfahren beurteilen und für praktische Fragestellungen anwenden zu können (3), stochastische Anwendungen in der Informatik selbstständig und selbstsicher anzugehen (3), zusätzliche statistische Fachliteratur zu verstehen und einzuordnen (2),
Einfache und anspruchsvollere statistische Analysen für eigene Arbeiten (Seminar, Abschlussarbeiten, Forschungsprojekte) durchzuführen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, zielorientiert im Team zu arbeiten (Teamfähigkeit) (1), die erarbeiteten Ergebnisse sach- und zielgerecht vorzutragen (Präsentationskompetenz) (2), ihren Standpunkt fachlich zu verteidigen (Argumentationskompetenz) (3), erarbeitete Ergebnisse zielgruppenorientiert vorzustellen (Anpassungsfähigkeit) (1), eigene Ergebnisse und Meinungen vor verschiedenen Zielgruppen zu verteidigen (Vertrauen in das eigene Beurteilungsvermögen) (2), anspruchsvolle Fragestellungen zu bewerten und zielorientiert zu bearbeiten (3).

Lehrmedien

Laptop, Beamer, Tafel, Statistik-Software

Literatur

- Bosch, Elementare Einführung in die angewandte Statistik, Vieweg 2005
- Hübner, Stochastik: Eine anwendungsorientierte Einführung für Informatiker, Ingenieure und Mathematiker, Vieweg 2009
- Lehn/Wegmann, Einführung in die Statistik, Teubner 2006
- Ross, Statistik für Ingenieure und Naturwissenschaftler, Elsevier 2006
- Sachs, Wahrscheinlichkeitsrechnung und Statistik, Hanser 2009
- Teschl und Teschl, Mathematik für Informatiker Band 2, Springer 2007

Weitere Informationen zur Lehrveranstaltung

Empfohlene Voraussetzungen: Mathematik 1 und 2

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulname: Webtechnologien (Media and Computing)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webtechnologien (Media and Computing)</td>
<td>21</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Heckner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

- Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

- Keine

Inhalte

- siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Webtechnologien (Media and Computing)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Stand: 31.05.2021

Ostbayerische Technische Hochschule Regensburg Seite 76
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webtechnologien (Media and Computing)</td>
<td>WT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Heckner</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Markus Heckner</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrform | Seminaristischer Unterricht mit Übungen |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 30h
- Eigenstudium: 60h

Studien- und Prüfungsleistung
- StA

Inhalte
Dieser Kurs ist eine Einführung in die Webentwicklung mit aktuellen client- und serverseitigen Webtechnologien.

Ausgewählte Inhalte:
- HTML und CSS - Grundbausteine einer Website, Anordnung und Gestaltung von Elementen.
- Responsive Webdesign - Anpassen der Darstellung einer Website an die Endgeräte der Nutzer (Desktop vs. mobile)
- Frontend Framework Bootstrap
- Clientseitiges JavaScript
- Serverseitige Webentwicklung mit Node.js und Express
- Datenbanken (PostgreSQL) mit Node.js und Express
- Cloudservices - Abfrage von Daten aus externen Diensten und Anzeige auf einer eigenen Webseite.

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Kleinere interaktive Webseiten mit clientseitigem JavaScript zu konzipieren und zu entwickeln (3).
- Einfache serverseitige Anwendungen mit Datenbankzugriff zu konzipieren und zu entwickeln (3).

Stand: 31.05.2021
Ostbayerische Technische Hochschule Regensburg
Seite 77
• zu erkennen, dass Webentwicklung ein dynamisches und schnell veränderliches Umfeld ist, das aber grundlegend auf wenigen Basistechnologien wie beispielsweise HTML, CSS und JavaScript basiert (2).
• Grundlegende Konzepte der Webentwicklung nachzu vollziehen (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• sich anhand der gegebenen Unterlagen in neue Technologien einzuarbeiten (2).
• eigene Defizite im Lernfortschritt zu erkennen, dies zu kommunizieren und die Möglichkeiten der angebotenen Hilfestellungen zu nutzen (3).
• zu erkennen, dass sich manche Aufgaben erst durch Ausdauer und konzentriertes Arbeiten an der Problemstellung lösen lassen (3).

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science
Modulname: Wissenschaftliches Arbeiten (Scientific Writing)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissenschaftliches Arbeiten (Scientific Writing)</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Westner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Keine

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wissenschaftliches Arbeiten (Scientific Writing)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Stand: 31.05.2021
Ostbayerische Technische Hochschule Regensburg
Seite 79
Name des Studiengangs: PO Bachelor Künstliche Intelligenz und Data Science

Modulname: Wissenschaftliches Arbeiten (Scientific Writing)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissenschaftliches Arbeiten</td>
<td>WA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Westner</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2 SWS</td>
<td>englisch</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenstudium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
<th></th>
</tr>
</thead>
</table>

- Forschungsthemen der Künstlichen Intelligenz und Data Science
- Forschungsmethoden der Künstlichen Intelligenz und Data Science
- Recherche, Einordnung und Bewertung von einschlägiger Fachliteratur
- Formal korrekte Ausgestaltung einer schriftlichen Arbeit

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
<td></td>
</tr>
<tr>
<td>den wissenschaftlichen Prozess zu beschreiben, auch hinsichtlich der Verbreitung von Forschungsergebnissen in der Künstlichen Intelligenz und Data Science (2).</td>
<td></td>
</tr>
<tr>
<td>Eine eigenständige Literaturrecherche durchzuführen und eine quellenkritische Auswertung der Literatur vorzunehmen (3).</td>
<td></td>
</tr>
<tr>
<td>die inhaltliche und formale Ausgestaltung eines wissenschaftlichen Textes (Seminararbeit) vorzunehmen (3).</td>
<td></td>
</tr>
<tr>
<td>Lehrmeinungen und Forschungsergebnisse bzgl. des gewählten Themas kritisch zu hinterfragen und zu bewerten (3).</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 31.05.2021

Ostbayerische Technische Hochschule Regensburg
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- selbstständig innerhalb einer vereinbarten Frist methodisch fundiert ein schriftliches Ergebnis zu erarbeiten (3).
- komplexe fachliche Themen zu bearbeiten (3).
- Problemstellungen adäquat und zielgruppengerecht zu bearbeiten sowie das eigene Vorgehen kritisch zu reflektieren (3).

Lehrmedien

Laptop, Beamer

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden