Vorspann

1. Erläuterungen zum Aufbau des Modulhandbuchs

2. Lernziele

Neben der Vermittlung neuer fachlicher Kompetenzen ist die Vermittlung von persönlichen Kompetenzen selbstverständlich integraler Bestandteil einer jeden Lehrveranstaltung bzw. eines Hochschulstudiums im Allgemeinen. Sofern in der Beschreibung eines Moduls nicht weiter präzisiert, sind die Studierenden nach der erfolgreichen Absolvierung eines Moduls in der Lage

- den eigenen Lernfortschritt und Lernbedarf zu analysieren (3) und gegebenenfalls Handlungsweisen daraus abzuleiten (3),
- zielorientiert mit anderen zusammenzuarbeiten (2), deren Interessen und soziale Situation zu erfassen (2), sich mit ihnen rational und verantwortungsbewusst auseinanderzusetzen und zu verstehen (2) sowie die Arbeits- und Lebenswelt mitzugestalten (3),
- wissenschaftlich im Sinne der „Regeln guter wissenschaftlicher Praxis“ zu arbeiten (2), fachliche Inhalte darzustellen (2) und vor einem Publikum in korrekter Fachsprache zu präsentieren (2).

Des Weiteren gilt insbesondere für Laborpraktika-Module, dass die Studierenden nach der erfolgreichen Absolvierung in der Lage sind

- die fünf Sicherheitsregeln zu kennen (1) und anzuwenden (2)
- einen risikobewussten Umgang mit elektrischer Spannung zu pflegen (2), Auswirkungen auf die eigene Gesundheit hin zu beurteilen (3) und bei Bedarf entsprechende Sicherheitsmaßnahmen durchzuführen (2).

3. Standardhilfsmittel

Folgende Hilfsmittel sind bei allen Prüfungen zugelassen:

- Schreibstifte aller Art (ausgenommen rote Stifte)
- Zirkel, Lineale aller Art, Radiergummi, Bleistiftspitzer

4. Fachwissenschaftliche Wahlpflichtmodule

Die Regelungen zur Wahl der Wahlpflichtmodule sind in der SPO zu finden. Details zur Anrechenbarkeit der einzelnen Module für Studiengänge und Vertiefungsrichtungen regelt der jeweilige Studienplan.

Die Fachwissenschaftlichen Wahlpflichtmodule sind in folgenden Semestern zu belegen:

Elektro- und Informationstechnik: 6. oder 7. Semester

Mechatronik: 7. Semester

Intelligent Systems Engineering: 6. oder 7. Semester

Regenerative Energietechnik und Energieeffizienz: 6. oder 7. Semester

Nähere Informationen sind im Studienverlaufsplan und in der SPO zu finden.

Nähere Informationen sind im „Wahlpflichtmodulkatalog für Bachelor Elektro- und Informationstechnik“ bzw. „Wahlpflichtmodulkatalog für Bachelor Intelligent Systems Engineering“ bzw. „Wahlpflichtmodulkatalog für Bachelor Mechatronik“ zu finden.
Modulliste

Studienabschnitt 1:

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Messtechnik (Electrical Measurements)</td>
<td>7</td>
</tr>
<tr>
<td>Elektrische Messtechnik</td>
<td>8</td>
</tr>
<tr>
<td>Praktikum Elektrische Messtechnik</td>
<td>10</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 1 (Electrical Engineering 1)</td>
<td>12</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 2 (Electrical Engineering 2)</td>
<td>13</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 2</td>
<td>15</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 2</td>
<td>16</td>
</tr>
<tr>
<td>Informatik 1 (Computer Science 1)</td>
<td>18</td>
</tr>
<tr>
<td>Informatik 1</td>
<td>19</td>
</tr>
<tr>
<td>Praktikum Informatik 1</td>
<td>22</td>
</tr>
<tr>
<td>Informatik 2 (Computer Science 2)</td>
<td>25</td>
</tr>
<tr>
<td>Informatik 2</td>
<td>26</td>
</tr>
<tr>
<td>Praktikum Informatik 2</td>
<td>29</td>
</tr>
<tr>
<td>Mathematik 1 (Mathematics 1)</td>
<td>32</td>
</tr>
<tr>
<td>Mathematik 1 has to be filled in</td>
<td>33</td>
</tr>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>36</td>
</tr>
<tr>
<td>Mathematik 2 has to be filled in</td>
<td>37</td>
</tr>
<tr>
<td>Physik & Chemie (Physics & Chemistry)</td>
<td>40</td>
</tr>
<tr>
<td>Physik & Chemie</td>
<td>41</td>
</tr>
<tr>
<td>Technische Mechanik (Mechanical Engineering)</td>
<td>44</td>
</tr>
<tr>
<td>Technische Mechanik</td>
<td>45</td>
</tr>
<tr>
<td>Werkstofftechnik (Materials Science)</td>
<td>48</td>
</tr>
<tr>
<td>Werkstofftechnik</td>
<td>49</td>
</tr>
</tbody>
</table>

Studienabschnitt 2:

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW-Modul REE (Mandatory general studies elective module)</td>
<td>51</td>
</tr>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 1</td>
<td>53</td>
</tr>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 2</td>
<td>55</td>
</tr>
<tr>
<td>Bachelorarbeit mit Präsentation (Bachelor Thesis with Presentation)</td>
<td>57</td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>58</td>
</tr>
<tr>
<td>Präsentation der Bachelorarbeit</td>
<td>60</td>
</tr>
<tr>
<td>Bauelemente und Elektronik (Components & Electronics)</td>
<td>62</td>
</tr>
<tr>
<td>Bauelemente und Elektronik</td>
<td>63</td>
</tr>
<tr>
<td>Elektrische Anlagentechnik und Elektsicherheit (Electrical System Technology & Electrical Safety)</td>
<td>65</td>
</tr>
<tr>
<td>Elektrische Anlagentechnik</td>
<td>66</td>
</tr>
<tr>
<td>Grundlagen der Elektrosicherheit</td>
<td>68</td>
</tr>
<tr>
<td>Energie- und Umweltrecht, Projektmanagement (Energy and Environmental Legislation, Project Management)</td>
<td>70</td>
</tr>
<tr>
<td>Energie- und Umweltrecht</td>
<td>71</td>
</tr>
<tr>
<td>Projektmanagement</td>
<td>73</td>
</tr>
<tr>
<td>Energiewirtschaft & Energieeffizienz (Energy Economy & Energy Efficiency)</td>
<td>75</td>
</tr>
<tr>
<td>Energiewirtschaft & Energieeffizienz</td>
<td>76</td>
</tr>
<tr>
<td>Finanzierung und Investitionsrechnung (Finance and Investment)</td>
<td>79</td>
</tr>
<tr>
<td>Finanzierung und Investitionsrechnung</td>
<td>80</td>
</tr>
<tr>
<td>Grundlagen elektrischer Maschinen (Electrical Machines)</td>
<td>82</td>
</tr>
<tr>
<td>Grundlagen elektrischer Maschinen</td>
<td>83</td>
</tr>
<tr>
<td>Leistungselektronik (Power Electronics)</td>
<td>85</td>
</tr>
<tr>
<td>Leistungselektronik</td>
<td>86</td>
</tr>
<tr>
<td>Praktikum Energietechnik 1 (Lab course Energy Engineering 1)</td>
<td>88</td>
</tr>
<tr>
<td>Praktikum Energietechnik 1</td>
<td>89</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>EMV gerechter Leiterplatten- und Systementwurf (EMC compliant PCB and System Design)</td>
<td>91</td>
</tr>
<tr>
<td>Praktikum Energietechnik 2 (Lab course Energy Engineering 2)</td>
<td>92</td>
</tr>
<tr>
<td>Praxissemester (Practical Semester)</td>
<td>94</td>
</tr>
<tr>
<td>Praktikum...</td>
<td>95</td>
</tr>
<tr>
<td>Präsentation & Moderation</td>
<td>97</td>
</tr>
<tr>
<td>Projektarbeit (Project Work)</td>
<td>99</td>
</tr>
<tr>
<td>Regelungstechnik (Control Engineering)</td>
<td>100</td>
</tr>
<tr>
<td>Praktikum Regelungstechnik</td>
<td>102</td>
</tr>
<tr>
<td>Regelungstechnik</td>
<td>104</td>
</tr>
<tr>
<td>Strömungsmaschinen (Turbomachinery)</td>
<td>106</td>
</tr>
<tr>
<td>Strömungsmaschinen</td>
<td>108</td>
</tr>
<tr>
<td>Strömungsmaschinen</td>
<td>109</td>
</tr>
<tr>
<td>Thermodynamik (Thermodynamics)</td>
<td>111</td>
</tr>
<tr>
<td>Thermodynamik</td>
<td>112</td>
</tr>
<tr>
<td>Wärmeübertragung (Heat Transfer)</td>
<td>114</td>
</tr>
<tr>
<td>Wärmeübertragung.</td>
<td>115</td>
</tr>
<tr>
<td>Der Mensch in einer technischen Welt: Innovation, ethische Verantwortung, Nachhaltigkeit (Human Beings in a Technological World: Innovation, Ethical Responsibility, Sustainability)</td>
<td>117</td>
</tr>
<tr>
<td>Allgemein ingenieurwissenschaftliches Wahlpflichtmodul</td>
<td>118</td>
</tr>
<tr>
<td>Akustische Kommunikation (Acoustic Communication)</td>
<td>120</td>
</tr>
<tr>
<td>Akustische Kommunikation</td>
<td>121</td>
</tr>
<tr>
<td>Antriebstechnik (Electrical Drives)</td>
<td>126</td>
</tr>
<tr>
<td>Antriebstechnik</td>
<td>127</td>
</tr>
<tr>
<td>Ausgewählte Kapitel der Regelungstechnik (Selected Topics in Control Engineering)</td>
<td>129</td>
</tr>
<tr>
<td>Ausgewählte Kapitel der Regelungstechnik</td>
<td>130</td>
</tr>
<tr>
<td>Codierung in der Informationsübertragung (Coding for Information Transmission)</td>
<td>139</td>
</tr>
<tr>
<td>Codierung in der Informationsübertragung</td>
<td>140</td>
</tr>
<tr>
<td>Der Mensch in einer technischen Welt: Innovation, ethische Verantwortung, Nachhaltigkeit (Human Beings in a Technological World: Innovation, Ethical Responsibility, Sustainability)</td>
<td>142</td>
</tr>
<tr>
<td>Digitalelektronik (Digital Electronics)</td>
<td>145</td>
</tr>
<tr>
<td>Digitalelektronik</td>
<td>146</td>
</tr>
<tr>
<td>Digitale Signalverarbeitung (Digital Signal Processing)</td>
<td>149</td>
</tr>
<tr>
<td>Digitale Signalverarbeitung</td>
<td>150</td>
</tr>
<tr>
<td>Echtzeit-Signalverarbeitung (Real-Time Signal Processing)</td>
<td>152</td>
</tr>
<tr>
<td>Echtzeit-Signalverarbeitung</td>
<td>153</td>
</tr>
<tr>
<td>EMV gerechter Leiterplatten- und Systementwurf (EMC compliant PCB and System Design)</td>
<td>158</td>
</tr>
<tr>
<td>EMV gerechter Leiterplatten- und Systementwurf</td>
<td>159</td>
</tr>
<tr>
<td>Finite Elemente (EI, ISE, REE)</td>
<td>167</td>
</tr>
<tr>
<td>Finite Elemente (EI, ISE, REE)</td>
<td>168</td>
</tr>
<tr>
<td>IC-Technologie (Integrated Circuit Technology)</td>
<td>175</td>
</tr>
<tr>
<td>IC-Technologie</td>
<td>176</td>
</tr>
<tr>
<td>Praktikum IC-Technologie</td>
<td>178</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>180</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>181</td>
</tr>
<tr>
<td>Mess- und Testtechnik (Measurement and Test)</td>
<td>183</td>
</tr>
<tr>
<td>Mess- und Testtechnik</td>
<td>184</td>
</tr>
<tr>
<td>Praktikum Mess- und Testtechnik</td>
<td>186</td>
</tr>
<tr>
<td>Optoelektronik, LED- und Lasertechnik (Optoelectronics, LED- & Laser-Technology)</td>
<td>191</td>
</tr>
<tr>
<td>Optoelektronik, LED- & Lasertechnik</td>
<td>192</td>
</tr>
<tr>
<td>Praktikum Antriebstechnik und Leistungselektronik (Lab course Electrical Drives and Power Electronics)</td>
<td>198</td>
</tr>
<tr>
<td>Praktikum Antriebstechnik und Leistungselektronik</td>
<td>199</td>
</tr>
<tr>
<td>Prozessinformatik</td>
<td>201</td>
</tr>
<tr>
<td>Prozessinformatik</td>
<td>202</td>
</tr>
<tr>
<td>Regelungstechnik Anwendungen (Applications of Control Engineering)</td>
<td>203</td>
</tr>
<tr>
<td>Regelungstechnik Anwendungen</td>
<td>204</td>
</tr>
<tr>
<td>Schaltungsintegration (Circuit Integration)</td>
<td>207</td>
</tr>
<tr>
<td>Praktikum Schaltungsintegration</td>
<td>208</td>
</tr>
<tr>
<td>Schaltungsintegration</td>
<td>210</td>
</tr>
<tr>
<td>Simulationstechniken, Matlab - Simulink (Simulation Techniques with MATLAB)</td>
<td>212</td>
</tr>
<tr>
<td>Simulationstechniken, Matlab - Simulink</td>
<td>213</td>
</tr>
<tr>
<td>Simulation Unternehmensführung für Ingenieure (m/w/d) (Simulation Business Management for Engineers)</td>
<td>215</td>
</tr>
<tr>
<td>Simulation Unternehmensführung für Ingenieure (m/w/d)</td>
<td>216</td>
</tr>
<tr>
<td>Software-Defined Radio</td>
<td>220</td>
</tr>
<tr>
<td>Software-Defined Radio</td>
<td>221</td>
</tr>
<tr>
<td>Software Engineering im Team</td>
<td>223</td>
</tr>
<tr>
<td>Software Engineering im Team</td>
<td>224</td>
</tr>
<tr>
<td>Software Engineering sicherer Systeme (Software Engineering of Safe and Secure Systems)</td>
<td>228</td>
</tr>
<tr>
<td>Software Engineering sicherer Systeme</td>
<td>229</td>
</tr>
<tr>
<td>Speicher Programmbare Steuerungen und Praktikum Automatisierungstechnik (Programmable Logic Controller)</td>
<td>233</td>
</tr>
<tr>
<td>Praktikum Automatisierungssysteme</td>
<td>234</td>
</tr>
<tr>
<td>Speicherprogrammbare Steuerungen</td>
<td>236</td>
</tr>
<tr>
<td>Systemsimulation (Systems Simulation)</td>
<td>238</td>
</tr>
<tr>
<td>Systemsimulation</td>
<td>239</td>
</tr>
<tr>
<td>Übertragungssysteme (Radio and line transmission)</td>
<td>241</td>
</tr>
<tr>
<td>Übertragungssysteme</td>
<td>242</td>
</tr>
<tr>
<td>Vertiefung Mess- und Sensortechnik (Advanced Course on Measurements and Sensor Technology)</td>
<td>244</td>
</tr>
<tr>
<td>Vertiefung Mess- und Sensortechnik</td>
<td>245</td>
</tr>
<tr>
<td>Wireless Systems Design</td>
<td>253</td>
</tr>
<tr>
<td>Wireless Systems Design</td>
<td>254</td>
</tr>
</tbody>
</table>

