Modulhandbuch

für den
Bachelorstudiengang

Informatik
(B.Sc.)

SPO-Version ab: Wintersemester 2012

Wintersemester 2021/2022

 erstellt am 06.09.2021

von Barbara Uhl

Fakultät Informatik und Mathematik
Regelstudienverlaufsplan im Bachelorstudiengang Informatik

Für Studierende mit Studienbeginn Wintersemester

| Semester | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | **Semester ECTS**
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. S</td>
<td>Mathematik 1</td>
<td>Programmieren 1</td>
<td>Theoretische Informatik</td>
<td>Betriebswirtschaftliche</td>
<td>spezifische</td>
<td>31</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>2. S</td>
<td>Mathematik 2</td>
<td>Programmieren 2</td>
<td>Datenverarbeitungssysteme</td>
<td>Moderne Informatik</td>
<td>AW 1</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>3. S</td>
<td>Kommunikationssysteme</td>
<td>Betriebssysteme</td>
<td>Algorithmen und Datenstrukturen</td>
<td>Fachbezogenes</td>
<td>Wahlpflichtmodul 1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4. S</td>
<td>Rechnerarchitektur</td>
<td>Software Engineering</td>
<td>Computerarchitektur und -spezifikation</td>
<td>Fachbezogenes</td>
<td>Wahlpflichtmodul 1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5. S</td>
<td>Praktikum im Betrieb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6. S</td>
<td>Operations Research</td>
<td>Vertiefungsmodul IN 1/1</td>
<td>Vertiefungsmodul IN 1/3</td>
<td>Vertiefungsmodul IN 2/2</td>
<td>Fachbezogenes Wahlpflichtmodul 2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7. S</td>
<td>Bachelorarbeit</td>
<td>Bachelorseminar</td>
<td>Vertiefungsmodul IN 1/2</td>
<td>Fachbezogenes Wahlpflichtmodul 5</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

(*) Gibt das Semesterangebot, Fachsemester 1 bis 7, an und ob die Lehrveranstaltungen in einem Wintersemester oder Sommersemester stattfinden.

Das Angebot der Lehrveranstaltungen zu den Vertiefungsmodulen wird jedes Semester im Studienplan neu festgelegt.

Im Folgenden finden Sie das Angebot für das aktuelle Wintersemester und das letzte Sommersemester:

| Semester | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | **Semester ECTS**
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. S</td>
<td>Mathematik 1</td>
<td>Programmieren 1</td>
<td>Theoretische Informatik</td>
<td>Betriebswirtschaftliche</td>
<td>spezifische</td>
<td>31</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>2. S</td>
<td>Mathematik 2</td>
<td>Programmieren 2</td>
<td>Datenverarbeitungssysteme</td>
<td>Moderne Informatik</td>
<td>AW 1</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>3. S</td>
<td>Kommunikationssysteme</td>
<td>Betriebssysteme</td>
<td>Algorithmen und Datenstrukturen</td>
<td>Fachbezogenes</td>
<td>Wahlpflichtmodul 1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4. S</td>
<td>Rechnerarchitektur</td>
<td>Software Engineering</td>
<td>Computerarchitektur und -spezifikation</td>
<td>Fachbezogenes</td>
<td>Wahlpflichtmodul 1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5. S</td>
<td>Praktikum im Betrieb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6. S</td>
<td>Operations Research</td>
<td>Vertiefungsmodul IN 1/1</td>
<td>Vertiefungsmodul IN 1/3</td>
<td>Vertiefungsmodul IN 2/2</td>
<td>Fachbezogenes Wahlpflichtmodul 2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7. S</td>
<td>Bachelorarbeit</td>
<td>Bachelorseminar</td>
<td>Vertiefungsmodul IN 1/2</td>
<td>Fachbezogenes Wahlpflichtmodul 5</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

(*+) Gibt das Semesterangebot, Fachsemester 1 bis 7, an und ob die Lehrveranstaltungen in einem Wintersemester oder Sommersemester stattfinden.

Das Angebot der Lehrveranstaltungen zu den Vertiefungsmodulen wird jedes Semester im Studienplan neu festgelegt.

Im Folgenden finden Sie das Angebot für das aktuelle Wintersemester und das letzte Sommersemester:

| Semester | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | **Semester ECTS**
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. S</td>
<td>Mathematik 1</td>
<td>Programmieren 1</td>
<td>Theoretische Informatik</td>
<td>Betriebswirtschaftliche</td>
<td>spezifische</td>
<td>31</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>2. S</td>
<td>Mathematik 2</td>
<td>Programmieren 2</td>
<td>Datenverarbeitungssysteme</td>
<td>Moderne Informatik</td>
<td>AW 1</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>3. S</td>
<td>Kommunikationssysteme</td>
<td>Betriebssysteme</td>
<td>Algorithmen und Datenstrukturen</td>
<td>Fachbezogenes</td>
<td>Wahlpflichtmodul 1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4. S</td>
<td>Rechnerarchitektur</td>
<td>Software Engineering</td>
<td>Computerarchitektur und -spezifikation</td>
<td>Fachbezogenes</td>
<td>Wahlpflichtmodul 1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5. S</td>
<td>Praktikum im Betrieb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6. S</td>
<td>Operations Research</td>
<td>Vertiefungsmodul IN 1/1</td>
<td>Vertiefungsmodul IN 1/3</td>
<td>Vertiefungsmodul IN 2/2</td>
<td>Fachbezogenes Wahlpflichtmodul 2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7. S</td>
<td>Bachelorarbeit</td>
<td>Bachelorseminar</td>
<td>Vertiefungsmodul IN 1/2</td>
<td>Fachbezogenes Wahlpflichtmodul 5</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

(*+) Gibt das Semesterangebot, Fachsemester 1 bis 7, an und ob die Lehrveranstaltungen in einem Wintersemester oder Sommersemester stattfinden.

Im Zweifel gelten immer die gültigen und hochschulöffentlich bekannt gemachten Rechtsnormen. Das vom Fakultätsrat beschlossene semesterbezogene Angebot der Lehrveranstaltungen ist im Studienplan geregelt.
Modulliste

Studienabschnitt 1:

Allgemeinwissenschaftliches Wahlpflichtmodul 1 .. 6
AW-Modul 1 .. 7
Fachspezifisches Englisch... 9
Betriebswirtschaftslehre ... 11
Betriebswirtschaftslehre ... 12
Datenverarbeitungssysteme ... 14
Datenverarbeitungssysteme ... 15
Mathematik 1 .. 17
Mathematik 1 (Lineare Algebra) ... 18
Mathematik 2 .. 20
Mathematik 2 (Analysis) .. 21
Medieninformatik .. 24
Medieninformatik .. 25
Programmieren 1 ... 27
Programmieren 1 ... 28
Programmieren 2 ... 30
Programmieren 2 (Java) ... 31
Theoretische Informatik .. 33
Theoretische Informatik .. 34

Studienabschnitt 2:

Algorithmen und Datenstrukturen ... 36
Algorithmen und Datenstrukturen ... 37
Allgemeinwissenschaftliches Wahlpflichtmodul 2 .. 39
AW-Modul 2 .. 40
AW-Modul 3 .. 42
Betriebssysteme .. 44
Betriebssysteme .. 45
Computerarithmetik und Rechenverfahren .. 47
Computerarithmetik und Rechenverfahren .. 48
Datenbanken (Databases) ... 50
Datenbanken .. 51
Fachbezogenes Wahlpflichtmodul 1 ... 53
Kommunikationssysteme .. 54
Kommunikationssysteme .. 55
Praktikum mit Praxisseminar ... 57
Praktikum im Betrieb und Praxisseminar .. 58
Rechnertechnik ... 60
Rechnertechnik ... 61
Software Engineering ... 63
Software Engineering ... 64
Statistik ... 66
Statistik ... 67

Studienabschnitt 3:

Bachelorarbeit (Bachelor Thesis) ... 69
Bachelorarbeit (Bachelor Thesis) ... 70
Bachelorseminar ... 72
Name des Studiengangs:
Bachelor Informatik (PO: 20122)

Modulname: Allgemeinwissenschaftliches Wahlpflichtmodul 1

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>1.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
in der Regel keine, außer bei aufeinander aufbauenden Kursen

Empfohlene Vorkenntnisse
in der Regel keine, außer bei aufeinander aufbauenden Kursen

Inhalte
- Vermittlung von Orientierungswissen und Allgemeinbildung
- Vermittlung und Training von Schlüsselkompetenzen (z.B. Zusatzzertifikat "Soft Skills")
- Vermittlung und Training von Fremdsprachen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AW-Modul 1</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Fachspezifisches Englisch</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Informatik (PO: 20122)
Modulname: Allgemeinwissenschaftliches Wahlpflichtmodul 1

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW-Modul 1</td>
<td>AW1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig vom ausgewählten AW-Fach (2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30h</td>
</tr>
<tr>
<td>Eigenstudium</td>
</tr>
<tr>
<td>30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI u./o. Sta u./o mdl. LN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von der jeweiligen Lehrveranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von der jeweiligen Lehrveranstaltung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von der jeweiligen Lehrveranstaltung.</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Seite 7
Weitere Informationen zur Lehrveranstaltung

Das AW-Modul 1 ist aus dem gesamten AW-Angebot frei wählbar mit folgenden Ausnahmen:
- Module aus dem Bereich EDV
- Module der VHB des Themenbereichs Internetkompetenz oder anderer informatikbezogener Themen.
- Modul „3-D-Druck“ aus dem Bereich Naturwissenschaft und Technik

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Informatik (PO: 20122)
Modulname: Allgemeinwissenschaftliches Wahlpflichtmodul 1

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachspezifisches Englisch</td>
<td>EN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2 SWS</td>
<td>englisch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
30h | 60h

Studien- und Prüfungsleistung
Klausur u./o. StA u./o. mdl. LN

Inhalte
Alle Bereiche sind gleich gewichtet:
- Lesen und Besprechen von englischen Fachtexten
- Hören und Besprechen von englischen Fachvorträgen
- Fachdiskussionen in kleinen Gruppen, Präsentieren der Ergebnisse
Grundsätze der Erstellung von englischen Fachtexten, Erstellung eigener Texte

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundsätze fachbezogener beruflicher Kommunikation in der englischen Sprache zu kennen (1) und sie korrekt anzuwenden (2)
- Fachliteratur mittleren Schwierigkeitsgrads mit Verständnis zu lesen (2) und den Inhalt in verständlicher Form wiedergeben (3)
- die mündlichen Ausführungen des Kursleiters sowie anderer Kursteilnehmer*innen mit Verständnis zu verfolgen (2) und angemessen darauf zu reagieren (2)
- kurze englische Fachvorträge einfachen bis mittleren Schwierigkeitsgrads mit Verständnis zu hören (2) und den Inhalt in verständlicher Form wiedergeben (3)
- auf Anforderung sich angemessen zu fachbezogenen Themen zu äußern (3)
- an kurzen Diskussionen in kleinem Kreis teilzunehmen (2) und Diskussionsergebnisse kurz vorzutragen (2)
- wesentliche Merkmale der Textstruktur im Englischen zu erkennen (1) und sie korrekt anzuwenden (2)
- unterschiedliche Schreibstile zu erkennen (1) und sie korrekt anzuwenden (2)
- einfache technische Geräte und den Ablauf technischer Vorgänge zu beschreiben (2)
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Allgemeinwissenschaftliches Wahlpflichtmodul 1

- kurze schriftliche Abhandlungen zu aktuellen Fachthemen zu verfassen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Strategien zu erwerben (1), die ihnen eine selbständige Weiterentwicklung der grundlegenden Fertigkeiten in der englischen Sprache ermöglichen (3)
- Lesestrategien zu entwickeln (2), die zum professionell verwertbaren Umgang mit schwierigen Texten führen (2)
- Strategien zu entwickeln (2), die zu einem effektiven Auftreten in einer englischsprachigen Umgebung führen (3)
- sich in beruflichen Situationen in der englischen Sprache angemessen sowohl schriftlich als auch mündlich zu äußern (2)

Lehrmedien

Tafel, Overheadprojektor, Notebook, Beamer, CD- und DVD-Spieler

Literatur

Eigenes Skript, aktuelle Fachtexte und Übungsmaterialien

Weitere Informationen zur Lehrveranstaltung

Fachspezifisches Englisch wird im Studiengang angeboten. Keine Anmeldung im AW-System erforderlich

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebswirtschaftslehre</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gregor Zellner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Betriebswirtschaftslehre</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebswirtschaftslehre</td>
<td>BW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gregor Zellner</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Wilhelm Ulrich (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Markus Westner</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Gregor Zellner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen (gesamt 4 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: 90 – 120 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einführung in ökonomische Grundlagen und Gegenstandsbereich der BWL als Wissenschaft.</td>
</tr>
<tr>
<td>• Betrieblicher Aufbau: Unternehmensziele und -typologie; Standortwahl.</td>
</tr>
<tr>
<td>• Prozesse der betrieblichen Leistungserstellung (Güter-, Zahlungs- und Informationsflüsse).</td>
</tr>
<tr>
<td>• Betriebliche Funktionen: Marketing; Produktion; Materialwirtschaft; Investition und Finanzierung; Rechnungswesen</td>
</tr>
</tbody>
</table>

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
* den Aufbau eines Betriebs zu erläutern (1).
* die betrieblichen Produktionsfaktoren sowie die betrieblichen Funktionen Beschaffung, Produktion, Absatz, Investition, Finanzierung und Rechnungswesen zu beschreiben (2).
* die Einsatzmöglichkeiten von Datenverarbeitung zur Unterstützung der betrieblichen Funktionen zu verstehen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
* in Diskussionen die Lehrinhalte kritisch zu reflektieren und bewusst in ihr eigenes Wertesystem einzuordnen (2).
* ihr Fachwissen auf aktuelle betriebswirtschaftliche Themen anzuwenden (3).

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
- zielorientiert in Übungsgruppen zu Themen rund um die Betriebswirtschaftslehre zu arbeiten (Teamfähigkeit) und die erarbeiteten Ergebnisse sach- und zielgerecht im Auditorium zu diskutieren (3).

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF, Literatur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenes Skript und Übungsaufgaben</td>
</tr>
<tr>
<td>Thommen, Jean-Paul & Achleitner, Ann-Kristin: Allgemeine Betriebswirtschaftslehre, neueste Auflage, Gabler, Wiesbaden</td>
</tr>
<tr>
<td>Straub, Thomas: Einführung in die Allgemeine Betriebswirtschaftslehre, neueste Auflage, Pearson, München</td>
</tr>
<tr>
<td>Wöhe, Günter: Einführung in die Allgemeine Betriebswirtschaftslehre, neueste Auflage, Vahlen München</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul kann durch den englischsprachigen VHB-Kurs "Fundamentals of Business Administration" substituiert werden.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenverarbeitungssysteme</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Münch</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
Technische Informatik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Programmieren 1 (C Programmierung)

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Datenverarbeitungssysteme</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Datenverarbeitungssysteme

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM–Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenverarbeitungssysteme</td>
<td>DS</td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät
Prof. Dr. Daniel Münch | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Sebastian Fischer (LB) |
Prof. Dr. Rudolf Hackenberg |
Lukas Hinterberger (LB) |
Prof. Dr. Wolfgang Mauerer |
Prof. Dr. Daniel Münch |

Lehrform
Seminaristischer Unterricht (4 SWS), Übungen und Praktikum (2 SWS)

Studiensemester gemäß Studienplan
Lehrumfang [SWS oder UE] | Lehrsprache | Arbeitsaufwand [ECTS-Credits]
2. | 6 SWS | deutsch | 8

Zeitaufwand:
Präsenzstudium | Eigenstudium
90h | 150h

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90–120 Min

Inhalte
- Übersicht wie funktioniert ein Rechner und wichtige Zusammenhänge
- Repräsentation von Daten (char, int, floating-point) und Arithmetik
- Instruction Set Architecture
- Assemblerprogrammierung
- Ausnahmen im Ablauf / Kontrollfluss (Interrupts und Exceptions)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die grundlegende Struktur, Funktionsweise und Zusammenhänge von Computersystemen darzustellen (1) und zu erklären (2)
- die Darstellung von Daten und Informationen zu zeigen(1)
- (Binär)arithmetik anzuwenden (2)
- elementare Befehle von Rechnersystemen zu beschreiben (2), die Verbindung zur Architektur zu erklären (2), und die Verbindung zu Hochsprachen (C) zu erklären (2) und umzusetzen (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Inhalte in Kleingruppen zu diskutieren (2)
- fachliche Fragen an den Lehrenden zu stellen (3)
- ihren Lernprozess (Zeitmanagement) selbständig zu organisieren (2)
- neue Inhalte im Selbststudium zu erarbeiten (2)
- individuelle Aufgaben zu lösen (2) und mit konstruktiver Kritik umzugehen (2)
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)

Lehrmedien
Beamer, Folien / Skript, Tafel, Notebook

Literatur
- eigene Folien / Unterlagen
- Bryant_Computer Systems, A Programmer's Perspective_Pearson_3rded
- Tanenbaum_Structured computer organization
- Blum_Professional assembly language
- Seyfrath_Introduction to 64 Bit Intel Assembly Language Programming for Linux
- Seyfrath_Introduction to 64 bit Windows assembly language programming
- Irvine_Assembly language for x86 processors
- Kusswurm_Modern x86 Assembly Language Programming
- Intel_sdm-vol-1__basic architecture
- Intel_sdm-vol-2abcd_instruction set architecture
- Intel_sdm-vol-3abcd_system programming guide

Weitere Informationen zur Lehrveranstaltung
Empfohlene Vorkenntnisse: C Programmierung (Programmieren 1)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Informatik (PO: 20122)
Modulname: Mathematik 1

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Löschel</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Brückenkurse

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 1 (Lineare Algebra)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>Modulname: Mathematik 1 (Lineare Algebra)</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MA1</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Rainer Löschel</th>
<th>Informatik und Mathematik</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Prof. Dr. Hans Kiesl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stefan Körkel</td>
</tr>
<tr>
<td>Prof. Dr. Rainer Löschel</td>
</tr>
<tr>
<td>Prof. Dr. Martin Pohl</td>
</tr>
<tr>
<td>Dr. Gabriela Tapken (LBA)</td>
</tr>
<tr>
<td>Prof. Dr. Martin Weiß</td>
</tr>
<tr>
<td>Prof. Dr. Peter Wirtz</td>
</tr>
</tbody>
</table>

Angebotsfrequenz

<table>
<thead>
<tr>
<th>Prof. Dr. Hans Kiesl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stefan Körkel</td>
</tr>
<tr>
<td>Prof. Dr. Rainer Löschel</td>
</tr>
<tr>
<td>Prof. Dr. Martin Pohl</td>
</tr>
<tr>
<td>Dr. Gabriela Tapken (LBA)</td>
</tr>
<tr>
<td>Prof. Dr. Martin Weiß</td>
</tr>
<tr>
<td>Prof. Dr. Peter Wirtz</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit integrierten Übungen (gesamt:6 SWS)

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 - 120 min

Inhalte

- Grundlagen der Logik: Mengenlehre, Aussagenlogik und Beweismethoden
- Algebraische Strukturen: Relationen, Gruppen, Ringe, Körper
- Lineare Gleichungssysteme: homogen, inhomogen; Gaußsches Eliminationsverfahren
- Vektor- und Matrizen: Linearkombinationen, lineare Unabhängigkeit
- Vektorräume: Unterräume, Basis und Dimension, Norm und Skalarprodukt
- Lineare Abbildungen: Bild, Kern, Komposition; orthogonale Abbildungen
- Quadratische Matrizen: Inverse Matrix, Determinante, Hauptsächsenttransformation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Konzepte der Linearen Algebra zu verstehen (3),
- die Zusammenhänge mit anderen Gebieten (z.B. Analysis, Numerische Mathematik, Technik und Wirtschaftswissenschaften) zu erkennen (1),
- Methoden der Linearen Algebra anwenden zu können (3).
Name des Studiengangs:
Bachelor Informatik (PO: 20122)

Modulname:
Mathematik 1

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachlich zu kommunizieren (2),
- Probleme analytisch und selbstständig zu bearbeiten (2).

Lehrmedien
Tafel, Overheadprojektor, Beamer, Einsatz mathematischer Software

Literatur
- Dirk Hachenberger: Mathematik für Informatiker
- Rod Haggarty: Diskrete Mathematik für Informatiker
- Peter Hartmann: Mathematik für Informatiker
- David Lay: Linear Algebra and its Applications
- Gerald Teschl, Susanne Teschl: Mathematik für Informatiker, Band 1: Diskrete Mathematik und Lineare Algebra, Springer
- Edmund Weitz: Konkrete Mathematik (nicht nur) für Informatiker, Springer

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 2</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Pohl</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Mathematik 1 und Brückenkurse

Inhalte
siehe Folgenseite

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 2 (Analysis)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Informatik (PO: 20122)

Modulname:
Mathematik 2

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 2 (Analysis)</td>
<td>MA2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Pohl</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r: Angebotsfrequenz

- Prof. Dr. Hans Kiesl
- Prof. Dr. Stefan Körkel
- Prof. Dr. Rainer Löschel
- Prof. Dr. Martin Pohl
- Dr. Gabriela Tapken (LBA)
- Prof. Dr. Martin Weiß
- Prof. Dr. Peter Wirtz

Lehrform

Seminaristischer Unterricht mit integrierten Übungen (gesamt: 6 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