Energiespezifisches Wahlpflichtmodul

Anlagen- und Kraftwerkstechnik (Power Plant Technology)	123
Anlagen- und Kraftwerkstechnik	124
Biomasse (Biomass)	132
Biomasse	133
Brennstoffzellentechnologie (Fuel cell technology)	135
Brennstoffzellentechnologie	136
Elektrische Netztechnik (Electrical Power Systems)	155
Elektrische Netztechnik	156
Energiespeicher (Energy Storage)	161
Energiespeicher	162
Erzeugung neuer Energieträger (Generating new energy carrier)	164
Erzeugung neuer Energieträger	165
Hochspannungstechnik mit Praktikum (High Voltage Engineering with Lab Course)	170
Hochspannungstechnik	171
Praktikum Hochspannungstechnik	173
Netzplanung und Netzregelung (Networkplanning and grid control)	188
Netzplanung und Netzregelung	189
Photovoltaik und Solarthermie (Photovoltaics and Solar Thermal Energy)	194
Photovoltaik und Solarthermie	195
Wasserkraftwerke (Hydropower Plants)	247
Wasserkraftwerke (Hydropower Plants)	248
Windenergie (Wind energy)	250
Windenergie	251
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Elektrische Messtechnik (Electrical Measurements) | 10

### Modulverantwortliche/r	Fakultät
Prof. Dr. Robert Huber | Elektro- und Informationstechnik

### Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2 | 1 | Pflicht | 6

Empfohlene Vorkenntnisse
Grundlagen der Mathematik, Physik und Elektrotechnik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elektrische Messtechnik</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Elektrische Messtechnik</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Elektrische Messtechnik (Electrical Measurements)

Teilmodul	TM-Kurzbezeichnung
Elektrische Messtechnik | MT

Verantwortliche/r | Fakultät
Prof. Dr. Robert Huber | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Robert Huber | nur im Sommersemester

Lehrform
Seminaristischer Unterricht, ca. 20% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>2</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
56 h
Vor- und Nachbereitung: 45 h
Prüfungsvorbereitung: 19 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Grundlagen des Messens (Definitionen, Einheiten, Präfixe, logarithmische Maße, Rechengrößen)
- Messfehler und Messunsicherheiten (Fehlerdefinition, Fehlerarten, Mittelwerte, Verteilungen, Approximationsverfahren, Fehlerfortpflanzung)
- Multimeter (Abtast- und Halteschaltungen, AD-Wandler, Strom- und Spannungsmessung, Widerstandsmessung)
- Oszilloskope (Zweck und Funktionsprinzip, Messverfahren, Tastkopf, Messfehler)
- Messverstärker (Operationsverstärker und verschiedene Grundschaltungen)
- Zeit, Frequenz, Spektrum
- Messbrücken und reale Bauelemente

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Einheiten, Maße (auch logarithmische) sowie Rechengrößen zu benennen (1) und anzuwenden (2)
- Begriffe der Messtechnik wie Genauigkeit, Auflösung, Empfindlichkeit, Fehlerarten, Mittelwerte, Übertragungsfunktion und dynamische Messfehler zu definieren (1) und sinngerecht zu verwenden (2)
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Elektrische Messtechnik (Electrical Measurements)

- Funktionsprinzipien von Multimetern, Oszilloskopen und AD-Wandlern, Operationsverstärkern, Brückenschaltungen in der Messtechnik sowie Prinzipien der Zeit- und Frequenzmessung zu erläutern (2)
- einfache messtechnische Schaltungen inkl. Messunsicherheiten zu berechnen (2)
- einfache Operationsverstärkerschaltungen zu analysieren und zu berechnen (2)
- mit Grundbegriffen der Messunsicherheit, Statistik und Fehlerrechnung umzugehen (2) sowie Daten im Zeit- und Frequenzbereich zu analysieren (3)
- einfache messtechnische Fragestellungen ingenieurmäßig zu analysieren (3) und Lösungsmöglichkeiten zu erarbeiten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Notwendigkeit einer Vorbereitung auf die Veranstaltungen zu erkennen (1) und sich zur Teilnahme zu motivieren (3)

Angebotene Lehrunterlagen
Skript, Übungen mit Lösungen

Lehrmedien
Tafel, Rechner/Beamer, e-learning-Plattform, Clicker system

Literatur
Hoffmann, Jörg: Taschenbuch der Messtechnik, Hanser-Verlag 2007
Schrüfer, E.: Elektrische Messtechnik, Hanser-Verlag 2012

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Elektrische Messtechnik (Electrical Measurements)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Elektrische Messtechnik</td>
<td>PME</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Huber</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Susanne Hipp</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Robert Huber</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Andreas Maier</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laborpraktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Anwendung von elektronischen und messtechnischen Grundlagen mit praktischen Versuchen
- Es werden mehrere Versuche angeboten, die alle erfolgreich durchlaufen werden müssen
- Einführung in die Handhabung des Oszilloskops im Rahmen der Praktikumseinführung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Funktionsprinzipien einfacher Messgeräte (Multimeter, Oszilloskop, Signalgenerator, …) zu erläutern (2) und diese Geräte zu bedienen (3)
- einfache elektrische Schaltungen aufzubauen (2) und in Betrieb zu nehmen (3)
- einen Versuchsablauf zu dokumentieren (2), Messdaten zu erfassen (2) und kritisch auszuwerten (3)
- einfache messtechnische Fragestellungen ingenieurmäßig zu analysieren (2) und Lösungsmöglichkeiten zu erarbeiten (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- eine Arbeitsteilung in Gruppen insbesondere unter Beachtung der neuen Bedingungen seit Sommersemester 2020 zu organisieren (2)
- aussagekräftige, der guten wissenschaftlichen Praxis entsprechende Versuchsberichte zu erstellen (3)
- die Notwendigkeit einer Vorbereitung auf die Veranstaltungen zu erkennen (1) und sich zur aktiven Teilnahme zu motivieren (3)

Angebotene Lehrunterlagen

- Aufgabenstellungen, Datenblätter

Lehrmedien

- Je nach Aufgabenstellung

Literatur

- Hoffmann, Jörg: Taschenbuch der Messtechnik, Hanser-Verlag 2007
- Schrüfer, E.: Elektrische Messtechnik, Hanser-Verlag 2012

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Elektrotechnik 1 (Electrical Engineering 1)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Zulassungsvoraussetzung zur Prüfung GE1 gemäß Studienplan

Empfohlene Vorkenntnisse

Vektorrechnung, Differential- und Integralrechnung mit Polynomen, Logarithmus- und Exponentialfunktionen, trigonometrischen Funktionen, quadratische Gleichungen

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Grundlagen der Elektrotechnik 1</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Grundlagen der Elektrotechnik 1 (Electrical Engineering 1)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Elektrotechnik 1</td>
<td>GE1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Prof. Dr. Andreas Maier</td>
</tr>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht, Übungsanteil ca. 15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1</td>
<td>6 SWS</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 84 h
 - Vor- und Nachbereitung: 84 h
 - Prüfungsvorbereitung: 42 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Grundbegriffe zu elektrischen und magnetischen Größen
- Grundlagen Schaltungstechnik und Zweipoltheorie
- Elektrische Energie und Leistung
- Grundlagen Netzwerktheorie
- Lineare und nichtlineare Netzwerke
- Grundlagen der Feldtheorie
- Elektrische Felder
- Stationäre Magnetfelder
- Gefahren und Wirkungen des elektrischen Stroms
- Normen und Prüfzeichen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- physikalischen Gesetze der Elektrotechnik zu verstehen (3)
- die Maxwell-Gleichungen in integraler Darstellung fachlich einzuordnen (1)
- das Konzept konzentrierter Elemente zu verstehen (2)
- integrale und verteilte Größen zu unterscheiden (3)
Grundlegende Rechenmethoden anzuwenden (2)
lineare und nichtlineare Schaltungen zu analysieren (3)
typische Anordnungen mit elektrischen und magnetischen Feldern zu berechnen (2)
grundlegende Rechenmethoden mit konzentrierten Elementen und Feldgrößen anzuwenden (2)
ausgewählte mathematische Methoden auf komplexe Probleme der Feldtheorie und Schaltungstechnik anzuwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Übungen mit Kurz- und Detaillösungen, Arbeitsblätter, Literaturliste

Lehrmedien
Tafel, Projektor

Literatur
- Führer et al.: Grundgebiete der Elektrotechnik, Bd. 1-3, Hanser 2011
- Frohne et al.: Moeller Grundlagen der Elektrotechnik, Vieweg + Teubner 2011
- Hagmann: Grundlagen der Elektrotechnik, Aula 2017

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Grundlagen der Elektrotechnik 2 (Electrical Engineering 2)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Elektrotechnik 2 (Electrical Engineering 2)</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Grundlagen der Elektrotechnik 1

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grundlagen der Elektrotechnik 2</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Modulname: Grundlagen der Elektrotechnik 2 (Electrical Engineering 2)

Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Elektrotechnik 2</td>
<td>GE2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Maier</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
seminaristischer Unterricht, Übungsanteil ca. 15%

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 84 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 42 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte

- Zeitlich veränderliches Magnetfeld und Induktion
- Grundlagen Wechselstromtechnik
- Analyse linearer Schaltungen im eingeschwungenen Zustand
- Analyse linearer Systeme 2. Ordnung, Resonanz
- Analyse parasitärer Effekte bei realen Bauelementen
- Dreiphasensysteme
- Grundlagen Transformator
- Beschreibung in Zeit- und Frequenzbereich
- Spektraltransformationen und Fourieranalyse
- Schutzmaßnahmen gegen elektrischen Schlag (Basisschutz, Fehlerschutz, zusätzlicher Schutz)
- Schutz von Kabeln und Leitungen
- Geräte für Schutzmaßnahmen mit automatischer Abschaltung (Auswahl / Einsatz von Sicherungen, Fehlerströme und -arten)
- Personen in elektrischen Anlagen (5 Sicherheitsregeln, Spannungsbereiche, Schutzklassen, IP-Schutzgrad)