- Präsenzstudium: 90h
- Eigenstudium: 120h

Studien- und Prüfungsleistung

- Schriftliche Prüfung: 90 - 120 min

Inhalte

- Folgen und Reihen (u.a. Konvergenzbegriffe - Konvergenzkriterien für Folgen und Reihen - Funktionenreihen)
- Stetigkeit (u.a. Stetigkeitsbegriffe - Zwischenwertsatz)
- Differentialrechnung (u.a. Differentiationsregeln - Mittelwertsatz der Differentialrechnung - Extremwerte)
- Integralrechnung (u.a. Riemannsches Integral - Mittelwertsatz der Integralrechnung - Hauptsatz der Differential- und Integralrechnung - Integrationsregeln)
- Mehrdimensionale Analysis (u.a. Funktionen in mehreren Veränderlichen - Grenzwerte und Stetigkeit - Differenzierbarkeit, totale und partielle Ableitung - Extremwerte)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- das Verhalten einer gegebenen Zahlenfolge zu ermitteln (2).
- Zahlenreihen auf die Anwendbarkeit der verschiedenen Konvergenzkriterien zu untersuchen (3) und das Konvergenzverhalten zu bestimmen (2).
- die Definition elementarer Funktionen mittels Potenzreihen zu erläutern (1).
- das Konzept der Ableitung zu beschreiben (1) und die Bedeutung der Ableitung zu erklären (2).
- die Ableitungen vorgegebener Funktionen zu berechnen (2).
- das Verhalten von Funktionen mit Hilfe der zentralen Sätze der Analysis (z.B. Zwischenwertsatz oder Mittelwertsatz) zu analysieren (3).
- Anwendungsaufgaben zur Differentialrechnung zu lösen (2) und die Lösung auf Plausibilität hin zu untersuchen (3).
- die Definition des Riemann-Integrals zu beschreiben (1) und die Bedeutung des Riemann-Integrals in unterschiedlichen Anwendungsbereichen zu erklären (2).
- die elementaren Integrationsmethoden (z.B. partielle Integration und Integration durch Substitution) durchzuführen (2).
- die Zusammenhänge zwischen Differentialrechnung und Integralrechnung zu erkennen (2).
- Anwendungsaufgaben zur Integralrechnung zu lösen (2) und das Ergebnis auf Plausibilität hin zu untersuchen (3).
- das Konzept der partiellen Differenzierbarkeit zu beschreiben (1).
- die geometrische Bedeutung von Gradienten zu erklären (2) und in Anwendungsaufgaben einzusetzen (2).
- Methoden zur Berechnung lokaler und globaler Extrema zu benennen (1).
- Anwendungsaufgaben zur Extremwertberechnung zu analysieren (3) und zu lösen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Inhalte in Lerngruppen zu diskutieren (2).
- die Argumente anderer zu analysieren (3).
- den Lernprozess in Lerngruppen zu bewerten (3).
- verschiedene Lernmethoden zu benennen (1).
- genau zu formulieren, was sie nicht verstanden haben (2).
- neue Inhalte im Selbststudium zu erarbeiten (2).
- den persönlichen Nutzen verschiedener Lernmethoden zu bewerten (3).
- den persönlichen Nutzen verschiedener Lernmethoden zu bewerten (3).
- den Lernfortschritt und Lernbedarf zu analysieren (3).
- ihren Lernprozess (Zeitmanagement) selbständig zu organisieren (2).
- mathematische Zusammenhänge mit eigenen Worten darzustellen (2).
- ihren Wissensstand und Lernbedarf zu erkennen (2).

Lehrmedien

Tafel, Beamer, Einsatz mathematischer Software
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hachenberger, D.: Mathematik für Informatiker, Pearson Studium</td>
</tr>
<tr>
<td>- Hartmann, P.: Mathematik für Informatiker, Springer Vieweg Verlag (*)</td>
</tr>
<tr>
<td>- Heuser, H: Lehrbuch der Analysis (2 Bände), Vieweg + Teubner Verlag</td>
</tr>
<tr>
<td>- James Stewart, J.: Essential Calculus, Brooks/Cole</td>
</tr>
<tr>
<td>- Teschl, G. und S.: Mathematik für Informatiker, Band 2: Analysis und Statistik, Springer Verlag (*)</td>
</tr>
<tr>
<td>- Weitz, E.: Konkrete Mathematik (nicht nur) für Informatiker, Springer Verlag (*)</td>
</tr>
</tbody>
</table>

Für die mit (*) gekennzeichneten Bücher ist der Zugriff auf die pdf-Version über die Hochschulbibliothek der OTH Regensburg möglich.
Für das mit (**) gekennzeichnete Buch ist ein online-Zugriff für drei Nutzer gleichzeitig über die Hochschulbibliothek der OTH Regensburg möglich.

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medieninformatik</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Heckner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Lehrveranstaltung Programmieren I

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medieninformatik</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Teilmodul	**TM-Kurzbezeichnung**
Medieninformatik | MI

Verantwortliche/r	Fakultät
Prof. Dr. Markus Heckner | Informatik und Mathematik |
Lehrende/r / Dozierende/r | Angebotsfrequenz |
Prof. Dr. Markus Heckner |

Lehrform
Seminaristischer Unterricht mit integrierten Übungen, insgesamt 4 SWS

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Klausur u./o. StA u./o. mdl. LN

Inhalte
- HTML und CSS
- CSS-Flexbox
- Responsive Webdesign
- Bootstrap
- JavaScript und Design Patterns
- Clientseitige Web-Apps
- Interaktive Anwendungen mit HTML 5 Canvas
- Serverseitige Webentwicklung mit Node.js und Express
- Grundlegende Datenbankkonzepte
- Single Page Web Applications

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- einfache responsive HTML-Seiten mit Flexbox zu entwickeln (3).
- kleinere interaktive Webseiten mit clientseitigem JavaScript zu konzipieren und zu entwickeln (3).
- einfache serverseitige Anwendungen mit Datenbankzugriff zu konzipieren und zu entwickeln (3).
- zu erkennen, dass Webentwicklung ein dynamisches und schnell veränderliches Umfeld ist, das aber grundlegend auf wenigen Basistechnologien wie beispielsweise HTML, CSS und JavaScript basiert (2).
- grundlegende Konzepte der Webentwicklung nachzuvollziehen (1).

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Seite 25
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• sich anhand der gegebenen Unterlagen in neue Technologien einzuarbeiten (2).
• eigene Defizite im Lernfortschritt zu erkennen, dies zu kommunizieren und die
 Möglichkeiten der angebotenen Hilfestellungen zu nutzen (3).
• zu erkennen, dass sich manche Aufgaben erst durch Ausdauer und konzentriertes Arbeiten
 an der Problemstellung lösen lassen (3).

Angebotene Lehrunterlagen

Foliensätze, Codebeispiele, Übungsaufgaben, Lösungen zu Übungsaufgaben, Videos zu
Vorlesungen, Forum

Lehrmedien

Tafel, Notebook, Beamer

Literatur

 Verlag.
 Francisco: No Starch Press Inc.
 developer.mozilla.org/de/docs/Web/JavaScript/Reference
 Development with JavaScript and HTML5. Chichester: Wiley & Sons.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)
<table>
<thead>
<tr>
<th>Modulname:</th>
<th>Programmieren 1</th>
</tr>
</thead>
</table>

Modulverantwortliche/r
<table>
<thead>
<tr>
<th>Fakultät:</th>
<th>Informatik und Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Bulenda</td>
<td></td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
- Keine

Empfohlene Vorkenntnisse
- Keine

Inhalte
- siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Programmieren 1</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021

Ostbayerische Technische Hochschule Regensburg

Seite 27
Teilmodul	TM-Kurzbezeichnung
Programmieren 1 | PG1

Verantwortliche/r | Fakultät
Prof. Dr. Michael Bulenda | Informatik und Mathematik

Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Michael Bulenda
Prof. Dr. Jan Dünnweber
Sebastian Fischer (LB)
Prof. Dr. Daniel Jobst
Prof. Dr. Carsten Kern
Prof. Dr. Alexander Metzner
Beate Mielke (LBA)
Prof. Dr. Christoph Palm
Prof. Dr. Johannes Schildgen
Prof. Dr. Thomas Wölfl

Lehrform
Seminaristischer Unterricht (4 SWS) mit Übungen (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stundenumfang (SWS oder UE)</td>
<td></td>
<td>[ECTS-Credits]</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
90h | 150h

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 - 120 min

Inhalte
- Problemanalyse und Algorithmusnotation
- Ausdrücke, Operatoren, Operanden
- Variablen und Datentypen, Arrays und Zeiger
- Kontrollstrukturen
- Funktionen
- elementare und rekursive Datenstrukturen (z.B. verkettete Listen)
- Iteration und Rekursion
- dynamische und statische Speicherverwaltung
- Modularisierung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Konzepte prozeduraler Programmiersprachen zu verstehen (1).
- einfache Probleme zu analysieren und Algorithmen zur Lösung in der prozeduralen Programmiersprache C zu entwickeln, zu implementieren und zu testen (2).
- elementare Datenstrukturen zu kennen und selbständig anzuwenden (2)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>- beharrlich an einer Aufgabe zu arbeiten (2).</td>
</tr>
<tr>
<td>- die Bedeutung von Details in Problemstellungen und Lösungen zu erkennen. (2)</td>
</tr>
<tr>
<td>- kreativ und experimentierfreudig an neue Aufgabenstellungen heranzugehen. (2)</td>
</tr>
<tr>
<td>- sorgfältig zu arbeiten. (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>z.B. können diese Bücher hilfreich sein</td>
</tr>
<tr>
<td>- Kirch-Prinz, Pinz: C, kurz & gut, O#Reilly, 2002</td>
</tr>
<tr>
<td>- Goll, Dausman: C als erste Programmiersprache, Springer Vieweg, 2014</td>
</tr>
<tr>
<td>- Schellong: Moderne C Programmierung, Xpert.press, 2014</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmieren 2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Programmieren 1

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Programmieren 2 (Java)</td>
<td>6 SWS</td>
<td>8</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmieren 2 (Java)</td>
<td>PG2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Bulenda</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Jan Dünneweber</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Carsten Kern</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Alexander Metzner</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Johannes Schildgen</td>
<td></td>
</tr>
<tr>
<td>Christian Silberbauer (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Thomas Wölfl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht (4 SWS) mit Übungen (2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>150h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 - 120 min

Inhalte

- Laufzeitumgebung und professionelle Arbeitsumgebung
- Klassen und Objekte, Datentypen
- Klassenmodelle
- Ein- und Ausgabe
- Vererbung, abstrakte Klassen, Interfaces, Polymorphie
- Verwendung von Generics
- Collections-Framework, Arbeiten mit Objekten
- Packages und Sichtbarkeiten
- Exceptions und Logging
- Innere und anonyme Klassen
- GUI-Programmierung, Listener-Konzept
- Threads und Grundlagen der Synchronisation
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundzüge der objektorientierten Programmierung zu verstehen und zu benennen (1)
- leichte und komplexere Probleme logisch zu erfassen und eine algorithmische Lösung dafür in einer vorgegebenen objektorientierten Programmiersprache zu erstellen (2)
- bekannte oder erlernte Verfahren, Methoden und Algorithmen in lauffähige und effiziente objektorientierte Software umzusetzen (3)
- vorhandene Klassenbibliotheken und Frameworks in eigene Lösungen komplexerer Problemstellungen sinnvoll einzubinden (3)
- fremde Softwarekomponenten (Klassen, Packete, Komponenten u. Ä.) mit Hilfe der Dokumentation zu erarbeiten und in eigenen Programmen zu nutzen (2)
- eigene Lösungsansätze zu kommentieren, zu dokumentieren und zu testen und strukturelle Schwachstellen zu erkennen und zu beheben (2)
- gängiger Entwicklungswerkzeuge sicher zu beherrschen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- sich selbständig und motiviert in neue Themenbereiche einzuarbeiten und diese strukturiert und Schritt für Schritt mit gegebenen Unterlagen zu erarbeiten (2)
- erlernte Lösungsansätze auf Basis vorgegebener Übungs- und Beispielaufgaben mit Hilfe der eigenen Kreativität und Vorstellungskraft auch auf andere Szenarien des eigenen Erfahrungsbereichs anzuwenden (3)
- eigene Defizite im Lernfortschritt zu erkennen, dies zu kommunizieren und die Möglichkeiten der angebotenen Hilfestellungen zu nutzen (2)

Angebotene Lehrunterlagen
Folienkopien, Übungsaufgaben, Codebeispiele

Lehrmedien
Videokonferenz, gegenseitige Bildschirmfreigabe, Tafel/Whiteboard, Beamer, Software-Entwicklungsumgebung(en)

Literatur

Folgende Literatur dient beispielhaft der Vertiefung:

Weitere Informationen zur Lehrveranstaltung
Voraussetzungen: Programmieren 1

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Theoretische Informatik

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretische Informatik</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Mauerer</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Besuch der Vor- und Brückenkurse wird empfohlen

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Theoretische Informatik</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021

Ostbayerische Technische Hochschule Regensburg

Seite 33
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Theoretische Informatik

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretische Informatik</td>
<td>TI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Mauerer</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Mauerer</td>
<td></td>
</tr>
<tr>
<td>Ralf Ramsauer (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrenform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht (4 SWS) mit Übungen (2 SWS)</td>
</tr>
<tr>
<td>Die Lehrveranstaltung kann auch als virtuelle Lehrveranstaltung mit Präsenzübungen angeboten werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>150h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 - 120 min

Inhalte

- Formale Sprachen und Automatentheorie
- Alphabete, Wörter, Sprachen. Informationsgehalt von Wörtern, Sprachen zur Problembeschreibung (speziell: Entscheidungsprobleme)
- Deterministische und nichtdeterministische Endliche Automaten und deren Äquivalenz, Minimierung von Automaten, Grenzen von endlichen Automaten
- Abschlusseigenschaften regulärer Sprachen
- Grammatiken und Chomsky Hierarchie
- Berechenbarkeitslehre
- Mächtigkeit und Abzählbarkeit
- Turing Maschinen und äquivalente Varianten (z.B. Mehrband-Turingmaschine, nichtdeterministische Turingmaschine)
- Kodierung von Turingmaschinen
- Grenzen der Berechenbarkeit: Methode der Diagonalisierung und Methode der Kolmogorov-Komplexität
- Satz von Rice
- Komplexitätstheorie
- Komplexitätsmaße
- Komplexitätsklassen P und NP

Stand: 06.09.2021
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilm Insets sind die Studierenden in der Lage, die in der Vorlesung behandelten wissenschaftlichen Inhalte zu verstehen und anzuwenden (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilm Insets sind die Studierenden in der Lage, die in der Vorlesung behandelten wissenschaftlichen Inhalte selbständig zu verstehen und anzuwenden (3)

Lehrmedien

Tafel, Folien

Literatur

- Dirk W. Hoffmann: Theoretische Informatik, Hanser Verlag, 2009
- Uwe Schöning: Theoretische Informatik – kurzgefaßt, Spektrum Akademischer Verlag, 1995
- Ingo Wegener: Theoretische Informatik, Teubner, 2005

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Algorithmen und Datenstrukturen | 10

Modulverantwortliche/r	Fakultät
Prof. Dr. Klaus Volbert | Informatik und Mathematik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. / 4. | 2. | Pflicht | 8

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Programmieren 1 und Programmieren 2

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Algorithmen und Datenstrukturen</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Algorithmen und Datenstrukturen

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmen und Datenstrukturen</td>
<td>AD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Carsten Kern</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen (gesamt 6 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>150h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 - 120 min

Inhalte
• Komplexitätsanalyse (Modelle zur Laufzeit- und Speicherplatzanalyse, Best-, Average- und Worst Case Analyse, Komplexitätsklassen, Asymptotische Komplexität, Lösen von Rekursionsgleichungen)
• Entwurfsmethoden (Divide and Conquer, Dynamische Programmierung, Greedy-Algorithmen, Backtracking)
• Algorithmen für Standard-Probleme (Elementare, fortgeschrittene und schlüsselbasierte Sortierverfahren, Datenstrukturen zur Verwaltung von Mengen - z.B. binäre Suchbäume, balancierte Bäume, Queues, Hashing, Suche in Mengen und Zeichenketten, Graph-Algorithmen - z.B. Tiefen- und Breitensuche, kürzeste Pfade, minimale Spannbäume)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, grundlegende Algorithmen und Datenstrukturen für Standard-Probleme wiedergeben und implementieren zu können (1).
Sie können die Effizienz von Algorithmen und Datenstrukturen bewerten und vergleichen (2). Sie haben verstanden, wie effiziente Algorithmen und Datenstrukturen anhand von kennengelernten Entwurfsprinzipien analysiert und entworfen werden können (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
algorithmische Problemstellungen zu grundlegenden Themen in der Informatik selbstständig alleine und in Gruppenarbeit wiederzugeben (1), zu bearbeiten (2) und zu lösen (3). Sie können eigene und andere Lösungen bewerten und vergleichen.

Lehrmedien
Tafel, Notebook, Beamer

Literatur
- Ottmann, T., Widmayer, P.: Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag, 2002
- Schöning, U.: Algorithmik, Spektrum Akademischer Verlag, 2001

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Allgemeinwissenschaftliches Wahlpflichtmodul 2

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 2</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4. / 5.</td>
<td>2.</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
in der Regel keine, außer bei aufeinander aufbauenden Kursen

Inhalte

- Vermittlung von Orientierungswissen und Allgemeinbildung
- Vermittlung und Training von Schlüsselkompetenzen (z.B. Zusatzzertifikat "Soft Skills")
- Vermittlung und Training von (Fremd-)Sprachen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AW-Modul 2</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>AW-Modul 3</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW-Modul 2</td>
<td>AW 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>abhängig vom ausgewählten AW-Fach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4. / 5.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium Eigenstudium</td>
</tr>
<tr>
<td>30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur und/oder Studienarbeit und/oder mündlicher Leistungsnachweis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>abhängig von der jeweiligen Lehrveranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>abhängig von der jeweiligen Lehrveranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>abhängig von der jeweiligen Lehrveranstaltung</td>
</tr>
</tbody>
</table>
Weitere Informationen zur Lehrveranstaltung

AW-Modul 2: Anerkannt werden folgende Veranstaltungen:

- Sozial- und Methodenkompetenz: Blöcke 1 - 4 (nicht Block 5)
- Soziale Kompetenz
- Zusatzstudium Internationale Handlungskompetenz (wenn mindestens zwei Kurse besucht wurden, nicht nur die Vorlesung im WiSe)
- Internationale rhetorische Kompetenz (IRK): Kommunizieren mit Anderen (Gespräch und Moderation G1 - G5)
- Mündliche Kommunikation und Sprecherziehung: Mündliche Kommunikation II

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW-Modul 3</td>
<td>AW 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>abhängig von der jeweiligen Lehrveranstaltung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4. / 5.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI u./o. StA u./o. mdl. LN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>abhängig von der jeweiligen Lehrveranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von der jeweiligen Lehrveranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von der jeweiligen Lehrveranstaltung</td>
</tr>
</tbody>
</table>
Weitere Informationen zur Lehrveranstaltung

AW-Modul 3: Frei wählbar aus gesamtem AW-Angebot mit folgenden Ausnahmen:

- Module aus dem Bereich EDV
- Module der VHB des Themenbereichs Internetkompetenz oder anderer Informatik-
 bezogener Themen
- Modul „3-D-Druck“ aus dem Bereich Naturwissenschaft und Technik
- Modul „Lernen und Studieren 1 + 2“ aus dem Bereich Sozial-und Methodenkompetenz
 Block 5

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebssysteme</td>
<td>13</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
Prof. Dr. Markus Kucera
Fakultät
Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Programmieren 1 und 2
Hardwaregrundlagen
Rechnerarchitekturen

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Betriebssysteme</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
Betriebssysteme | OS

Verantwortliche/r	Fakultät
Prof. Dr. Markus Kucera | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Dr. Jan Dünneweber
Prof. Dr. Markus Kucera

Lehrform
Seminaristischer Unterricht mit Übungen und Praktikum (gesamt 6 SWS) Übungen können auch virtuell angeboten werden.

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>150h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 - 120 min

Inhalte
Einführung (Historie, Betriebssystem, Schichtenmodell, Schnittstellen und virtuelle Maschine)
Prozesse (Prozesszustände, Scheduling, Synchronisation, Kommunikation)
Speicherverwaltung (Speicherbelegungsstrategien, virtueller Speicher, Seitenverwaltung, Segmentierung, Cache)
Dateiverwaltung (Dateisysteme, Dateiattribute, Dateifunktionen, Dateiorganisation)

Lernziele: Fachkompetenz

Die Kompetenzen werden auf Niveaustufe 3 vermittelt.
Lernziele: Persönliche Kompetenz

Studierende entwickeln ein berufliches Selbstbild, das sich an Zielen und Standards professionellen Handelns in vorwiegend außerhalb der Wissenschaft liegenden Berufsfeldern orientiert. Sie begründen das eigene berufliche Handeln mit theoretischem und methodischem Wissen und können die eigenen Fähigkeiten einschätzen, sie reflektieren autonom sachbezogene Gestaltungs- und Entscheidungsfreiheiten und nutzen diese unter Anleitung.

Studierende erkennen situationsadäquat Rahmenbedingungen beruflichen Handelns und begründen ihre Entscheidungen verantwortungsethisch. Sie reflektieren ihr berufliches Handeln kritisch in Bezug auf gesellschaftliche Erwartungen und Folgen.

Die Kompetenzen werden auf Niveaustufe 3 vermittelt.

Lehrmedien

Tafel, Beamer, Folien

Literatur

- Tanenbaum. Moderne Betriebssysteme
- Silberschatz et al: Operating System Concepts

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computerarithmetik und Rechenverfahren</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Weiß</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

- Programmierkenntnisse in C
- Theoretische Informatik
- Datenverarbeitungssysteme
- Mathematik 1 und 2

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Computerarithmetik und Rechenverfahren</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)
Modulname: Computerarithmetik und Rechenverfahren

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computerarithmetik und Rechenverfahren</td>
<td>CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Weiß</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Dietwald Schuster</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Martin Weiß</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht (3 SWS) mit Praktikum (1 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium

<table>
<thead>
<tr>
<th></th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>60h</td>
</tr>
<tr>
<td>Eigenstudium</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 - 120 Min

Inhalte

- Zahlendarstellungen
- Numerische Algorithmen und Eigenschaften
- Lineare Gleichungssysteme und Lösungsalgorithmen
- Kurvenanpassung: Interpolation, Approximation
- Spline-Funktionen
- Nichtlineare Gleichungen und nichtlineare Optimierung in einer und mehreren Variablen
- Numerische Differentiation
- Numerische Integration
- Im Praktikum entwickeln die Studierenden selbständig Software in Matlab

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Ganzzahl- und Gleitpunkt-Zahlendarstellungen und die Arbeitsweise der Computerarithmetik, insbesondere deren Grenzen, zu erläutern (1).
- Lösungsalgorithmen für numerische Aufgaben anhand derer Eigenschaften auszuwählen (3).
- Eigenschaften von Problemstellungen zu ermitteln, geeignete Algorithmen anhand der Problemklassen auszuwählen, zu kombinieren und deren Effizienz zu beurteilen (3).
- effiziente Programme zu numerischen Problemen zu implementieren, sowie Bibliotheken mit numerischen Algorithmen anzuwenden (2).
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Computerarithmetik und Rechenverfahren

• verschiedene Fehlertypen in numerischen Programmen zu benennen, zu bewerten, zu vermeiden, ggf. zu lokalisieren und zu beheben (2)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• das Wesen der mathematischen Arbeitsweise zu beschreiben (1).</td>
</tr>
<tr>
<td>• fachliche Inhalte in Lerngruppen zu diskutieren (2).</td>
</tr>
<tr>
<td>• die Argumente anderer zu analysieren (3).</td>
</tr>
<tr>
<td>• den Lernprozess in Lerngruppen zu bewerten (3).</td>
</tr>
<tr>
<td>• verschiedene Lernmethoden zu benennen (1).</td>
</tr>
<tr>
<td>• genau zu formulieren, was sie nicht verstanden haben (2).</td>
</tr>
<tr>
<td>• neue Inhalte im Selbststudium zu erarbeiten (2).</td>
</tr>
<tr>
<td>• den persönlichen Nutzen verschiedener Lernmethoden zu bewerten (3).</td>
</tr>
<tr>
<td>• den eigenen Lernfortschritt und Lernbedarf zu analysieren (3).</td>
</tr>
<tr>
<td>• ihren Lernprozess (Zeitmanagement) selbständig zu organisieren (2).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurzskript, Arbeits- und Übungsblätter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer, mathematische Software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hermann: Numerische Mathematik, Oldenbourg 2001</td>
</tr>
<tr>
<td>• Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens, Teubner 2006</td>
</tr>
<tr>
<td>• Huckle, Schneider: Numerische Methoden, Springer, 2006</td>
</tr>
<tr>
<td>• Strang: Wissenschaftliches Rechnen, Springer, 2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearbeitung von ca. 5 Projekten im Praktikum</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Seite 49
<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Gute Programmierkenntnisse in C, Java oder C++

Theoretische Informatik

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Datenbanken</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Informatik (PO: 20122)

Modulname:
Datenbanken (Databases)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken</td>
<td>DB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Johannes Schildgen</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfred Jockisch (LB)</td>
<td></td>
</tr>
<tr>
<td>Stephan Payer (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Johannes Schildgen</td>
<td></td>
</tr>
<tr>
<td>Bernhard Zeller (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen (6 SWS)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 - 120 min

Inhalte

- Konzeptionelle Datenmodellierung: Entity-Relationship-Modell
- Relationenmodell: Relationale Algebra und Normalformen
- SQL: Datenbankzugriffssprache DML, Datenbankbeschreibungssprache DDL, Sichten, Rechtemanagement
- Datenbankprogrammierung: Transaktionen, Zugriff auf Datenbanken mit geeigneten Programmiersprachen, Benutzerdefinierte-Funktionen, Trigger
- Concurrency und Recovery von Datenbanken: Recovery, Log-Dateien, Concurrency, Lockmechanismen, Deadlock
- Datenbankoptimierung: Anfrageoptimierung, Indexe

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den Aufbau und die Funktionsweise von Datenbanken wiederzugeben (1),
- selbstständig kleinere bis mittlere Datenbanken konzeptionell und logisch zu entwerfen (2),
- Datenbanken mittels der Anfragesprache SQL einzurichten (2) und zu verwenden. (2),
- Konzepte wie Sichten, Trigger und benutzerdefinierte Funktionen zu bewerten (3) und adäquate Konzepte für spezielle Anwendungsfälle auszuwählen (3).

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Seite 51
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • in Zusammenarbeit mit anderen Datenbanken zu modellieren und Modellierungsalternativen zu diskutieren (3),
 • selbstständig die Anfragesprache SQL auf einer Datenbank einzusetzen (2).

Lehrmedien
Tafel, Beamer, Notebook

Literatur
 • J. Schildgen: Sprachkurs SQL - Das Datenbanken-Hörbuch, 2018
 • A. Kemper / A. Eickler: Datenbanksysteme: Eine Einführung, Oldenbourg, 2015
 • E. Schicker: Datenbanken und SQL, Springer-Vieweg 2014
 • A. Heuer, K.-U. Sattler, G. Saake: Datenbanken: Konzepte und Sprachen, 2018
 • C.J. Date: Introduction to Database Systems, Addison Wesley, 2003
 • C.J. Date / H. Darwen: SQL – Der Standard, Addison Wesley, 1998

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Fachbezogenes Wahlpflichtmodul 1

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachbezogenes Wahlpflichtmodul 1</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Module des 1. und zum Teil des 2. Studienabschnitts in Abhängigkeit der gewählten Lehrveranstaltung

Inhalte

Abhängig von der jeweiligen Lehrveranstaltung
Lehrumfang 4 SWS

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Das Angebot der Lehrveranstaltungen für die fachbezogenen Wahlpflichtmodule (FWPM) regelt der semesterspezifische Studienplan. Die Modulbeschreibungen zum semesterspezifischen fachbezogenen Wahlpflichtangebot der Fakultät finden Sie in der "Übersicht Modulbeschreibungen Fachbezogene Wahlpflichtmodule - aktuelles Semesterangebot" auf der Homepage der Fakultät bei jedem Studiengang in der Rubrik "Module und Fächerbeschreibungen". Die Modulangebote für das jeweilige Semester sind mit entsprechender Studiengangs- und Studienabschnittszuordnung gekennzeichnet. Die Zuordnungskriterien der Lehrveranstaltungen zu den Studiengängen und Studienabschnitten sind zwingend einzuhalten:

Hinweise zur Studienabschnittszuordnung:

Z + Modulkürzel: Zweiter Studienabschnitt
D + Modulkürzel: Dritter Studienabschnitt
K + Modulkürzel: Zweiter und Dritter Studienabschnitt
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunikationssysteme</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Datenverarbeitungssysteme
Programmieren 1

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kommunikationssysteme</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Informatik (PO: 20122)

Modulname:
Kommunikationssysteme

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunikationssysteme</td>
<td>KS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht (4 SWS) mit Praktikum (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium: 90h
Eigenstudium: 120h

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 - 120 min

Inhalte
- Anwendungs-Schicht (Kommunikation zw. Prozessen, Dienste für NW-Anwendungen, Protokollablauf und Meldungsformate der Anwendungen: HTTP, FTP, E-Mail, DNS)
- Transport Schicht (Protokollarten: TCP, UDP, Meldungsformate, Ablauf, Überlastkontrolle, Analyse)
- Socket Programmierung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Netzwerk-Komponenten, deren Rolle und die Kommunikations-Protokolle zwischen Komponenten anzugeben (1),

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
das Standard ISO-OSI Architektur-Modell im Vergleich zum TCP/IP-Modell zu benennen (1), sowie verschiedene Netzwerk-Dienste der Anwendungs-Schicht (wie z. B. DNS, DHCP) zu benutzen (2).

mittels Analyse-Tools im Labor die Meldungsinhalte zu analysieren (3) und zu identifizieren (1),

die Protokolle der Transportschicht (TCP, UDP) und die wichtigsten Dienste der Netzwerkschicht, wie Routing und globale Adressierung, zu benennen (1) und können diese praktisch auf die Netzwerk-Komponenten, wie Router und Switch, anwenden (2),

die meist verwendeten Verfahren für die Meldungsübertragung auf die Data-Link-Ebenen aufzuzählen (1)

Prozesse über das Internet kommunizieren zu lassen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- fachliche Inhalte vor einem Publikum darzustellen (2),
- fachliche Fragen zu stellen (3) und
- netzwerktechnische Zusammenhänge in korrekter Fachsprache wiederzugeben (3).

Lehrmedien

Tafel, Overheadprojektor, Notebook, Beamer

Literatur

- Skript und On-Line Tutorials
- D.E. Comer: „Computernetzwerke und Internets“ Pearson
- Fred Halsall: Computer Networking and the Internet, Addison Wesley, Reading, MA.
- Behrouz Forouzan: Data Communications and Networking, McGrawHill, Boston

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Bachelor Informatik (PO: 20122)

Modulname:
Praktikum mit Praxisseminar

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum mit Praxisseminar</td>
<td>20 und 21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praxisbeauftragte-r Informatik</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2.</td>
<td>Pflicht</td>
<td>26</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
90 Kreditpunkte aus den vorangegangenen 4 Semestern oder:
vollständiges Ablegen der Grundlagenmodule (Erwerb von 60 Kreditpunkten) und Absolvierung mindestens eines weiteren Studiensemesters in Vollzeit.

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum im Betrieb und Praxisseminar</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Praktikum im Betrieb und Praxisseminar</th>
<th>PR + PS</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Klaus Volbert</th>
<th>Informatik und Mathematik</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>alle Professoren/innen der Fakultät IM</th>
</tr>
</thead>
</table>

Angebotsfrequenz

alle Professoren/innen der Fakultät IM

Lehrform

Praktikum (18 Wochen Vollzeit im Betrieb) und Praxisseminar (1 Tag)

Studien- und Prüfungsleistung

Nachweis über 18 Wochen Praktikum im Betrieb, Seminarvortrag mit Erfolg und Praktikumsbericht mit Erfolg

Inhalt

Im Rahmen von DV-Projekten ist die Mitarbeit in möglichst allen Projektphasen (Systemanalyse, Systemplanung, Implementierung und Systemeinführung) sicherzustellen.

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, typische, in einem Unternehmen anfallende Arbeiten/Aufgaben aus der Informatik alleine und in Teams wiederzugeben (1), zu bearbeiten (2) und zu lösen (3). Sie können eigene und andere Lösungen bewerten und vergleichen. Sie haben einen ersten Eindruck, wie sie die zukünftige Arbeitswelt mit eigenen Beiträgen mitgestalten können.

Lehrmedien

Praxisseminar: Tafel, Notebook, Beamer
Weitere Informationen zur Lehrveranstaltung
Praktikum und Praxisseminar
Praktikum: 18 Wochen, die tägliche Arbeitszeit entspricht der üblichen Arbeitszeit der Ausbildungsstelle für Vollbeschäftigte. siehe: §3 Abschnitt 4 der APO, ca. 38,5h Vollzeit im Betrieb (gesamt: ca. 693h)
Praxisseminar (2 SWS): Präsenz im Seminar, Vor- und Nachbereitung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechnertechnik</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alexander Metzner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
- Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt
- Empfohlene Vorkenntnisse
- Datenverarbeitungssysteme

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rechnertechnik</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Rechnertechnik

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechnertechnik</td>
<td>RT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alexander Metzner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alexander Metzner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht (4 SWS) mit Übungen und Praktikum (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium: 90h
Eigenstudium: 120h

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: 90 – 120 min</td>
</tr>
</tbody>
</table>

Inhalte
- Schaltalgebra, Schaltfunktionen, Minimierung, Entwicklungsziele.
- Kombinatorische und sequentielle Logik, Codeumsetzer, Multiplexer, Komparatoren, arithmetische Schaltnetze und Schaltwerke
- Grundlegende Konzepte wie Pipelining, Superskalarität, Hyperthreading, Multiprozessing, CISC, RISC, VLIW, EPIC
- µ-Programmierung
- Speichersysteme, Cachesysteme, effektive Bandbreiten
- Leistungsbewertung, Amdahl`sches Gesetz

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Funktion digitaler Schaltungen zu verstehen (3)
- einfache Schaltungen selbständig zu entwickeln. (2)
- die grundlegenden Konzepte von Rechnerarchitekturen und den Einfluss von Speichersystemen auf die Performance von Computersystemen zu verstehen (2)
- die Leistung von Rechnersystemen zu beurteilen (2)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• sich selbständig und motiviert in neue Themenbereiche einarbeiten und diese strukturiert und Schritt für Schritt mit gegebenen Unterlagen zu erarbeiten (2)
• erlernte Lösungsansätze auf Basis vorgegebener Übungs- und Beispielauflagen mit Hilfe der eigenen Kreativität und Vorstellungskraft auch auf andere Szenarien des eigenen Erfahrungsbereichs anzuwenden (3)
• eigene Defizite im Lernfortschritt zu erkennen, dies zu kommunizieren und die Möglichkeiten der angebotenen Hilfestellungen zu nutzen (2)