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Seite 16
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die komplexe Rechenmethode auf Wechselstromschaltungen anzuwenden (3)
- Grundlegende Aspekte von Spektraltransformationen zu verstehen (2)
- Dreiphasensysteme zu verstehen (2)
- typische Schaltungen im Dreiphasensystem zu berechnen (2)
- ideale und reale Übertrager zu modellieren (2)
- lineare Schaltungen bei Betrieb mit sinusförmigen Größen zu berechnen (3)
- lineare und nichtlineare Schaltungen bei Betrieb mit nichtsinusförmigen Größen zu berechnen (2)
- lineare Systeme 2. Ordnung zu analysieren (2)
- lineare und nichtlineare Schaltungen im Zeit- und Frequenzbereich zu beschreiben (2)
- Probleme durch Betrachtungen im Zeit- und Frequenzbereich zu lösen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Übungen mit Kurz- und Detaillösungen, Arbeitsblätter, Literaturliste

Lehrmedien

Tafel, Projektor

Literatur

- Führer et al.: Grundgebiete der Elektrotechnik, Bd. 1-3, Hanser 2011
- Frohne et al.: Moeller Grundlagen der Elektrotechnik, Vieweg + Teubner 2011
- Hagmann: Grundlagen der Elektrotechnik, Aula 2017

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Informatik 1 (Computer Science 1)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik 1 (Computer Science 1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Informatik 1</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Informatik 1</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik 1</td>
<td>IN1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Michael Niemetz

Fakultät
- Elektro- und Informationstechnik

Lehrende/r / Dozierende/r
- Prof. Dr. Detlef Jantz
- Prof. Dr. Peter Jüttner
- Prof. Dr. Peter Kuczynski
- Prof. Dr. Michael Niemetz
- Prof. Dr. Armin Sehr

Angebotsfrequenz
- jährlich

Lehrform
- Vorlesung mit 10% Übungsanteil

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 48 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 16 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

- siehe Studienplantabelle
Inhalte

Die Lehrveranstaltung vermittelt die Grundkonzepte der prozeduralen Programmierung sowie des Ausführungsmodells der Sprache C. Dabei werden einerseits die abstrakten Grundkonzepte, aber auch ihre Umsetzung in der Sprache C behandelt, so dass auch Studierende ohne Programmierkenntnisse Gelegenheit erhalten, der Lehrveranstaltung zu folgen.

Es werden insbesondere folgende Themen behandelt:

Grundkonzepte der prozeduralen Programmierung

- Struktur prozeduraler Programme in C: Definitionen, Deklarationen, Anweisungen, Ausdrücke, Funktionen
- Elementare Datentypen: Deklaration, Definition, Datentypen, Wertebereiche, Interndarstellung, Litaralkonstanten, Konstanten, Arrays, Strukturdatentypen
- Anweisungen und Kontrollstrukturen: Ausdrucksanweisung, Mehrfachanweisung, Verzweigungen, Schleifen, Funktionen und Funktionsaufrufe
- Ausführungsmodell der Sprache C: Funktionen, Speichermodell, Speicherverwaltung, Parametermechanismus, Pointer
- Der Übersetzungsvorgang: Präprozessor, Compiler, Linker, Mehreilige Programme
- Präprozessor: Präprozessorsymbole, Ersetzungsmechanismus, bedingte Compilierung, Includemechanismus, vordefinierte Symbole
- Verwendung der Standardbibliothek

Anwendungen der prozeduralen Programmierung

- Anwendungen und Algorithmenfamilien: Zustandsautomaten, Sortierverfahren, Zufallszahlen und Monte-Carlo Algorithmen, iterative Verfahren, Rekursion, einfache Grafikprogrammierung, einfach verkettete Listen
- Dateizugriffe: Anlegen, Lesen und Schreiben von Dateien, formatierte Ein- und Ausgabe, zeilenweise Ein- und Ausgabe, binäre Ein- und Ausgabe
- Effiziente Verwendung der Entwicklungsumgebung
- Fehlersuche und Verwendung des Debuggers

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, selbständig Programmierprobleme durch prozedurale Programmierung zu lösen.

Folgende Kenntnisse werden von den Teilnehmern des Kurses hierfür erworben (10 %):

- Grundkonzepte und Begriffe der prozeduralen Programmierung
- Grundlegende Sprachelemente von C
- Kenntnis einfachfacher Standardalgorithmen
- Grundlegende Kenntnisse von Entwicklungswerkzeugen und Ausführmodell
- Grundlegender Einblick in die Wichtigkeit nichtfunktionaler Eigenschaften (Wartbarkeit, Entwicklungsaufwand, minimale Redundanz im Quellcode) sowie in Möglichkeiten der Umsetzung

Folgende Fertigkeiten werden von den Teilnehmern des Kurses hierfür erworben (60 %):

- Implementierung von vorliegenden Algorithmen in C
- Verstehen fremder Implementierungen
- Eigenständiges Entwerfen einfacher eigener Algorithmen
- Präsentation der selbst entwickelten Softwarelösungen sowie Diskussion kontroverser Lösungsansätze
- Eigenständiges Erstellen prozedural strukturierter Software Designs und korrekte Implementierung
- Umgang mit Entwicklungsumgebungen
- Eigenständige Verwendung von Debugging-Werkzeugen zur Fehlersuche

Folgende fachliche und nichtfachliche Kompetenzen werden von den Teilnehmern des Kurses hierfür erworben (30 %):

- Selbständige Problemanalyse und strukturiertes problemlösendes Denken
- Selbständiges Lösen von gering- bis mittelkomplexen Problemen durch Entwerfen von C-Programmen
- Beurteilung der Plausibilität von Programmergebnissen
- Test, Fehlersuche und -behebung an eigenen und fremden C-Programmen

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Bedeutung sorgfältigen, selbständigen Arbeitens für Ihren Lernerfolg einzuschätzen.

Persönliche Kompetenzen werden in dieser Veranstaltung nicht explizit, sondern verwoben mit den fachlichen Kompetenzen vermittelt und soweit möglich geprüft. Siehe daher unter „Fachkompetenz“.

Angebotene Lehrunterlagen

Skript (Informatik für Ingenieure, siehe Literaturliste), Programme aus der Vorlesung, Literaturliste

Lehrmedien

Tafel, Rechner mit Entwicklungsumgebung, Beamer, ergänzende Unterlagen im zugehörigen eLearning-Kurs

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Informatik 1</td>
<td>PIN 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Detlef Jantz</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Peter Jüttner</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Armin Merten</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betreutes Praktikum am Computer; z. T. Online-Betreuung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bis zu 26 h (freie Einteilung)</td>
</tr>
</tbody>
</table>

Eigenstudium

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor- und Nachbereitung: 34 h (mind.)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

Zugelassene Hilfsmittel für Leistungsnachweis

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Im Zuge des Praktikums werden von den Studierenden selbständig Programmieraufgaben gelöst, welche die unterschiedliche Konzepte der prozeduralen Programmierung vorstellen und vertiefen.

Die Studierenden setzen die Aufgabenstellung dabei geführt in C-Implementierungen um, wobei im Laufe des Semesters zunehmend offene Fragestellungen selbstständiges Denken fordern und damit die Kompetenz zur eigenständigen Lösungsfindung stärken.

Dabei werden folgende Inhalte berührt:

Grundkonzepte der prozeduralen Programmierung in C
- Struktur prozeduraler Programme in C: Definitionen, Deklarationen, Anweisungen, Ausdrücke, Funktionen
- Elementare Datentypen: Deklaration, Definition, Datentypen, Wertebereiche, Internderartstellung, Litaralkonstanten, Konstanten, Arrays, Strukturdatentypen
- Anweisungen und Kontrollstrukturen: Ausdrucksanweisung, Mehrfachanweisung, Verzweigungen, Schleifen, Funktionen und Funktionsaufrufe
- Ausführungsmodell der Sprache C: Funktionen, Speichermodell, Speicherverwaltung, Parametermechanismus, Pointer
- Der Übersetzungsvorgang: Präprozessor, Compiler, Linker, Mehrteilige Programme
- Präprozessor: Präprozessorsymbole, Ersetzungsmechanismus, bedingte Compilierung, Includemechanismus, vordefinierte Symbole
- Verwendung der Standardbibliothek

Anwendungen der prozeduralen Programmierung in C
- Anwendungen und Algorithmenfamilien: Zustandsautomaten, Sortierverfahren, Zufallszahlen und Monte-Carlo Algorithmen, iterative Verfahren, Rekursion, einfache Grafikprogrammierung, einfach verkettete Listen
- Dateizugriffe: Anlegen, Lesen und Schreiben von Dateien, formatierte Ein- und Ausgabe, zeilenweise Ein- und Ausgabe, binäre Ein- und Ausgabe
- Effiziente Verwendung der Entwicklungsumgebung
- Fehlersuche und Verwendung des Debuggers

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, selbständig Programmierprobleme durch prozedurale Programmierung zu lösen.

Folgende Kenntnisse werden von den Teilnehmern des Kurses hierfür erworben (10%):
- Grundkonzepte und Begriffe der prozeduralen Programmierung
- Grundlegende Sprachelemente von C
- Kenntnis einfacher Standardalgorithmen
- Grundlegende Kenntnisse von Entwicklungswerkzeugen und Ausführungsmodell
- Grundlegender Einblick in die Wichtigkeit nicht-funktionaler Eigenschaften (Wartbarkeit, Entwicklungsaufwand, minimale Redundanz im Quellcode) sowie in Möglichkeiten der Umsetzung

Folgende Fertigkeiten werden von den Teilnehmern des Kurses hierfür erworben (60%):
• Implementierung von vorliegenden Algorithmen in C
• Verstehen fremder Implementierungen
• Eigenständiges Entwerfen einfacher eigener Algorithmen
• Präsentation der selbst entwickelten Softwarelösungen sowie Diskussion kontroverser Lösungsansätze
• Eigenständiges Erstellen prozedural strukturierter Software Designs und korrekte Implementierung
• Umgang mit Entwicklungsumgebungen
• Eigenständige Verwendung von Debugging-Werkzeugen zur Fehlersuche
• Selbständiges Lesen und Verstehen fremder Programme inklusive Fehlerkorrektur

Folgende fachliche und nichtfachliche Kompetenzen werden von den Teilnehmern des Kurses hierfür erworben (30%):

• Selbständige Problemanalyse und strukturiertes problemlösendes Denken
• Selbständiges Lösen von gering- bis mittelkomplexen Problemen durch Entwerfen von C-Programmen
• Beurteilung der Plausibilität von Programmergebnissen
• Test, Fehlersuche und -behebung an eigenen und fremden C-Programmen
• Eigenständiges Erstellen und Implementieren von Lösungsstrategien niedriger bis mittlerer Komplexität ggf. unter Auswahl und Anwendung geeigneter Algorithmen

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Bedeutung sorgfältigen, selbständigen Arbeitens für Ihren Lernerfolg einzuschätzen.

Persönliche Kompetenzen werden in dieser Veranstaltung nicht explizit, sondern verwoben mit den fachlichen Kompetenzen vermittelt und soweit möglich geprüft. Siehe daher unter „Fachkompetenz“.

Angebotene Lehrunterlagen

Praktikumsaufgaben, Programmrümpfe, Zusatzanleitungen

Lehrmedien

Rechner mit Entwicklungsumgebung, ggf. Tafel, Beamer, eLearning-Kurs, diverse Embedded-Systeme bzw. Lego Mindstorms je nach Aufgabenlage

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname:
Informatik 2 (Computer Science 2)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik 2 (Computer Science 2)</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r | Fakultät
Prof. Dr. Michael Niemetz | Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Für ein erfolgreiches Absolvieren des Moduls sind solide Grundkenntnisse in der prozeduralen Programmierung mit C eine notwendige Voraussetzung. Diese wird im Regelfall in der Vorlesung Informatik 1 und dem dazugehörigen Praktikum Informatik 1 erworben.

Neben der Beherrschung der in C verfügbaren Datentypen, Operatoren und Kontrollstrukturen wird die Beherrschung einfachster Algorithmen sowie der Grundlagen der prozeduralen Programmierung (z.B. Parameterübergabemechanismus, Rückgabewerte) sowie insbesondere des Umgangs mit Pointern und der dynamischen Speicherverwaltung vorausgesetzt.

Zusätzlich zur Kenntnis und dem Verständnis der entsprechenden Konzepte wird die Fähigkeit zum praktischen Einsatz der Konzepte bei der Lösung von Programmieraufgaben sowie der Umgang mit den entsprechenden Programmierwerkzeugen (Präprozessor, Compiler, IDE, Debugger) der Sprache C vorausgesetzt.