Lehrmedien
Tafel, Notebook, Beamer

Literatur
• Eigene Folien in PDF
• Pernards: Digitaltechnik, Hüthig 2001
• Beierlein: Mikroprozessoren, Fachbuchverlag Leipzig 2004
• Hennesy: Rechnerarchitektur, Vieweg & Sohn 1994
• Märtin: Rechnerarchitekturen, Carl Hanser Verlag 2001
• Tanenbaum: Computerarchitektur, Pearson Studium 2001
• Schiffmann: Technische Informatik II, Springer 2005

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Carsten Kern</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Programmieren 1 und 2

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Software Engineering</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Teilmodul

| Software Engineering | TM-Kurzbezeichnung | SE |

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Carsten Kern</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik und Mathematik</td>
<td></td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Prof. Dr. Michael Bulenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Carsten Kern</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht (4 SWS) mit Übungen und Praktikum (2 SWS)

Studiensemester

<table>
<thead>
<tr>
<th>gemäß Studienplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 SWS</td>
<td>deutsch</td>
<td>8 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>150h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 - 120 min

Inhalte

- Grundlagen des Software-Engineering (Definition, Ethik, Qualität)
- Vorgehensmodelle (Phasenmodelle, V-Modelle, Agile Entwicklung)
- Grundlagen des Requirements Engineering
- Konzepte und Notationen der OOA (Basiskonzepte, statische, dynamische Konzepte, UML)
- Grundlagen der Software-Architektur (Sichtenkonzepte, Standardarchitekturen, Physische Verteilung, Grob-Design)
- Software Design (Fein-Design, Design-Patterns, Implementierung)
- Software Test
- Erstellung Projektvorschlag (Situationsanalyse, Ziele, Maßnahmen, Erfolgsfaktoren)
- Erstellung Software-Requirements (Systemkontext, Use-Cases, Produktmodell)
- Erstellung Fachkonzept/Architektur (Logische Sicht, Struktursicht, Verteilung)
- Erstellung OO-Modell (Geschäftsprozess, OOA-Modell, OOD-Modell)
- Erstellung Software Prototyp

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Denk- und Vorgehensweisen des Softwareengineering zu kennen und wiederzugeben. Die Studierenden haben ein Bewusstsein für die Bedeutung, Schwierigkeiten und Möglichkeiten des Software Engineering sowie einschlägige Kenntnisse über Software, Softwareentwicklung, Softwarequalität. (1)
• zu wissen, dass erfolgreiches Software Engineering sorgfältige Planung, systematische Vorgehensweise und Disziplin erfordert, dass gründliches und systematisches Requirements Engineering sowie sorgfältiger Grob- und Feinentwurf unabdingbar für den Erfolg eines Softwareprojekts sind. Die Studierenden kennen entsprechende Techniken. (1)
• die wichtigsten Qualitätssicherungsmaßnahmen zu kennen und diese an kleinen Beispielen anwenden zu können. (2)
• eigenständige, objektorientierte Modelle mit der Standardnotation UML in Analyse und Entwurf zu erstellen. (2)
• objektorientierte Konzepte in einer gängigen objektorientierten Programmiersprache umzusetzen. (2)
• Vor- und Nachteile unterschiedlicher Methoden, Verfahren und Vorgehensweisen des Software Engineering zu benennen, zu analysieren und diese gegeneinander abzuwägen. (3)
• ein kleines Softwareprojekt systematisch zu spezifizieren und ein passendes Systemdesign zu erstellen. Die Studierenden können dabei die Lehrinhalte auf konkrete Problemsituationen durch Realisierung eines kleineren Projektes in Teamarbeit anwenden. (2)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• ihr Selbstmanagement im kleinen Team zu optimieren und damit die Fähigkeit auszubauen, mit Stress umzugehen, sich selbst zu motivieren und kleinere Konflikte im Team gemeinsam zu lösen oder zu eskalieren. (3)</td>
</tr>
<tr>
<td>• Verantwortung im Projektteam anzunehmen, um den Projekterfolg zu sichern. (2)</td>
</tr>
<tr>
<td>• auf Basis der Lerninhalte vorgegebene Lösungen oder Lösungen anderer Studierender zu analysieren und zu bewerten sowie sich mit ihrer Bewertung in konstruktiver Kritik anderen gegenüber zu üben. (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerPoint-Präsentation, Laptop, Beamer, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommerville, I.: Software Engineering, Pearson Studium, 2018</td>
</tr>
<tr>
<td>Kleuker, S.:: Grundkurs Software Engineering mit UML, Springer Vieweg, 2018</td>
</tr>
<tr>
<td>Starke G.: Effektive Softwarearchitekturen: Ein praktischer Leitfaden, Carl Hanser Verlag, 2020</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistik</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Hans Kiesl</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Peter Wirtz</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3./ 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Mathematik 1 und 2
Programmierkenntnisse

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Statistik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
Statistik | ST

Verantwortliche/r | Fakultät
Prof. Dr. Hans Kiesl | Informatik und Mathematik
Prof. Dr. Peter Wirtz

Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Hans Kiesl | Angebotsfrequenz
Prof. Dr. Peter Wirtz

Lehrform
Seminaristischer Unterricht (4 SWS)

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 - 120 min

Inhalte
- Beschreibende Statistik (Merkmale, Darstellung von Messreihen, Maßzahlen für ein- und zweidimensionale Messreihen, Robustheit von Maßzahlen).
- Grundbegriffe der Wahrscheinlichkeitsstheorie (Wahrscheinlichkeitsräume, bedingte Wahrscheinlichkeiten, Unabhängigkeit, Zufallsvariable und Verteilungsfunktion, Erwartungswert und Varianz, mehrdimensionale Zufallsvariable, Normalverteilung, x² - , t - und F-Verteilung, Gesetze der großen Zahlen und Grenzwertsätze, empirische Verteilungsfunktion, Zentralsatz der Statistik).
- Schließende Statistik (Schätzverfahren und ihre Eigenschaften, Maximum-Likelihood-Methode, Konfidenzintervalle, Tests bei Normalverteilungsannahmen, der x² - Anpassungstest, verteilungsunabhängige Tests, einfache Varianzanalyse, einfache lineare Regression).

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Definitionen, Begriffe und Sätze der Wahrscheinlichkeitsstheorie mit eigenen Worten zu erläutern (1),
- wahrscheinlichkeits theoretische Fragestellungen selbstständig und planvoll zu bearbeiten (2),
- grundlegende Verfahren der deskriptiven Statistik anzuwenden (2),
- die Methodik statistischer Schätz- und Testverfahren beurteilen und für praktische Fragestellungen anwenden zu können (3).
• stochastische Anwendungen in der Informatik selbstständig und selbstsicher anzugehen (3),
• zusätzliche statistische Fachliteratur zu verstehen und einzuordnen (2),
• einfache und anspruchsvollere statistische Analysen für eigene Arbeiten (Seminar, Abschlussarbeiten, Forschungsprojekte) durchzuführen (3).

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• zielorientiert im Team zu arbeiten (Teamfähigkeit) (1),</td>
</tr>
<tr>
<td>• die erarbeiteten Ergebnisse sach- und zielgerecht vorzutragen (Präsentationskompetenz) (2),</td>
</tr>
<tr>
<td>• ihren Standpunkt fachlich zu verteidigen (Argumentationskompetenz) (3),</td>
</tr>
<tr>
<td>• erarbeitete Ergebnisse zielgruppenorientiert vorzustellen (Anpassungsfähigkeit) (1),</td>
</tr>
<tr>
<td>• eigene Ergebnisse und Meinungen vor verschiedenen Zielgruppen zu verteidigen (Vertrauen in das eigene Beurteilungsvermögen) (2)</td>
</tr>
<tr>
<td>• anspruchsvolle Fragestellungen zu bewerten und zielorientiert zu bearbeiten (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bosch, Elementare Einführung in die angewandte Statistik, Vieweg 2005</td>
</tr>
<tr>
<td>• Hübner, Stochastik: Eine anwendungsorientierte Einführung für Informatiker, Ingenieure und Mathematiker, Vieweg 2009</td>
</tr>
<tr>
<td>• Lehn/Wegmann, Einführung in die Statistik, Teubner 2006</td>
</tr>
<tr>
<td>• Ross, Statistik für Ingenieure und Naturwissenschaftler, Elsevier 2006</td>
</tr>
<tr>
<td>• Sachs, Wahrscheinlichkeitsrechnung und Statistik, Hanser 2009</td>
</tr>
<tr>
<td>• Teschl und Teschl, „Mathematik für Informatiker Band 2“, Springer 2007</td>
</tr>
<tr>
<td>• Weitz, "Konkrete Mathematik (nicht nur) für Informatiker", Springer 2018</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Bachelorarbeit (Bachelor Thesis)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit (Bachelor Thesis)</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorsitzender der Prüfungskommission</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>12</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Empfohlene Vorkenntnisse

Alle Module des 1. und 2. Studienabschnitts

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bachelorarbeit (Bachelor Thesis)</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Bachelorarbeit (Bachelor Thesis)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit (Bachelor Thesis)</td>
<td>BA</td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät |
Prof. Dr. Carsten Kern | Informatik und Mathematik |
Lehrende/r / Dozierende/r | Angebotsfrequenz |
alle Professoren/innen der Fakultät IM |

Lehrform

Selbständige Bearbeitung eines Problems, Erstellen einer schriftlichen Ausarbeitung, Vorbereiten einer Präsentation

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>360h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Ausarbeitung

Inhalte

Fachspezifisches Thema

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die während des Studiums erworbenen Kompetenzen fachübergreifend auf eine komplexe fachwissenschaftliche Problemstellung anzuwenden (2) und systematisch zu erweitern (3). Sie können wissenschaftliche Quellen effizient recherchieren, auswerten und korrekt zitieren (2). Aus dem erschlossenen Stand der Technik können sie eine technische Aufgabe ableiten und mit wissenschaftlich abgesicherten Methoden bearbeiten (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Bearbeitung einer komplexen Aufgabe eigenständig in Arbeitspakete zu untergliedern, deren Abarbeitung zu planen, den Arbeitsstand fortfahrend zu verfolgen und termingerecht abzuschließen (2). Sie können technische Inhalte sprachlich angemessen, knapp und genau darstellen und eigene Ergebnisse deutlich vom Stand der Technik abgrenzen (2). Sie sind in der Lage, Lösungsalternativen gegenüberzustellen und begründet abzuwägen (3).

Lehrmedien

Papier, CD/DVD, PDF-Datei u.a.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorseminar</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
- Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts
- Mindestens 110 Kreditpunkte aus dem 1.+ 2. Studienabschnitt

Siehe hierzu auch die Ausführungen zur Lehrveranstaltung/Bachelorseminar: "Studien- und Prüfungsleistung"

Empfohlene Vorkenntnisse
Alle Module des 1. und 2. Studienabschnitts

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bachelorseminar</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelorseminar</td>
<td>BS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Skornia</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>alle Professoren/innen der Fakultät IM</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform: Seminar

Studiensemester gemäß Studienplan: 7.

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Deutsch</td>
<td>3 ECTS-Credits</td>
</tr>
</tbody>
</table>

Lehrmedien: Tafel, Notebook, Beamer und ggf. weitere Medien

Literatur

Weitere Informationen zur Lehrveranstaltung:

Empfohlene Voraussetzungen: Alle Module des 1. und 2. Studienabschnitts

Studien- und Prüfungsleistung:
- Referat mit Erfolg ableisten, Zulassungsvoraussetzung: Anmeldung der eigenen Bachelorarbeit

Inhalte:
Fachspezifisches Thema

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,:
- fachspezifische Ergebnisse eigener Arbeit in mündlicher und schriftlicher Form zu präsentieren (2)
- Rückfragen und Lösungsansätze im Team zu diskutieren (3)

Stand: 06.09.2021

Ostbayerische Technische Hochschule Regensburg
Seite 73
<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1.+ 2. Studienabschnitt

Empfohlene Vorkenntnisse
Module des 1. und 2. Studienabschnitts in Abhängigkeit der gewählten Lehrveranstaltung

Inhalte
abhängig von der jeweiligen Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Das Angebot der Lehrveranstaltungen für die fachbezogenen Wahlpflichtmodule (FWPM) regelt der semesterspezifische Studienplan. Die Modulbeschreibungen zum semesterspezifischen fachbezogenen Wahlpflichtangebot der Fakultät finden Sie in der "Übersicht Modulbeschreibungen Fachbezogene Wahlpflichtmodule - aktuelles Semesterangebot" auf der Homepage der Fakultät bei jedem Studiengang in der Rubrik "Module und Fächerbeschreibungen". Die Modulangebote für das jeweilige Semester sind mit entsprechender Studiengang- und Studienabschnittszuordnung gekennzeichnet. Die Zuordnungskriterien der Lehrveranstaltungen zu den Studiengängen und Studienabschnitten sind zwingend einzuhalten:
Hinweise zur Studienabschnittszuordnung:
Z + Modulkürzel: Zweiter Studienabschnitt
D + Modulkürzel: Dritter Studienabschnitt
K + Modulkürzel: Zweiter und Dritter Studienabschnitt
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Fachbezogenes Wahlpflichtmodul 3 | 30

Modulverantwortliche/r	Fakultät
Dekan Fakultät IM | Informatik und Mathematik |

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
6. / 7. | 3. | Wahlpflicht | 5 |

Verpflichtende Voraussetzungen
Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1.+ 2. Studienabschnitt

Empfohlene Vorkenntnisse
Module des 1. und 2. Studienabschnitts in Abhängigkeit der gewählten Lehrveranstaltung

Inhalte
abhängig von der jeweiligen Lehrveranstaltung

Zugeordnete Teilmodule:
Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]

Hinweise zur Belegungspflicht oder zu Optionen
Das Angebot der Lehrveranstaltungen für die fachbezogenen Wahlpflichtmodule (FWPM) regelt der semesterspezifische Studienplan. Die Modulbeschreibungen zum semesterspezifischen fachbezogenen Wahlpflichtangebot der Fakultät finden Sie in der "Übersicht Modulbeschreibungen Fachbezogene Wahlpflichtmodule - aktuelles Semesterangebot" auf der Homepage der Fakultät bei jedem Studiengang in der Rubrik "Module und Fächerbeschreibungen". Die Modulangebote für das jeweilige Semester sind mit entsprechender Studiengang- und Studienabschnittszuordnung gekennzeichnet. Die Zuordnungskriterien der Lehrveranstaltungen zu den Studiengängen und Studienabschnitten sind zwingend einzuhalten:

- Hinweise zur Studienabschnittszuordnung:
 - Z + Modulkürzel: Zweiter Studienabschnitt
 - D + Modulkürzel: Dritter Studienabschnitt
 - K + Modulkürzel: Zweiter und Dritter Studienabschnitt

Stand: 06.09.2021

Ostbayerische Technische Hochschule Regensburg Seite 75
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Research</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1.+ 2. Studienabschnitt

Empfohlene Vorkenntnisse
Statistik

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Operations Research</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Operations Research

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Research</td>
<td>OR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td></td>
</tr>
<tr>
<td>Dr. Thomas Hußlein (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminariestischer Unterricht (2 SWS) mit Übungen (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 - 120 Min

Inhalte

- Lineare Optimierung
- Ganzzahlige Optimierung
- Nicht lineare Optimierung
- Dynamische Optimierung
- Transportproblem
- Netzplantechnik
- Scheduling
- Bestandsmanagement
- Prognoseverfahren
- Modellierung von Optimierungsproblemen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- quantifizierbare Probleme, bei denen es mehrere Entscheidungsmöglichkeiten gibt, aus dem Bereich der Planung in der Produktionslogistik identifizieren (3).
- alle möglichen Alternativen (solcher Entscheidungsprobleme) erfassen (3) und die besten unter diesen gemäß einem Gütekriterium mit den Methoden des Operations Research auswählen (3).
<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• anspruchsvolle Inhalte eigenständig nachzuarbeiten (3), durch Übungen zu vertiefen (3)</td>
</tr>
<tr>
<td>sowie durch das Studium von Lehrbüchern zu ergänzen (2).</td>
</tr>
<tr>
<td>• zielorientiert im Team zu arbeiten (Teamfähigkeit) und die erarbeiteten Ergebnisse sacht-</td>
</tr>
<tr>
<td>und zielgerecht im Auditorium vorzustellen (3).</td>
</tr>
<tr>
<td>• ihren Standpunkt fachlich zu verteidigen (2).</td>
</tr>
<tr>
<td>• die Folgen von Entscheidungen zu verstehen und bewusst in ihr eigenes Wertesystem</td>
</tr>
<tr>
<td>einzuordnen (3).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheadfolien (in der Veranstaltung entwickelt), PowerPoint Präsentation, PC und Beamer</td>
</tr>
<tr>
<td>Software: ILOG (System zur Lösung linearer Optimierungsprobleme)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Klaus Neumann und Martin Morlock: „Operations Research“, Hanser-Verlag.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht (2 SWS), Übungen (2 SWS)</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefungsmodul IN 1/1</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1. und 2. Studienabschnitt

Empfohlene Vorkenntnisse

abhängig von der jeweiligen Lehrveranstaltung

Inhalte

abhängig von der jeweiligen Lehrveranstaltung

Das Angebot der Lehrveranstaltungen regelt der Studienplan

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Computergraphik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Vertiefungsmodul IN 1/1

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computergraphik</td>
<td>CG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht (2SWS) mit Übungen (2SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Kl. u./o. StA u./o. mdl. LN

Inhalte
- Grafik-Pipeline,
- Farbmodelle,
- Rasterisierung,
- Datenstrukturen und Transformationen in 3D,
- Perspektive und Projektion,
- Beleuchtung,
- OpenGL & Shader-Programmierung,
- Texturierung,
- Ray Tracing.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- GPU Rendering mit OpenGL auf Basis von C++ zu betreiben (3).
- nicht nur selbständig Systeme zur Darstellung dreidimensionaler Szenen zu entwerfen (2), sondern auch sich in bestehenden Systemen solcher Art zurecht zu finden und diese produktiv einzusetzen und weiterzuentwickeln (2).

Sie haben ein Verständnis über die grundlegenden Konzepte des Echtzeit-Renderings (3) und eine Vorstellung darüber hinausgehender Themen (1).
Lernziele: Persönliche Kompetenz

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• sich selbständig und motiviert in neue Themenbereiche einzuarbeiten und diese strukturiert</td>
</tr>
<tr>
<td>und Schritt für Schritt mit gegebenen Unterlagen zu erarbeiten (2)</td>
</tr>
<tr>
<td>• erlernte Lösungsansätze auf Basis vorgegebener Übungs- und Beispielaufgaben mit Hilfe</td>
</tr>
<tr>
<td>der eigenen Kreativität und Vorstellungskraft auch auf andere Szenarien des eigenen</td>
</tr>
<tr>
<td>Erfahrungsbereichs anzuwenden (3)</td>
</tr>
<tr>
<td>• eigene Defizite im Lernfortschritt zu erkennen, dies zu kommunizieren und die</td>
</tr>
<tr>
<td>Möglichkeiten der angebotenen Hilfestellungen zu nutzen (2)</td>
</tr>
<tr>
<td>• eigene lehr- und lernbezogene Defizite zu erkennen, zu formulieren und zu kommunizieren</td>
</tr>
<tr>
<td>(1)</td>
</tr>
</tbody>
</table>

Lehrmedien

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Beamer, Folien</td>
</tr>
</tbody>
</table>

Literatur

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Shirley et al., "Fundamental of Computer Graphics" (primär)</td>
</tr>
<tr>
<td>• https://www.khronos.org/opengl/</td>
</tr>
</tbody>
</table>

Weitere Informationen zur Lehrveranstaltung

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktische Übungen mit Asymptote und C++/OpenGL.</td>
</tr>
<tr>
<td>Gute Programmierkenntnisse in C oder C++ sind von Vorteil.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)

| Vertiefungsmodul IN 1/2 | 23 |

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7. 3.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1.+ 2. Studienabschnitt

Empfohlene Vorkenntnisse

abhängig von der jeweiligen Lehrveranstaltung

Inhalte

abhängig von der jeweiligen Lehrveranstaltung. Das Angebot der Lehrveranstaltungen regelt der Studienplan

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Softwareentwicklung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
Softwareentwicklung | SW

Verantwortliche/r	Fakultät
Prof. Dr. Daniel Jobst | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Dr. Daniel Jobst |

Lehrform

Seminaristischer Unterricht (2 SWS) und Praktikum (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6. / 7.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Klausur u./o. StA u./o. mdl. LN

Inhalte

- Grundlagen webbasierter Unternehmensanwendungen
- Moderne Ausführungsumgebungen für Unternehmensanwendungen
- Mehrschichtige Architekturen, Entwurfsmuster für unternehmensweite Anwendungen
- Persistenzsysteme und Anbindung von Datenbanken
- Servicedesign und –umsetzung, Dependency-Management
- Umsetzung webbasierter User-Interfaces
- Aspekte synchroner und asynchroner Kommunikation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Potentielle moderne Applikationsserver oder leichtgewichtiger Server-Anwendungsplattformen zur Problemlösung zu erkennen und anzuwenden (2)
- Architektur-Muster und Vorgehensweisen und -modelle des modernen Software-Engineerings auf konkrete Projektideen anzuwenden und daraus selbständig die wichtigsten Designentscheidungen zu treffen und diese zu dokumentieren (2)
- funktionale und nicht-funktionale Anforderungen an das eigene Softwareprojekt zu identifizieren, zu verstehen und zu dokumentieren (2)
- fachliche Abhängigkeitsbeziehungen zu anderen Softwareprojekten zu identifizieren und zu verstehen und daraus korrekte Interfacebeziehungen abzuleiten und zu dokumentieren (2)
- die eigenen Designentscheidungen in konkrete Softwarekomponenten umzusetzen und mit Hilfe einer gegebenen Anwendungsplattform zu implementieren und auf einer Ausführungsumgebung im Rahmen der Lehrveranstaltung zur Ausführung zu bringen (3)

Stand: 06.09.2021 Ostbayerische Technische Hochschule Regensburg Seite 83
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- sich selbständig und motiviert in neue Themenbereiche einzuarbeiten und diese strukturiert und Schritt für Schritt mit selbst gewählten Szenarien einzuüben (2)
- die eigene Lehngeschwindigkeit zu erkennen und zielbezogen die eigenen Aufgaben in sinnvolle und zu bewerkstelligende Teilbereiche aufzuteilen und diese einzuhalten (2)
- eigene, inhaltliche und organisatorische Projektanforderungen zu kommunizieren und mit anderen Teammitgliedern abzustimmen (2)
- arbeitsteilig in einem Team zu arbeiten (3)

Angebotene Lehrunterlagen
- Folienkopien/Skript, Lehrvideos, Beispiel-Code und -projektauszüge

Lehrmedien
- Videokonferenz mit gegenseitiger Bildschirmfreigabe
- Folienpräsentation
- Live-Coding