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Informatik 2</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Informatik 2</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Informatik 2 (Computer Science 2)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik 2</td>
<td>IN2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Roland Mandl</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrform | Vorlesung mit 15% Übungsanteil |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 46 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 16 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

Zugelassene Hilfsmittel für Leistungsnachweis

| Zugelassene Hilfsmittel für Leistungsnachweis | siehe Studienplantabelle |

Stand: 15.03.2022

Ostbayerische Technische Hochschule Regensburg
Seite 26
Inhalte

Objektorientierte Programmierung und ihre Umsetzung in der Programmiersprache C++

- Klassen und Objekte
- UML als Beschreibungssprache für objektorientierte Programmentwürfe
- Lebenszyklen von Objekten
- Vererbung und Polymorphie, Virtuelle Methoden
- Daten kapselung
- Abstrakte Klassen und Methoden
- Exception-Mechanismus
- Umsetzung von Datenstrukturen und Algorithmen in C++
- Referenzen und andere neue Datentypen
- Überladen von Funktionen und Operatoren
- Defaultargumente von Funktionen
- Die C++ Standardbibliothek und der Templatemechanismus

Grundlegende Themen des Softwareengineering

- Problembezogener objektorientierter Entwurf von Anwendungen
- Problembezogene Entwicklung und Implementierung grundlegender Datenstrukturen
- Problembezogene Entwicklung und Umsetzung einfacher Algorithmen
- Design und Implementierungskonzepte mit Rekursion contra Iteration

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, selbständig Programmierprobleme durch objektorientierte Programmierung zu lösen.

Folgende Kenntnisse werden von den Teilnehmern des Kurses hierfür erworben (10 %):

- Grundkonzepte und Begriffe der objektorientierten Programmierung
- Grundlegende Kenntnisse der Funktionsweise und Bedienung von Entwicklungswerkzeugen
- Grundlegende Kenntnisse des Ausführungsmodells
- Vertiefung der Kenntnis der C++-Sprachelemente
- Vertiefung des Verständnisses des C++-Speichermodells
- Versionsmanagement in der Softwareentwicklung

Folgende Fertigkeiten werden von den Teilnehmern des Kurses hierfür erworben (40 %):

- Eigenständige Implementierung von vorliegenden Algorithmen in C++
- Selbständiges Verstehen fremder Implementierungen in C++ anhand des Quellcodes
- Selbständiger Entwurf einfacher objektorientierter Softwarelösungen
- Eigenständige Verwendung von Debugging-Werkzeugen zur Fehlersuche
- Dokumentation (UML Diagramme, Kommentare, Dokumentationswerkzeuge wie Doxygen), Präsentation der selbst entwickelten Softwarelösungen sowie Diskussion kontroverser Lösungsansätze
- Erstellen objektorientierten Software Designs und korrekte Implementierung
- Umgang mit Entwicklungsumgebungen
- Umgang mit moderner Versionsmanagement-Software zur Quellcodeverwaltung und Kollaboration
- Praktische Anwendung von Objektorientierung in Programmen
Einblick in die Wichtigkeit nichtfunktionaler Eigenschaften (Wartbarkeit, Entwicklungsaufwand, minimale Redundanz im Quellcode) sowie in Möglichkeiten der Umsetzung

Folgende fachliche und nichtfachliche Kompetenzen werden von den Teilnehmern des Kurses hierfür erworben (30 %):

- Selbständige Problemanalyse und strukturiertes problemlösendes Denken
- Selbständiges Lösen von gering- bis mittelkomplexen Problemen durch Entwerfen von C++-Programmen
- Selbständige Fehlersuche und Behebung an eigenen und fremden C++-Programmen
- Eigenständiger Entwurf leistungsfähiger, fehlerfreier und robuster C++-Programme
- Beurteilung der Performance und des Resourcenverbrauchs von Programmen
- Beurteilung der Plausibilität von Programmergebnissen

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Gefahren und Chancen der Teamarbeit im Studium zu erkennen und diese zielgerichtet optimal einzusetzen.

Persönliche Kompetenzen werden in dieser Veranstaltung nicht explizit, sondern verwoben mit den fachlichen Kompetenzen vermittelt und soweit möglich geprüft. Siehe daher unter „Fachkompetenz“.

Lehrmedien

Tafel, Rechner mit Entwicklungsumgebung, Beamer, ergänzende Unterlagen im zugehörigen eLearning-Kurs

Literatur

- N.N.: C++ für C-Programmierer. 12. Auflage, RRZN-Scripten, Hannover
- Meyers S.: Effektiv C++ programmieren. 3. Aufl., Addison-Wesley (2008)
- Stroustrup B.: Die C++-Programmiersprache. 4. Aufl., Addison-Wesley (2009)
- Dattatri, Kayshav: C++: Effective Object-Oriented Software Construction
- Jürgen Wolf, Grundkurs C++, Galileo Computing
- Jürgen Wolf, C++ Das umfassende Handbuch, Galileo Computing
- Stanley B. Lippman, Josée Lajoie, Barbara E. Moo: C++ Primer, Addison Wesley
- Andrew Koenig, Barbara E. Moo: Accelerated C++, Addison Wesley
- Richard M. Reese: Understanding and Using C Pointers, O'Reilly

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15.03.2022
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Informatik 2</td>
<td>PIN2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Michael Farmbauer (LB)</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum an Rechnerarbeitsplätzen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>28 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Im Rahmen der Lehrveranstaltung werden von den Teilnehmern selbständig Programmieraufgaben nach verschiedenen vorgegebenen Problemstellungen gelöst. Dabei werden folgende Themen praktisch eingesetzt:

Objektorientierte Programmierung und ihre Umsetzung in der Programmiersprache C++
- Klassen und Objekte
- UML als Beschreibungssprache für objektorientierte Programmentwürfe
- Lebenszyklen von Objekten
- Vererbung und Polymorphie, Virtuelle Methoden
- Daten kapselung
- Abstrakte Klassen und Methoden
- Exception-Mechanismus
- Umsetzung von Datenstrukturen und Algorithmen in C++
- Referenzen und andere neue Datentypen
- Überladen von Funktionen und Operatoren
- Defaultargumente von Funktionen
- Die C++ Standardbibliothek und der Templatemechanismus

Grundlegende Themen des Softwareengineerings
- Problembezogener objektorientierter Entwurf von Anwendungen
- Problembezogene Entwicklung und Implementierung grundlegender Datenstrukturen
- Problembezogene Entwicklung und Umsetzung einfacher Algorithmen
- Design und Implementierungskonzepte mit Rekursion contra Iteration

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, selbständig Programmierprobleme durch objektorientierte Programmierung zu lösen.

Folgende Kenntnisse werden von den Teilnehmern des Kurses hierfür erworben (10 %):
- Grundlegende Kenntnisse der Funktionsweise und Bedienung von Entwicklungswerkzeugen
- Grundlegende Kenntnisse des Ausführungsmodells
- Vertiefung der Kenntnis der C++-Sprachelemente
- Vertiefung des Verständnisses des C++-Speichermodells
- Versionsmanagement in der Softwareentwicklung

Folgende Fertigkeiten werden von den Teilnehmern des Kurses hierfür erworben (40 %):
- Eigenständige Implementierung von vorliegenden Algorithmen in C++
- Selbständiges Verstehen fremder Implementierungen in C++ anhand des Quellcodes
- Selbständiger Entwurf einfacher objektorientierter Softwarelösungen
- Eigenständige Verwendung von Debugging-Werkzeugen zur Fehlersuche
- Dokumentation (UML Diagramme, Kommentare, Dokumentationswerkzeuge wie Doxygen), Präsentation der selbst entwickelten Softwarelösungen sowie Diskussion kontroverser Lösungsansätze
- Erstellen objektorientierten Software Designs und korrekte Implementierung
- Umgang mit Entwicklungsumgebungen
• Umgang mit moderner Versionsmanagement-Software zur Quellcodeverwaltung und Kollaboration
• Praktische Anwendung von Objektorientierung in Programmen
• Einblick in die Wichtigkeit nichtfunktionaler Eigenschaften (Wartbarkeit, Entwicklungsaufwand, minimale Redundanz im Quellcode) sowie in Möglichkeiten der Umsetzung

Folgende fachliche und nichtfachliche Kompetenzen werden von den Teilnehmern des Kurses hierfür erworben (30 %):

• Selbständige Problemanalyse und strukturiertes problemlösendes Denken
• Selbständiges Lösen von gering- bis mittelkomplexen Problemen durch Entwerfen von C++-Programmen
• Selbständige Fehlersuche und Behebung an eigenen und fremden C++-Programmen
• Eigenständiger Entwurf leistungsfähiger, fehlerfreier und robuster C++-Programme
• Beurteilung der Performance und des Resourceverbrauchs von Programmen
• Beurteilung der Plausibilität von Programmergebnissen

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Gefahren und Chancen der Teamarbeit im Studium zu erkennen und diese zielgerichtet optimal einzusetzen.

Persönliche Kompetenzen werden in dieser Veranstaltung nicht explizit, sondern verwoben mit den fachlichen Kompetenzen vermittelt und soweit möglich geprüft. Siehe daher unter „Fachkompetenz“.

Angebotene Lehrunterlagen
Praktikumsaufgaben, Programmrümpfe, Zusatzanleitungen, git-Kurzanleitung und online-Minitutorial

Lehrmedien
Rechner mit Entwicklungsumgebung, ggf. Tafel, Beamer, git-Client, gitLab-Server, eLearning-Kurs

Literatur
• N.N.: C++ für C-Programmierer. 12. Auflage, RRZN-Scripten, Hannover
• Meyers S.: Effektiv C++ programmieren. 3. Aufl., Addison-Wesley (2008)
• Stroustrup B.: Die C++-Programmiersprache. 4. Aufl., Addison-Wesley (2009)
• Jürgen Wolf, Grundkurs C++, Galileo Computing
• Jürgen Wolf, C++ Das umfassende Handbuch, Galileo Computing
• Stanley B. Lippman, Josée Lajoie, Barbara E. Moo: C++ Primer, Addison Wesley
• Andrew Koenig, Barbara E. Moo: Accelerated C++, Addison Wesley
• Richard M. Reese: Understanding and Using C Pointers, O’Reilly

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1 (Mathematics 1)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Bezeichnung der Teilmodule</td>
<td>Lehrumfang [SWS o. UE]</td>
<td>Arbeitsaufwand [ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>Mathematik 1</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>Modulname: Mathematik 1 (Mathematics 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1</td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht: ca. 20 % Übungsanteil

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

1 | 6 SWS | deutsch | 6 |

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 68 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 28 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

Grundlagen
- Mengen, Folgen, Reihen, Funktionen

Eindimensionale Differentialrechnung
- Ableitung elementarer Funktionen
- Differentiationsregeln
- Kurvendiskussion

Eindimensionale Integralrechnung
- Flächeninhalt und bestimmtes Integral
- Stammfunktion und unbestimmtes Integral
- Integrationsmethoden
- Uneigentliche Integrale

Reelle Vektorräume
- Vektorbegriff
- Lineare Zusammenhänge
- Betrag, Abstand, Skalarprodukt, Vektorprodukt

Matrizen und Determinanten
- Matrizenarithmetik
- Quadratische Matrizen
- Rang, Determinante
- Eigenwerte und Eigenvektoren

Lineare Gleichungssysteme
- Zeilenstufenform
- Lösungsraum

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- grundlegende Begriffe, Festlegungen und Beispiele der univariaten reellen Analysis, z.B. Grenzwert, Folge, Ableitung, Integral, und der linearen Algebra, z.B. Vektor, Matrix, lineares Gleichungssystem, zu erläutern (1);
- eine Übersicht über wesentliche Regeln und Methoden der univariaten reellen Analysis, z.B. der Differentiation, Integration, und der linearen Algebra, z.B. der Matrizenrechnung, Determinanten-, Eigenwertberechnung, zur Lösung linearer Gleichungssysteme, anzugeben (1);
- Konvergenz / Divergenz einfacher reeller Zahlenfolgen zu bestimmen (2);
- die Ableitung univariater reeller Funktionen sicher zu bestimmen (2);
- wichtige Integrationsmethoden für univariate reelle Funktionen korrekt zu benutzen (2);
- Matrizen-, Rang- und Determinantenberechnung korrekt durchzuführen (2);
- Eigenwerte und -vektoren in kleinen Dimensionen zu bestimmen (2);
- die Lösungsräume linearer Gleichungssysteme sicher zu berechnen (2);
Grenzwert- und Stetigkeitsverhalten univariater reeller Funktionen zu untersuchen (3);
das Verhalten univariater reeller Funktionen durch Einsatz der Differentialrechnung zu analysieren (3);
mit der Integralrechnung univariate reelle Funktionen geometrisch zu analysieren (3);
bere linearen Zusammenhängen den Matrixkalkül und Matrixkenngrößen ziel führend einzusetzen (3);
Lösungsräume linearer Gleichungssysteme zu analysieren und zu interpretieren (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
- Übungsaufgaben, Literaturliste

Lehrmedien
- Overheadprojektor, Tafel, Rechner, Beamer, Mathematische Software

Literatur
- Stewart, J.: Calculus, Cengage Learning Services, 2014

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 2</td>
<td>6 SWS</td>
<td>6</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematik 2</td>
<td>MA2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gerhard Dietel (LB)</td>
<td>jährlich</td>
</tr>
<tr>
<td>Detlef Gröger (LB)</td>
<td></td>
</tr>
<tr>
<td>Oliver Hien (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Georg Illies</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Dietwald Schuster</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrendes/r / Dozierendes/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gerhard Dietel (LB)</td>
<td>jährlich</td>
</tr>
<tr>
<td>Detlef Gröger (LB)</td>
<td></td>
</tr>
<tr>
<td>Oliver Hien (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Georg Illies</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Dietwald Schuster</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht: ca. 20 % Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>84 h</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Komplexe Zahlen
- Normal-, Polar- und Exponentialform
- Arithmetik
- Geometrische Interpretation

Potenzreihen
- Konvergenzverhalten
- Methoden der Potenzreihenentwicklung

Komplexe Funktionen
- Definition und geometrische Deutung
- Exponentialfunktion und verwandte Funktionen
- Logarithmus und allgemeine Potenz

Differential- und Integralrechnung mehrerer Veränderlicher
- Funktionen mit mehreren Variablen
- Partielle Differentiation und totales Differential
- Anwendungen
- Lokale und globale Extremwerte
- Mehrfachintegrale

Gewöhnliche Differentialgleichungen
- Anfangswert- und Randwertprobleme
- Differentialgleichungen 1. Ordnung
- Numerische Lösungsverfahren
- Lineare Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten
- Differentialgleichungen höherer Ordnung
- Differentialgleichungssysteme

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- grundlegende Begriffe, Festlegungen und Beispiele der komplexen Analysis, z.B.
 Potenzreihen, elementare Funktionen, der multivariaten reellen Analysis, z.B. Ableitungen,
 Mehrfachintegral, und gewöhnlicher Differentialgleichungen, z.B. Klassifizierung, zu
 erläutern (1);
- wichtige Konvergenzkriterien auf einfache Zahlenreihen korrekt anzuwenden (2);
- Konvergenzbereiche einfacher Potenzreihen korrekt zu bestimmen (2);
- mit komplexen Zahlen und elementaren komplexen Funktionen sicher zu rechnen (2);
- komplexe Zahlen und elementare komplexe Funktionen geometrisch zu veranschaulichen
 (2);
- partielle und totale Ableitungen multivariater reeller Funktionen sicher zu berechnen (2);
- wichtige Integrationsmethoden für multivariate reelle Funktionen korrekt durchzuführen (2);
- Grenzwert- und Stetigkeitsverhalten multivariater reeller Funktionen zu untersuchen (3);
- das Verhalten multivariater reeller Funktionen (u.a. Extremwerte) durch Einsatz der
 Differentialrechnung zu analysieren (3);
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Mathematik 2 (Mathematics 2)

- mit Mehrfachintegration multivariate Funktionen geometrisch zu analysieren (3);
- wichtige Lösungsmethoden auf einfache gewöhnliche Differentialgleichungen richtig anzuwenden (3).

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übungsaufgaben, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheadprojektor, Tafel, Rechner, Beamer, Mathematische Software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stewart, J.: Calculus, Cengage Learning Services, 2014</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik & Chemie (Physics & Chemistry)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rita Elrod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Schulmathematik: Differentialrechnung, Integralrechnung, Vektorrechnung; Grundlagen der Chemie

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Physik & Chemie</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul
Physik & Chemie

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>PC</th>
</tr>
</thead>
</table>

Verantwortliche/r
Prof. Dr. Walter Rieger
Rita Elrod

<table>
<thead>
<tr>
<th>Fakultät</th>
<th>Angewandte Natur- und Kulturwissenschaften</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r
Rita Elrod
Prof. Dr. Walter Rieger

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
<th>jährlich</th>
</tr>
</thead>
</table>

Lehrform
Seminaristischer Unterricht mit 10% Übungsanteil

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>Vor- und Nachbereitung: 90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle
Inhalte

Chemie
- Gleichgewichtsreaktionen, Chemisches Gleichgewicht, Massenwirkungsgesetz, Massen- und Stoffbilanzen, pH-Wert
- Elektrochemie: Redoxreaktionen, Spannungsreihen, Standardpotenziale, Nernstscbe Gleichung, Faradaysche Gesetze, Elektrolyse, Batterien, Korrosion

Physik
- Mechanik: Kinematik (Beschreibung von Bewegungen, insbesondere Kreisbewegung), Kräfte, Impuls, Energie, Erhaltungssätze, Harmonische Schwingungen, Wellen
- Geometrische Optik: Brechung, Reflexion, Spiegel (Hohl- und Parabolspiegel), Totalreflexion

Jeweils mit physikalisch/technischen Anwendungsbeispielen, vorwiegend aus den regenerativen Energien.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Chemie
- Grundgesetze der Elektrochemie anzuwenden, chemische Gleichgewichte zu berechnen und Reaktionen von Säuren und Basen zu beurteilen (3)

Physik
- die grundlegenden Gesetzmäßigkeiten der Mechanik, der Optik und der Wärmelehre zu verstehen und sie mit mathematischen Methoden darzustellen (2).
- die Erhaltungssätze der Mechanik (Energie-, Impuls- und Drehimpuls) anzuwenden und sie auf Problemstellungen der regenerativen Energien zu übertragen (2)
- physikalische Zusammenhänge im Hinblick auf die Anwendung von Energieumwandlungen zu analysieren (2)
- einfache Schwingungen zu analysieren und die Differentialgleichungen für freie ungedämpfte Schwingungen aufzustellen und zu lösen (3)
- die Bedeutung der Wellengleichung zu erkennen (1)
- die Wellenfunktionen für ebene Wellen aufzustellen und zu lösen (3)
- Interferenzgesetze von Wellen zu verstehen und anzuwenden (z.B. Antireflexschicht von Solarzellen) (2-3)
- Reflexions- und Brechungsgesetze zu verstehen und sie auf einfache Problemstellungen anzuwenden (z.B. Glasfaserkabel, Spiegel von solarthermischen Kraftwerken)
- die grundsätzliche Herangehensweise der Thermodynamik zu verstehen (1)
- die Bedeutung der Allgemeinen Gasgleichung und des Ersten Hauptsatzes der Wärmelehre zu verstehen und sie auf einfache Problemstellungen anzuwenden (2)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Berufsunabhängige Grundbegriffe und Kenngrößen der Grundlagen der Physik und Elektrochemie zu benutzen (2)
- allgemeine physikalische und chemische Veröffentlichungen einzuordnen (2)
- zunehmende Bedeutung der physikalischen und chemischen Energieformen darzustellen (3)
- die Bedeutung der gelernten physikalischen und elektrochemischen Grundlagen beim Umwelt- und Klimaschutz darzustellen (3)

Angebotene Lehrunterlagen

Übungsaufgaben auf GRIPS, Arbeitsblätter, Literaturliste

Lehrmedien

Tafel, Rechner / Beamer

Literatur

- F. Kuypers: "Physik für Ingenieure", Band 1/2: Mechanik und Thermodynamik, VCH
- Hering, Martin, Stohrer: „Physik für Ingenieure“, Springer-Vieweg
- Krakau, Vogel: "Physik für Ingenieure", Teubner

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Name des Moduls: Technische Mechanik (Mechanical Engineering)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Mechanik (Mechanical Engineering)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Prof. Dr. Andreas Voigt
Fakultät: Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Stand: 15.03.2022

Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Mechanik</td>
<td>TM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Merten</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht, Übungen (ca. 25%-30% Übungsanteil)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td></td>
</tr>
</tbody>
</table>

Vor- und Nachbereitung: 64 h
Prüfungsvorbereitung: 32 h

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Technische Mechanik (Mechanical Engineering)

Inhalte

Stereostatik:
- Grundbegriffe, grundlegende Axiome und Prinzipien, Schnittprinzip.
- Kraftsysteme am Starren Körper, Kraftmittelpunkt, Schwerpunkt.
- Gleichgewicht.
- Auflager- und Gelenkreaktionen ebener Tragwerke.
- Schnitteigenschaften in Seilen, Stäben, Balken, Rahmen und Bögen.
- Coulombsche Reibung.

Elastostatik:
- Spannungen, Verformungen, Verzerrungen, Hookesches Materialgesetz.
- Spannungen und Verformungen bei Zug-Druck-Belastung.
- Wärmeeffekte und Wärmespannung.
- Spannungen und Verformungen bei gerader Biegung, Scherung und Torsion gerader Bauteile sowie Torsion dünnwandiger, geschlossener Profile.
- Statisch unbestimmte Systeme.
- Spannungsüberlagerung, Vergleichspannung und Festigkeitshypothesen.
- Stabilitätsprobleme, Knickung von Stäben.

Kinematik:
- geradlinige und allgemeine Bewegung eines Punktes.
- allgemeine Bewegung des Starren Körpers.
- gekoppelte Bewegung von Systemen Starrer Körper, Zwangsbedingungen.
- Kinematik der Relativbewegung.

Kinetik:
- dynamisches Grundgesetz.
- Impulssatz, Drallsatz, Arbeitssatz und Energiesatz für den Massepunkt.
- Rotation des Starren Körpers, Massenträgheitsmomente.
- Impulssatz, Drallsatz, Arbeitssatz und Energiesatz für den Starren Körper.
- Prinzip von d’Alembert.
- Einführung in die mechanischen Schwingungen.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Grundprinzipien der Stereostatik- und Elastostatik, der Bewegung von Massenpunkten und Starren Körpern darzustellen (1)
- den durch Annahmen und Voraussetzungen definierten Gültigkeitsbereich der erarbeiteten Lösungsansätze anzugeben (2)
- einfache statische Ersatzmodelle zu bilden und daraus mit Hilfe der Gleichgewichtsbedingungen unbekannte Größen (z.B. Lager- und Schnitreaktionen) zu ermitteln. (2)
- einfache, statisch belastete Strukturen bzgl. Deformation und Festigkeit zu dimensionieren (2)
- dynamische Probleme durch Formulierung und Lösen der kinematischen und kinetischen Grundgleichungen zu behandeln (2)
• einfache mechanische Aufgaben selbstständig zu lösen (3)
• komplexe mechanische Aufgaben zu erfassen, zu bewerten und zu diskutieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Vorlesungsbegleitende Unterlagen, Übungsaufgaben, Literaturliste

Lehrmedien
Tafel, Overhead, Beamer, einfache Anschauungsstücke

Literatur
Hahn: Technische Mechanik, Hanser-Verlag, 1992

Weitere Informationen zur Lehrveranstaltung
Hahn: Technische Mechanik, Hanser-Verlag, 1993
Gross, Hauger, Schröder, Wall: Technische Mechanik, Springer-Verlag, 2013
Holzmann, Mayer, Schumpich: Technische Mechanik, Springer-Verlag, 2014

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstofftechnik (Materials Science)</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Werkstofftechnik</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Werkstofftechnik (Materials Science)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstofftechnik</td>
<td>WT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Armin Merten</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit ca. 15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemestergemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemeinsam mit Elektroenergie</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6 (ECTS-Credits)</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
68 h

Eigenstudium
84 h Vor- und Nachbereitung, 28 h Prüfungsvorbereitung

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Aufbau fester Materie: Elementare Bestandteile, Atommodelle, atomare Bindung, Ordnungsstrukturen
- Thermodynamische Zusammenhänge: Stofftransport, Phasenübergänge, Keimbildung und-wachstum
- Physikalische und technologische Werkstoffeigenschaften: mechanisch, elektrisch, magnetisch, thermisch, optisch
- Charakteristische Eigenschaften unterschiedlicher Materialklassen: Metalle, Keramiken, Halbleiter, Kunststoffe, Verbundwerkstoffe
- Einführung in Nachhaltigkeitsbetrachtungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- wichtige Atommodelle und Bindungsarten zu benennen und qualitativ zu beschreiben (1)
- die Struktur kristalliner Festkörper in Form von Elementarzellen zu beschreiben (1)
- wichtige Modelle zur Beschreibung der physikalischen Eigenschaften anzuwenden (2)
- Zusammenhänge zwischen dem atomaren Aufbau und den Materialeigenschaften zu erkennen und qualitativ zu beschreiben (2)
- ein oder mehrere Materialien auf Basis eines vorgegebenen Anforderungsprofils auszuwählen (2)
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Werkstofftechnik (Materials Science)

- materialspezifische Größen wie Dichte, elektrische Leitfähigkeit etc. zu berechnen (3)
- für eine bestimmte Anwendung signifikante Materialparameter zu identifizieren und ein Anforderungsprofil zu erstellen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
- Vorlesungsbegleiter, Übungen, Videos, Literaturliste

Lehrmedien
- Beamer, Tafel, Online-Umfragen, Anschauungsobjekte

Literatur
- Bargel, Schulze: Werkstoffkunde, Springer Verlag, 2013

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15.03.2022 Ostbayerische Technische Hochschule Regensburg Seite 50
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: AW-Modul REE (Mandatory general studies elective module)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW-Modul REE (Mandatory general studies elective module)</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- u. Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
I.d.R. keine
(Ausnahme bspw. höhere Sprachkurse oder Fächer von aufeinander aufbauenden Zusatzausbildungen)

Empfohlene Vorkenntnisse
I.d.R. keine
(Ausnahme bspw. höhere Sprachkurse oder Fächer von aufeinander aufbauenden Zusatzausbildungen)

Inhalte
Je nach Kurs

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Kurs

Orientierungswissen: Horizont erweitern, fachliches Wissen außerhalb des Fachstudiums erwerben
Soft Skills: persönliche, soziale und methodische Kompetenzen erwerben Sprachen: Fremdsprachen verstehen, sprechen, schreiben

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 1</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 2</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>Allgemeinwissenschaftliches Wahlpflichtfach 1</th>
<th>AW1</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Name</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Name</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, Übungen, Praktikum

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 24 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 8 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

Je nach Kurs

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Kurs:
- Orientierungswissen: Horizont erweitern, fachliches Wissen außerhalb des Fachstudiums erwerben
- Soft Skills: persönliche, soziale und methodische Kompetenzen erwerben
- Sprachen: Fremdsprachen verstehen, sprechen, schreiben

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
In der Regel keine (Ausnahmen möglich)

Angebotene Lehrunterlagen

Je nach Kurs

Stand: 15.03.2022
Lehrmedien
Overheadprojektor, Tafel, Rechner / Beamer

Literatur
Je nach Kurs

Weitere Informationen zur Lehrveranstaltung
Verantwortlich für das AW-Angebot: Prof. Dr. Gabriele Blod
Verantwortlich für das Sprachenangebot: Prof. Dr. Katherine Gürtler

Die Veranstaltung ist frei wählbar aus dem Angebot

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Teilmodul

<table>
<thead>
<tr>
<th>Lehrmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 2</td>
<td>AW2</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Gabriele Blod</th>
</tr>
</thead>
</table>

Fakultät

| Angewandte Natur- und Kulturwissenschaften |

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, Übungen, Praktikum

Studiensemester

gemäß Studienplan

<table>
<thead>
<tr>
<th>[SWS oder UE]</th>
<th>[ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrumfang

<table>
<thead>
<tr>
<th>[SWS oder UE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Lehrsprache

| deutsch | 2 |

Zeitraufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 24 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 8 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

Je nach Kurs

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Kurs:
- Orientierungswissen: Horizont erweitern, fachliches Wissen außerhalb des Fachstudiums erwerben
- Soft Skills: persönliche, soziale und methodische Kompetenzen erwerben
- Sprachen: Fremdsprachen verstehen, sprechen, schreiben

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, In der Regel keine (Ausnahmen möglich)

Angebotene Lehrunterlagen

Je nach Kurs

Stand: 15.03.2022
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
AW-Modul REE (Mandatory general studies elective module)

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheadprojektor, Tafel, Rechner / Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Kurs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortlich für das AW-Angebot: Prof. Dr. Gabriele Blod</td>
</tr>
<tr>
<td>Verantwortlich für das Sprachenangebot: Prof. Dr. Katherine Gürtler</td>
</tr>
</tbody>
</table>

Die Veranstaltung ist frei wählbar aus dem Angebot
Allgemeinwissenschaftlicher Wahlpflichtmodule (AW-Module) der OTH Regensburg.
Das Modulhandbuch für die AW-Module finden Sie hier:

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit mit Präsentation (Bachelor Thesis with Presentation)</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Maier</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>Pflicht</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe SPO</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse</td>
</tr>
<tr>
<td>Alle Module des Studiums</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
</tbody>
</table>

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Bachelorarbeit mit Präsentation (Bachelor Thesis with Presentation)

Teilmodul	TM-Kurzbezeichnung
Bachelorarbeit | BA

Verantwortliche/r | Fakultät
Prof. Dr. Andreas Maier | Elektro- und Informationstechnik
Prof. Dr. Michael Sterner

Lehrende/r / Dozierende/r | Angebotsfrequenz
Betreuender Professor-betreuende Professorin | in jedem Semester

Lehrform
Selbstständige ingenieurmäßige Bearbeitung eines praxisorientierten Projekts unter Anleitung

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SWS oder UE</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>deutsch</td>
<td>12</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
Eigenstudium
360 h

Studien- und Prüfungsleistung

schriftliche Bachelorarbeit

Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte
• Selbstständige ingenieurmäßige Bearbeitung eines praxisorientierten Projekts
• Theoretische, konstruktive und/oder experimentelle Aufgabenstellung mit ausführlicher Beschreibung und Erläuterung ihrer Lösung
• Aufbereitung und Dokumentation der Ergebnisse in wissenschaftlicher Form
• Aufbereitung und Präsentation der Ergebnisse der Bachelorarbeit

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, während des Studiums erworbene Kompetenzen im gemeinsamen Problemkontext einer Ingenieursaufgabe selbständig kreativ kombiniert anzuwenden und mit wissenschaftlichen Methoden zu erweitern.(3)

Hierfür werden folgende Teilkompetenzen erworben bzw. vertieft:
• Verstehen sowohl fachlicher Einzelheiten (2) als auch fachübergreifender Zusammenhänge (3)
• Kreative Anwendung und fachübergreifende Verknüpfung von während des Studiums erworbenen Kompetenzen zur Lösung komplexer Aufgabenstellungen (3)
• Entwicklung von Ergebnissen mit wissenschaftlichen und fachpraktischen Vorgehensweisen (3)
• Systematisches Vorgehen unter Absicherung der Ergebnisse durch wissenschaftliche Methoden (Messungen, Experimente, Literaturrecherche) (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• eine komplexe Aufgabe eigenständig zeitlich zu planen und termingerecht abzuschließen (2)
• eine wissenschaftlich-technische Literaturrecherche durchzuführen (2)
• komplexe Problemstellungen zu strukturieren und sukzessive abzuarbeiten (2)
• zwischen wesentlichen und unwesentlichen Informationen zu unterscheiden (2)
• komplexe Zusammenhänge verständlich in Wort und Schrift zu vermitteln (2)
• Lösungen für komplexe Aufgabenstellungen durch wissenschaftlichen Diskurs zu finden (2)

Literatur
Samac K., Prenner M., Schwetz H.: Die Bachelorarbeit an Universität und Fachhochschule, facultas wuv, 2008

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Bachelorarbeit mit Präsentation (Bachelor Thesis with Presentation)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentation der Bachelorarbeit</td>
<td>BP</td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät
Prof. Dr. Andreas Maier | Elektro- und Informationstechnik
Prof. Dr. Michael Sterner |

Lehrende/r / Dozierende/r | Angebotsfrequenz
Betreuender Professor-betreuende Professorin | in jedem Semester

Lehrform
Selbständige ingenieurmäßige Präsentation eines praxisorientierten Projekts unter Anleitung

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>deutsch</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
Vorbereitung der Bachelorarbeitspräsentation: 90 h

Studien- und Prüfungsleistung
Mündlicher Prüfungsvortrag (max. 45 Minuten)
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte
Auswahl, Aufbereitung und Präsentation der Ergebnisse der Bachelorarbeit

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, technisch-wissenschaftliche Zusammenhänge publikumsorientiert aufzubereiten und zu präsentieren.

Hierfür werden folgende Teilkompetenzen erworben bzw. vertieft:
- Präsentationstechniken (2)
- Veranschaulichung von technisch-wissenschaftlichen Inhalten (Grafiken, Tabellen, Diagramme) (2)
- Auswahl der für das Publikum relevanten Informationen (2)
- Themenbezogen sinnvolle Strukturierung der Präsentation (2)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- eine komplexe Aufgabe eigenständig zeitlich zu planen und termingerecht abzuschließen (2)
- zwischen wesentlichen und unwesentlichen Informationen zu unterscheiden (2)
- komplexe Zusammenhänge verständlich in Wort und Schrift zu vermitteln (2)
- einen Redeinhalt vor Gruppen frei zu formulieren (2)
- in der Präsentation auf das Publikum einzugehen (3)

Literatur

Samac K., Prenner M., Schwetz H.: Die Bachelorarbeit an Universität und Fachhochschule, facultas wuv, 2008

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauelemente und Elektronik (Components & Electronics)</td>
<td>11</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christian Schimpfle</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan
<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
- Inhalte der Vorlesungen Mathematik 1; Mathematik 2; Grundlagen der Elektrotechnik 1; Grundlagen der Elektrotechnik 2

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bauelemente und Elektronik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Bauelemente und Elektronik (Components & Electronics)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauelemente und Elektronik</td>
<td>BEK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christian Schimpfe</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Mathias Bischoff</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht, 10-15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium: 56 h
Eigenstudium: Vor- und Nachbereitung: 56 h
Prüfungsvorbereitung: 38 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
Grundlagen der Halbleiterbauelemente, Dioden, Fotodiode, Solarzelle, Bipolartransistoren, Feldeffekttransistoren, Leistungselektronische Bauelemente, Zweitorübertragungsfunktionen, Frequenzgang, Analogtransistorschaltungen, Verstärkerschaltungen mit Operationsverstärkern

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- grundlegende Zusammenhänge der Zweitortheorie zu benennen (1)
- das Frequenzverhalten von Zweitoren anhand ihrer Übertragungsfunktionen, zu untersuchen (2)
- Eigenschaften von Operationsverstärkern zu benennen (1)
- einfache Operationsverstärkerschaltungen zu analysieren (2)
- grundlegende physikalische Eigenschaften von Halbleitern zu verstehen (1)
- die grundlegende Funktion der wichtigsten Halbleiterbauelemente zu erläutern (2)
- Transistorgrundschaltungen und einfache Transistorverstärkerschaltungen zu analysieren (2)
- Groß- und Kleinsignalanalyse von Operationsverstärkerschaltungen durchzuführen (2)
- komplexen Zweitorübertragungsfunktionen aufzustellen und Frequenzgänge im Bode-Diagramm darzustellen (2)
- Datenblätter bekannter Halbleiterbauelemente zu interpretieren und geeignete Halbleiterbauelemente auszuwählen (3)
- einfache Operationsverstärkerschaltungen zu entwerfen und in Betrieb zu nehmen (3)
- einfache analoge Schaltungen mit Halbleiterbauelementen zu entwerfen und in Betrieb zu nehmen (3)
- das Frequenzverhalten analoger Schaltungen zu interpretieren (3)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
</table>
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Übungsaufgaben, Spice-Simulationsdateien, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tietze und Schenk: Halbleiter-Schaltungstechnik, Springer, 2019</td>
</tr>
<tr>
<td>Stiny: Aufgaben und Lösungen zur Elektrotechnik, Franzis 2008</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Elektrische Anlagentechnik und Elektrosicherheit (Electrical System Technology & Electrical Safety) | 18

Modulverantwortliche/r	Fakultät
Prof. Dr. Franz Fuchs | Elektro- und Informationstechnik |

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4 | 2 | Pflicht | 7 |

Empfohlene Vorkenntnisse
Für Vorlesung Elektrische Anlagentechnik: Grundlagen elektrischer Maschinen

Zugeordnete Teilmodule:
Nr.	Bezeichnung der Teilmodule	Lehrumfang [SWS o. UE]	Arbeitsaufwand [ECTS-Credits]
1. | Elektrische Anlagentechnik | 4 SWS | 5 |
2. | Grundlagen der Elektrosicherheit | 2 SWS | 2 |
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Elektrische Anlagentechnik und Elektrosicherheit (Electrical System Technology & Electrical Safety)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Anlagentechnik</td>
<td>EAT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Franz Fuchs</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johannes Brantl (LB)</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Franz Fuchs</td>
<td></td>
</tr>
<tr>
<td>Peter Kropmeier (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit 10-15 % Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagen der Wechselstrom- und Gleichstrom-Schaltechnologien</td>
</tr>
<tr>
<td>• Aufbau und Funktionsweise von Leistungsschaltern und Schaltanlagen</td>
</tr>
<tr>
<td>• Aufbau von Kondensatoren und Drosseln</td>
</tr>
<tr>
<td>• Aufbau und Funktionsweise von Kompensationsanlagen, Aktivfiltern und FACTS</td>
</tr>
<tr>
<td>• Aufbau und Funktionsweise von Umspannerwerken und HGÜ-Stationen</td>
</tr>
<tr>
<td>• Aufbau und Funktionsweise von Stufenschaltern und Transformatorenregelung</td>
</tr>
<tr>
<td>• Betriebsverhalten von Transformatoren und Generatoren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• Schaltungen in der Anlagentechnik zu verstehen und zu analysieren (3)</td>
</tr>
<tr>
<td>• Schaltvorgänge zu erklären (2)</td>
</tr>
<tr>
<td>• Funktionsweise verschiedener elektrischer Anlagen und deren Regelung/Betrieb zu erklären (2)</td>
</tr>
<tr>
<td>• Elektrische Anlagen in Grundzügen zu projektieren (3)</td>
</tr>
<tr>
<td>• Verwendungsmöglichkeiten elektrischer Anlagen zur Erfüllung einer stabilen und qualitativ hochwertigen Stromversorgung einzuschätzen(3)</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Elektrische Anlagentechnik und Elektrosicherheit (Electrical System Technology & Electrical Safety)

Mit der erfolgreichen Absolvierung des Moduls erhalten die Studierenden:

- Kenntnisse über die Physik und Technologie der Schalttechnologien (2)
- Kenntnisse über die verschiedenen Anlagen in der Stromversorgung (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Skript, Präsentationsunterlagen und Übungen

Lehrmedien
Tafel, Rechner / Beamer

Literatur
- www.baua.de
- Kiefer, G.; Schmolke, H.: VDE 0100 und die Praxis, VDE-Verlag, 2014

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul: Grundlagen der Elektrosicherheit

TM-Kurzbezeichnung: ESG

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Franz Fuchs</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Wolfgang Niedenzu (LB)</td>
<td>Stefan Reitmeier (LB)</td>
</tr>
</tbody>
</table>

Lehrform: Seminaristischer Unterricht: 90%, Übungsanteil: 10%

Studiensemester gemäß Studienplan:

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 24 h, Prüfungsvorbereitung: 8 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung:

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis:

siehe Studienplantabelle

Inhalte:

- Gefahren und Wirkung des elektrischen Stroms
- Normen und Prüfzeichen
- Netzformen für Niederspannungsnetze (TN, TT, IT-Netze)
- Schutzmaßnahmen gegen elektrischen Schlag: Basisschutz, Fehlerschutz, zusätzlicher Schutz
- Schutz von Kabeln und Leitungen
- Geräte für Schutzmaßnahmen mit automatischer Abschaltung: Auswahl/Einsatz von Sicherungen, Fehlerströme und -arten
- Anlagenüberprüfung bei Inbetriebnahme und im Betrieb
- Blitz- und Überspannungsschutz
- Personen in elektrischen Anlagen (5 Sicherheitsregeln, Spannungsbereiche, Schutzklassen, IP-Schutzgrad)
- Arbeitsschutzrecht in Deutschland
- Gefährdungsbeurteilung, Gefährdung durch Maschinen und Gefahrstoffe
- Brand- und Explosionsschutz
- Betrieb elektrischer Anlagen
- Strahlenschutz
- Persönliche Schutzausrüstung

Stand: 15.03.2022
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Schutzeinrichtungen korrekt auszuwählen (3)
- Verantwortung im Arbeitsschutz zu übernehmen (3)

Mit der erfolgreichen Absolvierung des Moduls erhalten die Studierenden:
- Kenntnisse über Gefahren bei Umgang mit elektrischem Strom (1)
- Kenntnisse über Grundprinzipien und technische Ausführungsformen (1)
- Kenntnisse über Aufbau von Niederspannungsnetzen (2)
- Kenntnisse über die Funktionsweise von Schutzschalteinrichtungen (2)
- Grundkenntnisse einer Elektrofachkraft zum Betrieb elektrischer Anlagen (2)
- Kenntnisse zum Arbeitsschutz in Betrieben (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Skriptum, Literaturliste

Lehrmedien

Tafel, Rechner / Beamer

Literatur

- Internet: "www.dguv.de" und "www.baua.de"
- Kiefer, Gerhard: VDE 0100 und die Praxis, VDE-Verlag, 10. Auflage, 2001

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Energie- und Umweltrecht, Projektmanagement (Energy and Environmental Legislation, Project Management)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie- und Umweltrecht, Projektmanagement (Energy and Environmental Legislation, Project Management)</td>
<td>22</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
- Prof. Dr. Michael Sterner
 - Fakultät: Elektro- und Informationstechnik

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Energie- und Umweltrecht</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Projektmanagement</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Energie- und Umweltrecht, Projektmanagement
(Energy and Environmental Legislation, Project Management)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie- und Umweltrecht</td>
<td>USR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helmut Loibl (LB)</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit 10-15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 24 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 8 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte

- Definition Umwelt und Umwelteinflüsse
- Ökologische Zusammenhänge und Wirkungsmechanismen
- Nachhaltigkeit
- Beispiele verschiedener Ökosysteme
- Störungen des ökologischen Gleichgewichtes und deren Folgen
- Gesetzliche Regelunge, Fallbeispiele
- Gesellschaftliche Randbedingungen
- Umweltrelevante Indikatoren (an Hand von Fallbeispielen)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die ökologischen Zusammenhänge und Auswirkungen zu verstehen
- die wichtigsten Gesetze und Normen des Umweltschutzes zu erläutern
- Verfahren zur Bewertung der ökologischen Relevanz einer Technologie anzuwenden

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

<table>
<thead>
<tr>
<th>Angebote Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Übungen, Datenblätter, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheadprojektor, Tafel, Rechner/Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen, U.: Produktkreisläufe: Schlüssel zum nachhaltigen Wirtschaften, Fraunhofer IRB Verlag, 1999</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulname:
Energie- und Umweltrecht, Projektmanagement
(Energy and Environmental Legislation, Project Management)

Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Energie- und Umweltrecht, Projektmanagement
(Energy and Environmental Legislation, Project Management)

Teilmodul
Projektmanagement

Verantwortliche/r
Prof. Dr. Michael Sterner
Lehrende/r / Dozierende/r
Prof. Dr. Birgit Rösel

Fakultät
Elektro- und Informationstechnik

Angebotsfrequenz
nur im Sommersemester

Lehrform
Seminaristischer Unterricht mit 35 % Einzel- und Gruppenübungsanteil

Studiensemester gemäß Studienplan
Lehrumfang
[SWS oder UE]
Lehrsprache
deutsch
Arbeitsaufwand
[ECTS-Credits]
4
2 SWS
2

Zeitaufwand:
Präsenzstudium
28 h

Eigenstudium
Vor- und Nachbereitung: 24 h; Prüfungsvorbereitung: 8 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
• Merkmale eines Projektes
• Projektorganisation
• Chancen und Risiken von Projekten
• Instrumente des Qualitätsmanagements in Projekten
• Projektverlauf und spezifische Methoden
• Lean Management und Agiles Projektmanagement
• Projektteam, Teamentwicklungsprozesse und Kommunikation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Arten von Projekten und Methoden für die Projektklassifizierung zu benennen (1)
• verschiedene Organisationsformen von Projekten und wichtige Rollen darin zu definieren (1)
• die Rolle des Projektcontrollings zu beschreiben (1) und Kosten- sowie Meilenstein-
 Trendanalysen selbstständig zu erstellen (2) und zu bewerten (3)
• die grundsätzliche Vorgehensweise eines Risikomanagements im Projekt darzulegen (1)
 und ein Risikomanagement für ein einfaches Projekt durchzuführen (2)
• den grundsätzlichen Verlauf eines Projektes sowie spezifische Methoden für einzelne
 Projektphasen darzustellen (2)

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Seite 73
- Planungsinstrumente des Projektmanagements zu benennen (1) und einzusetzen (2)
- grundlegende Regeln der Kommunikation in Teams darzustellen (1)
- einige Methoden des Qualitätsmanagements in Projekten zu benennen (1)
- die Ideen des lean und des agilen Managements und jeweils spezifische Methoden zu benennen (1) und beispielhaft anwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- verschiedene Moderationstechniken und deren Randbedingungen zu benennen (1)
- die Notwendigkeit einer Vorbereitung der Veranstaltungen zu erkennen (2) und sich zur Teilnahme zu motivieren (3)
- eine Aufgabenstellung in einem Team zu bearbeiten (2)

Angebotene Lehrunterlagen
- Skript, Online-Arbeitsaufträge, Arbeitsblätter, Screencasts

Lehrmedien
- Screencasts, falls Präsenz möglich: Gruppenübungen und Exkursionen

Literatur
- Wird in der Lehrveranstaltung besprochen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiewirtschaft & Energieeffizienz (Energy Economy & Energy Efficiency)</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Mathematik 1 und 2, Grundlagen der Elektrotechnik 1 und 2, Technische Mechanik, Thermodynamik, Wärmeübertragung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energiewirtschaft & Energieeffizienz</td>
<td>6 SWS</td>
<td>7</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiewirtschaft & Energieeffizienz</td>
<td>EEE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit ca. 10-20 % Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 94 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 32 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Teil Energieeffizienz
- Energieeffizienz und Energieeffizienzanalyse
- Stufen der Energiewandlung
- Energetische Bewertung von Gebäuden und gebäudetechnischen Anlagen
- Energie- und Erzeugeraufwandszahlen
- Heizbedarfsbestimmung und Ansätze der Effizienzsteigerung im Wärmesektor
- Wärmepumpen und Kälteanlagen
- Verschaltungsvarianten und energetische Bewertung von kombinierten Energiesystemen auf Basis von Wärmepumpen
- Kraft-Wärme-Kopplung
- Energetische Bewertung von Kraftwärmekopplungsanlagen
- Primärenergie- und CO2-Einsparung durch Kraftwärme Kopplung
- Bewertung der Energieeffizienz von Industriebetrieben

Teil Energiewirtschaft
- Notwendigkeit und Treiber der Energiewende
- Klimawandel: Ursachen, Anpassung, Vermeidung
- Energieressourcen und –reserven
- Potenziale erneuerbarer Energien
- Energiewandlung und Energiebilanzen
- Ur-, Primär-, Sekundär- und Endenergie, Wirkungsgradberechnungen
- Bilanzierungsmethoden, Bilanzen für Deutschland und Bayern
- Energierichtlinien und Rahmenbedingungen - Gesetzgebung, Förderung, Anreize
- Rahmenbedingungen zum Klimaschutz, Energiewendebeschlüsse, Relevante Gesetze
- Elektrizitätswirtschaft
- Gaswirtschaft
- Märkte für feste und flüssige Energieträger – Mineralölwirtschaft und Kohlenerzeugung, Holz- und Forstwirtschaft, Biomasse- und Wärmegestehungskosten, Umweltfolgekosten

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Energieeffizienz und Energieeffizienzanalyse zu erläutern (2)
- Stufen der Energiewandlung darzustellen (3)
- Allgemeine Maßnahmen zur rationellen Energienutzung zu benennen (1)
- Systematik der Energieeffizienzanalyse zur Ableitung von individuellen Maßnahmen zur rationellen Energie- und Ressourcenutzung anzuwenden (3)
- Energetische Bewertung von Gebäuden und gebäudetechnischen Anlagen durchzuführen (3)
- Maßnahmen zur Energieeffizienzsteigerung im Wärmesektor abzuleiten (3)
- Wärmepumpen und Kälteanlagen für unterschiedliche Versorgungssysteme zu berechnen (2) und ihre Wirtschaftlichkeit darzustellen (3)
- Kraft-Wärme-Kopplungsanlagen energetisch, ökologisch und ökonomisch zu bewerten (2) und für den Einsatz in Energieversorgungssystemen darzustellen (3)
- Maßnahmen zur Energieeffizienzsteigerung in der Industrie zu analysieren und darzustellen (3)
- die historischen, heutigen und zukünftigen Energieversorgungsstrukturen zu kennen (1) und argumentativ zu durchdringen (2)
- die energiepolitischen und rechtlichen Rahmenbedingungen zu kennen (1)
- die unterschiedlichen energiewirtschaftlichen Gesetze einzuordnen (2)
- Energiebilanzen zu berechnen (2) und zu bewerten (3)
- die Eigenschaften der wichtigsten Energiespeicher analysieren (3) und deren Einbindung in Energiesysteme ausarbeiten (2)
- die Funktionsweise der Energimärkte zu durchdringen (2) und zu erklären (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmusuls sind die Studierenden in der Lage,
- in einem Team zu organisieren und zu arbeiten (2)
- fachliche Fragen zu stellen (3) und technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)
- kritische Diskussionen in sachlicher Atmosphäre zu führen (2)
- sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3)
- die Bedeutung sorgfältiger, selbständiger Arbeitens für Ihren Lernerfolgeinzuschätzen (3)
- den Unterschied zwischen Verständnis und bloßer Anwendung von Lösungswegen zu erkennen und die Vorteile beider Herangehensweisen zu nutzen (3)
- die Prinzipien guter wissenschaftlicher Praxis zu kennen (1) und
- sich mit wissenschaftlicher Literatur auseinandersetzen zu können (2)

Angebotene Lehrunterlagen
Skripte, Übungsaufgaben, Arbeitsblätter, extra angefertigtes Buch zur Vorlesung in deutscher und englischer Sprache, Übungen mit Lösungen, Datenblätter, Videos, Literaturliste

Lehrmedien
Tafel, Rechner/Beamer, Buchkapitel

Literatur
- Sächsische Energieagentur (SAENA) GmbH, Energieeffizienz in Unternehmen; Technologien der Abwärme-Nutzung http://www.saena.de/waermeatlas.html
- M. Blesl, M. und Kessler, A., Energieeffizienz in der Industrie; Springer-Verlag Berlin Heidelberg 2013
- Pehnt, M.; Energieeffizienz – Ein Lehr- und Handbuch, Springer Verlag, 2010
- Nitsch et al.: Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland
- Stern Michael und Ingo Stadler:
- Energiespeicher – Bedarf, Technologien, Integration
- ISBN 978-3-642-37380-0; Springer-Verlag Heidelberg Berlin, 2017
- Jossen, Weydanz: Moderne Akkumulatoren richtig einsetzen, 2006

Weitere Informationen zur Lehrveranstaltung
Bei Bedarf wird die Lehrveranstaltung auf Englisch gehalten.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierung und Investitionsrechnung (Finance and Investment)</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Schöntag</td>
<td>Betriebswirtschaftslehre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Mathematik 1 und 2

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Finanzierung und Investitionsrechnung</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Regenerative Energiotechnik u. Energieeffizienz (PO: 20152)

Modulname:
Finanzierung und Investitionsrechnung (Finance and Investment)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierung und Investitionsrechnung</td>
<td>FI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Schön tag</td>
<td>Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Jürgen Schön tag</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Sevim Süzeroglu-Melchiors</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit ca. 15 – 20 % Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>Vor- und Nachbereitung, Prüfungsvorbereitung: 60 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Einführung und Grundlagen
- Betriebswirtschaftliche Grundlagen (Rechtsformwahl, Jahresabschluss)
- Investitionsrechnung (Kapitalwertmethode, Interne Zinsfuß-Methode, Amortisationsrechnung)
- Liquidität und Cashflow-Rechnung
- Finanzierungsformen (Innen- und Außenfinanzierung)
- Besonderheiten bei EE-Projekten (Stakeholder, Finanzierung, Cashflow-Modell)
- Grundzüge des Insolvenzrechts

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die betriebswirtschaftlichen Grundlagen für Investitions- und Finanzierungsentscheidungen zu kennen. (1)
- ein Unternehmen bzw. ein Investitionsobjekt hinsichtlich Kapitalbeschaffung und Kapitalverwendung unter dem Aspekt eines finanzwirtschaftlichen Gleichgewichts zu analysieren, zu planen, zu steuern und zu kontrollieren. (2)
- verschiedene Methoden zur Beurteilung von Investitionsgelegenheiten anzuwenden und zu beurteilen. (3)
- unterschiedliche Finanzierungsquellen zu charakterisieren und deren Vor- und Nachteile einzuschätzen. (2)
- die Besonderheiten bei der Investitionsrechnung und der Finanzierung von Projekten aus dem Bereich der erneuerbaren Energien zu erkennen, zu verstehen und in die Investitionsrechnung und die Finanzierung dieser Projekte umzusetzen. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Lösungsansätze zu Fragestellungen der Finanz- und Investitionswirtschaft in den betrieblichen Entscheidungsprozess einzubringen und kritisch zu diskutieren. (2)
- die vergleichende Betrachtung unterschiedlicher methodischer Ansätze des Investitions- und Finanzmanagements diese Ansätze in ihr eigenes Wertesystem einzubauen. (2)

Angebotene Lehrunterlagen

Skipt, Übungsaufgaben, Literaturliste

Lehrmedien

Beamer, Tafel

Literatur

Jeweils in der aktuellen Auflage:
- Bösch, M., Finanzwirtschaft
- Zantow, R./Dinauer, J./Schäffler, C., Finanzwirtschaft des Unternehmens
- Däumler, K.-D./Grabe, J., Grundlagen der Investitions- und Wirtschaftlichkeitsrechnung
- Weber, W./Kabst, R./Baum, M., Einführung in die Betriebswirtschaftslehre
- Drukarczyk, J./Lobe, S., Finanzierung
- Perridon, L./Steiner, M./Rathgeber, A., Finanzwirtschaft der Unternehmung
- Schierenbeck, H./Wöhle, C., Grundzüge der Betriebswirtschaftslehre
- Schlink, H., Wirtschaftlichkeitsrechnung für Ingenieure

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15.03.2022

Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Grundlagen elektrischer Maschinen (Electrical Machines)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen elektrischer Maschinen (Electrical Machines)</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Grundlagen der Elektrotechnik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Grundlagen elektrischer Maschinen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen elektrischer Maschinen</td>
<td>GM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit 10-15 % Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 56 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 38 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen magnetischer Kreis</td>
</tr>
<tr>
<td>Transformatoren (Wirkungsweise, Betriebsverhalten, Ersatzschaltbild, Überspannungsverhalten, Alterung, Aufbau, Einsatz, Regelung)</td>
</tr>
<tr>
<td>Erzeugung eines Drehfeldes</td>
</tr>
<tr>
<td>Wirkungsweise und Betriebsverhalten der Synchron- und Asynchronmaschine</td>
</tr>
</tbody>
</table>

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- magnetische Flüsse, Energien und Kräfte in Eisenkreisen zu berechnen (3)
- den Aufbau, das Funktionsprinzip und die Betriebsweisen von Transformatoren und Drehstrommaschinen darlegen zu können (2)
- das Lastverhalten von Transformatoren und Drehstrommaschinen zu berechnen (3)
- das Alterungsverhalten von Transformatoren berechnen zu können (3)
- Transformatoren auswählen und auslegen zu können (3)
- Das Wirk- und Blindleistungsverhalten der Maschinen erklären zu können (2)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Präsentationsunterlagen und Übungen

Lehrmedien

Tafel, Rechner / Beamer

Literatur

Fuest, K., Döring, P.: Elektrische Maschinen und Antriebe. Vieweg Verlag, 2004

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungselektronik (Power Electronics)</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

- Grundlagen der Elektrotechnik 1
- Grundlagen der Elektrotechnik 2

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Leistungselektronik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname:
Leistungselektronik (Power Electronics)

Teilmodul	TM-Kurzbezeichnung
Leistungselektronik | LE

Verantwortliche/r	Fakultät
Prof. Dr. Manfred Bruckmann | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Dr. Manfred Bruckmann | jährlich

Lehrform
Seminaristischer Unterricht mit 10-15% Übungsanteil

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
[4 SWS oder UE] | deutsch | 5

Zeitaufwand:
- Präsenzstudium: 56 h
 - Vor- und Nachbereitung: 70 h
 - Prüfungsvorbereitung: 24 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Grundzüge der leistungselektronischen Energiewandler
- Unterschiede netzgeführte selbstgeführte Schaltungen
- Selbstgeführte Schaltungen: Gleichspannungswandler: Vom Einquadrantensteller bis zu Mehrquadrantenstellern.
- Wechselrichter einphasig / dreiphasig
- Auslegung von leistungselektronischen Systemen
- Bauelemente der Leistungselektronik
- Simulation von leistungselektronischen Schaltungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundzüge leistungselektronischer Energiewandler zu kennen (1) und zu verstehen (2)
- Eigenschaften aktueller Leistungshalbleiter zu kennen (1) und deren Einsatzmöglichkeiten zu bewerten. (2)
- Den Aufbau und das Betriebsverhalten zu erklären (1) und eine Schaltungstopologie auf ihren Einsatz hin zu bewerten (2)
- Die verschiedenen leistungselektronischen Wandler hinsichtlich ihres Einsatzbereiches und ihrer Betriebsgrenzen zu verstehen (2)
Eine Auswahl von leistungselektronischen Stellgliedern für eine Applikation vorzunehmen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Skript, Übungsaufgaben, Spice-Simulationsdateien, Literaturliste

Lehrmedien

Tafel, Beamer, Rechner

Literatur

- Grundkurs Leistungselektronik: Bauelemente, Schaltungen und Systeme; J. Specovious,
- Power Electronics: Mohan, Undeland, Robbins,
- Applikationshandbuch IGBT und MOSFET Leistungsmodule, Semikron AG

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Praktikum Energietechnik 1 (Lab course Energy Engineering 1)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Energietechnik 1 (Lab course Energy Engineering 1)</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Besuch der Vorlesungen: Photovoltaik, Solarthermie, Windenergie und Wasserkraftanlagen, Energiewirtschaft & Energieeffizienz, Energiespeicher, Leistungselektronik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Energietechnik 1</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>Praktikum Energietechnik 1</th>
<th>PRE1</th>
</tr>
</thead>
</table>

Verantwortliche/r
- Prof. Dr. Oliver Brückl
- Prof. Dr. Manfred Bruckmann
- Prof. Anton Haumer
- Prof. Dr. Bernhard Hopfensperger
- Prof. Dr. Robert Leinfelder
- Prof. Dr. Thomas Lex
- Prof. Dr. Christian Rechenauer
- Prof. Dr. Michael Sterner

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
<th>jährlich</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
</tr>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
</tr>
<tr>
<td>Prof. Anton Haumer</td>
</tr>
<tr>
<td>Prof. Dr. Bernhard Hopfensperger</td>
</tr>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Lex</td>
</tr>
<tr>
<td>Prof. Dr. Christian Rechenauer</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
</tr>
</tbody>
</table>

Lehrform

- Laborpraktika

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4 SWS</td>
<td>deutsch 5</td>
</tr>
</tbody>
</table>

Zeitlaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung Versuche: 60 h; Ausarbeitung der Versuche: 34 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Praktische Ausbildung zu elektrischen Anlagen, Maschinen und Netztechnik in Experiment und Simulation
- Versuche zur Energieerzeugung, Energiewandlung, Energieverteilung und Speicherung
- Darstellung und Diskussion der Messergebnisse in Form von Kennlinien
- Anwendung theoretischer Gesetzmäßigkeiten zur Auswertung von Messdaten
- Vergleich der Messergebnisse mit den theoretischen Grundlagen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Versuche in Experiment und Simulation überprüfen (2) und durchführen zu können (3)
- Die Eigenschaften der wichtigsten Betriebsmittel der Stromversorgung zu kennen (1) und ihr elektrisches Verhalten beschreiben zu können (2)
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Praktikum Energietechnik 1 (Lab course Energy Engineering 1)

- Versuchsergebnisse auswerten und kritisch interpretieren zu können (3)
- Den Versuch in einem ingenieurswissenschaftlich fundierten Bericht beschreiben zu können (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Versuchsbeschreibung, Aufgabenstellungen, Literaturliste

Lehrmedien

Versuchseinrichtungen, Messgeräte, PC

Literatur

Skripte der Vorlesungen Photovoltaik, Solarthermie, Wind- und Wasserkraft, Energiewirtschaft und Energieeffizienz, Energiespeicher, Leistungselektronik

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Praktikum Energietechnik 2 (Lab course Energy Engineering 2) | 33

### Modulverantwortliche/r	Fakultät
Prof. Dr. Manfred Bruckmann | Elektro- und Informationstechnik

### Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7 | 2 | Pflicht | 5

Empfohlene Vorkenntnisse
Besuch der Vorlesungen: Windenergie, Wasserkraftanlagen, Grundlagen elektrischer Maschinen, elektrische Anlagentechnik, elektrische Netztechnik, Photovoltaik, Solarthermie, Leistungselektronik, Energiespeicher

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Energietechnik 2</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Praktikum Energieotechnik 2</th>
<th>PRE2</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Manfred Bruckmann</th>
<th>Elektro- und Informationstechnik</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Prof. Dr. Manfred Bruckmann</th>
<th>jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vadim Glaser (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christian Rechenauer</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

<table>
<thead>
<tr>
<th>Laborpraktika</th>
</tr>
</thead>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>Vor-/Nachbereitungszeit/Prüfungsvorbereitung: 90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>siehe Studienplantabelle</th>
</tr>
</thead>