Literatur
- Weitere Literatur wird über GRIPS bekanntgegeben

Weitere Informationen zur Lehrveranstaltung
- Empfohlene Voraussetzungen: Programmieren 1, Programmieren 2, Datenbanken, Software Engineering insb. UML-Analyse- und Designmethoden

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Vertiefungsmodul IN 1/3 | 24

Modulverantwortliche/r	**Fakultät**
Dekan Fakultät IM | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1. und 2. Studienabschnitt

Empfohlene Vorkenntnisse
abhängig von der jeweiligen Lehrveranstaltung

Inhalte
abhängig von der jeweiligen Lehrveranstaltung
Das Angebot der Lehrveranstaltungen regelt der Studienplan

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Verteilte Systeme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Vertiefungsmodul IN 1/3

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verteilte Systeme</td>
<td>VS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehreform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht (2 SWS) mit Übungen (2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur u./o. StA u./o. mdl. LN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagen verteilter Systeme</td>
</tr>
<tr>
<td>• Kommunikation</td>
</tr>
<tr>
<td>• Entwicklung von Anwendungen mit Sockets</td>
</tr>
<tr>
<td>• Einsatz moderner RPC-Frameworks</td>
</tr>
<tr>
<td>• Architekturen verteilter Anwendungen</td>
</tr>
<tr>
<td>• Service-Computing, Webservices, Microservice-Paradigma, Containerisierung</td>
</tr>
<tr>
<td>• Daten in verteilten Systemen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• spezifische Anforderungen und besondere Probleme bei verteilten Systemen zu erkennen und zu benennen (1)</td>
</tr>
<tr>
<td>• eigene, kleinere Anwendungen für verteilte Systeme zu entwickeln, zu dokumentieren mit Hilfe einer vorgegebenen Programmiersprache und APIs beispielhaft zu implementieren (3)</td>
</tr>
<tr>
<td>• Entwurfs muster für verteilte Systeme effizient einzusetzen (2)</td>
</tr>
<tr>
<td>• Anwendungen für verteilte Systeme auf der Basis von Sockets und Threads, RPC-Technologien, ausgewählter Webservice- und Cloud-Frameworks und anderer Technologien zu entwickeln und über ein Netzwerk zur Ausführung zu bringen (3)</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021

Ostbayernische Technische Hochschule Regensburg Seite 86
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • sich selbständig und motiviert in neue Themenbereiche einzuarbeiten und diese strukturiert und Schritt für Schritt mit gegebenen Unterlagen zu erarbeiten (2)
 • erlernte Lösungsansätze auf Basis vorgegebener Übungs- und Beispielaufgaben mit Hilfe der eigenen Kreativität und Vorstellungskraft auch auf andere Szenarien des eigenen Erfahrungsbereichs anzuwenden (3)
 • eigene Defizite im Lernfortschritt zu erkennen, dies zu kommunizieren und die Möglichkeiten der angebotenen Hilfestellungen zu nutzen (2)
 • eigene lehr- und lernbezogene Defizite zu erkennen, zu formulieren und zu kommunizieren (1)

Angebotene Lehrunterlagen

Folienkopien, Lehr- und Lernvideos, Codebeispiele, Übungsaufgaben und -lösungen

Lehrmedien

Präsentationsfolien mit Beamer/Screensharing, Folienkopien, Skript, (virtuelle) Tafel, Videos; ggf. Videokonferenz, gegenseitige Bildschirmfreigabe

Literatur

Weitere Informationen zur Lehrveranstaltung

Empfohlene Voraussetzungen: Programmieren 1, Programmieren 2, Datenbanken, Software Engineering insb. UML-Analyse- und Designmethoden.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Informatik (PO: 20122)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefungsmodul IN 2/1</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1. und 2. Studienabschnitt

Empfohlene Vorkenntnisse
abhängig von der jeweiligen Lehrveranstaltung

Inhalte
abhängig von der jeweiligen Lehrveranstaltung.
Das Angebot der Lehrveranstaltungen regelt der Studienplan

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Human Computer Interaction</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 06.09.2021
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Informatik (PO: 20122)
Modulname: Vertiefungsmodul IN 2/1

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Computer Interaction</td>
<td>HCI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Heckner</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Ehrnböck (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Markus Heckner</td>
<td></td>
</tr>
<tr>
<td>Petteri Kaskenpalo (LB)</td>
<td></td>
</tr>
<tr>
<td>Lorena Meyer (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit integrierten Übungen (4 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur u./o. StA u./o. mdl. LN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermittlung der Grundprinzipien einer benutzergerechten Entwicklung von Software (User Centered Design).</td>
</tr>
<tr>
<td>Themen:</td>
</tr>
<tr>
<td>- Usability Engineering Framework</td>
</tr>
<tr>
<td>- Methoden der nutzerzentrierten Anforderungsanalyse</td>
</tr>
<tr>
<td>- Information Design und Information Architecture</td>
</tr>
<tr>
<td>- Sketching</td>
</tr>
<tr>
<td>- Paper Prototyping</td>
</tr>
<tr>
<td>- Toolbasiertes Prototyping mit Axure</td>
</tr>
<tr>
<td>- (Guerilla) Usability Testing</td>
</tr>
<tr>
<td>- Usability Messen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmodsuls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>- Usability / User Experience und deren Auswirkungen auf Nutzer und Unternehmen zu verstehen (3).</td>
</tr>
<tr>
<td>- einen systematischen Usability Engineering Prozesses zu verstehen, der ein Prozessmodell zur Entwicklung benutzerzentriertes Software vorgibt (2).</td>
</tr>
</tbody>
</table>
die dazu notwendigen Methoden (z.B. Prototyping, Card Sorting, Usability Testing inkl. Auswertung) selbstständig auszuwählen und einzusetzen, um das User Interface einer Anwendung so zu gestalten, dass diese effizient und effektiv benutzbare wird (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Relevanz des Einbezugs von Nutzern in den Softwareentwicklungsprozess zu erkennen (3).
- eigene Ansichten und Annahmen zurückzustellen, und Bedürfnisse und Probleme von Nutzern als Basis für die Entwicklung von Software anzuerkennen (3).
- unterschiedliche Sichtweisen innerhalb des Projektteams zu integrieren (3).

Angebotene Lehrunterlagen

Foliensätze, Lehrvideos, Übungsaufgaben, Quizzes

Lehrmedien

Notebook, Beamer, Tafel

Literatur

Weitere Informationen zur Lehrveranstaltung

Empfohlene Voraussetzungen: Abschluss eigenständiger kleiner Softwareentwicklungsprojekte

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefungsmodul IN 2/2</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1. und 2. Studienabschnitt

Empfohlene Vorkenntnisse

abhängig von der jeweiligen Lehrveranstaltung

Inhalte

abhängig von der jeweiligen Lehrveranstaltung

Das Angebot der Lehrveranstaltungen regelt der Studienplan

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Informationssicherheit</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Vertiefungsmodul IN 2/2

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informationssicherheit</td>
<td>IS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Skornia</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Hackenberg</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christoph Skornia</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

schriftliche Prüfung

Inhalte

- Einführung und Themeneinordnung
- Schutzziele
- Klassische Sicherheitslücken
- Eingesetzte Schutzmechanismen
- Organisatorische Vorgehensmodelle
- Technische Aspekte und Lösungen
- Trends und Entwicklungen
- Praktische Übungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- theoretische Grundlagen und technische Maßnahmen der Informationssicherheit zu verstehen und situationsbezogen anzuwenden (3)
- Sicherheitsaspekte und Schwachstellen zu analysieren (3)
- Sicherheitsniveaus risikoorientiert abzuwerten (3)
- Sicherheitslösungen zu entwerfen und umzusetzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- technische Konzepte vertieft zu analysieren (3)
- ausgewählte technische Problemstellungen in Gruppenarbeit zu lösen (3)
in Teams zu kommunizieren und eigene Ergebnisse zu präsentieren (3)
sich im Eigenstudium vertiefte technische Sachverhalte anzueignen (3)

Lehrmedien

- Whiteboard, Beamer, Laborrechner z.T. Gruppenarbeit

Literatur

- Pieprzyk, J. et al.: Fundamentals of computer security, Springer Verlag
- Raepple M: Sicherheitskonzepte für das Internet, dpunkt Verlag
- Diverse herstellerspezifische Handbücher

Weitere Informationen zur Lehrveranstaltung

Empfohlene Voraussetzungen: Kommunikationssysteme, Grundlagen der Informatik

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefungsmodul IN 2/3</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 110 Kreditpunkte aus dem 1. und 2. Studienabschnitt

Empfohlene Vorkenntnisse
abhängig von der jeweiligen Lehrveranstaltung

Inhalte
abhängig von der jeweiligen Lehrveranstaltung
Das Angebot der Lehrveranstaltungen regelt der Studienplan

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Datawarehouse</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Informatik (PO: 20122)

Modulname: Vertiefungsmodul IN 2/3

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datawarehouse</td>
<td>DW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Edwin Schicker</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Edwin Schicker</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht (3 SWS) mit Übungen (1 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur u./o. StA u./o. mdl. LN</td>
</tr>
</tbody>
</table>

Inhalte

Diese Lehrveranstaltung vermittelt die Grundlagen von Data Warehouse. Dies umfasst:
- Definition, Begriffe, Aufbau und Notwendigkeit eines Data Warehouse,
- Multidimensionale Datenmodellierung, Stern- und Schneeflockenmodelle, Datenschemata, Konsistenz,
- Performance Probleme erkennen, Durchführung von Performance-Optimierungen,
- Entwerfen und Erstellen eines Data Warehouse,
- Betrieb eines Data Warehouse inklusive kompletter ETL-Prozess und OLAP-Abfragen.

Die vermittelten theoretischen Grundlagen werden direkt in der Praxis mit modernen Datenbanken geübt.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den internen Aufbau eines Data Warehouse, den dazugehörigen OLAP-Prozess und die notwendigen Ladevorgänge aus dem Produktionsbetrieb zu beschreiben (1),
- kleinere Datawarehouse-Systeme zu erstellen, ETL-Prozesse anzustoßen und OLAP-Abfragen durchzuführen (2),
- größere Datawarehouse-Systeme zu betreiben, Performance-Probleme zu lösen, komplexe ETL-Prozesse zu steuern und aufwendige OLAP-Abfragen zu entwerfen und deren Ergebnisse korrekt zu interpretieren (3).
<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, - komplexe Datawarehouse-Systeme zu verstehen und zu betreiben und umfangreiche eigene Analysen selbstständig durchzuführen(3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesungsskript</td>
</tr>
<tr>
<td>PowerPoint-Präsentation</td>
</tr>
<tr>
<td>Alle in der Lehrveranstaltung verwendeten Programme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Beamer mit Notebook</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bauer/Günzel: Data Warehouse Systeme, dpunkt, 2013</td>
</tr>
<tr>
<td>• Mehrwald: Datawarehousing mit SAP BW 7.3, dpunkt, 2013</td>
</tr>
<tr>
<td>• Kimball/Ross: Kimball's Data Warehouse Toolkit, Wiley&Sons, 2009</td>
</tr>
<tr>
<td>• Kemper/Baars/Mehanna: Business Intelligence, Springer, 2010</td>
</tr>
<tr>
<td>• Jockisch: Data Warehouse und SAP Business Information Warehouse, Skript OTH Regensburg</td>
</tr>
<tr>
<td>• Kurz: Data Warehousing, mitp, 1999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen: Umfangreiche Kenntnisse in Datenbanken</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden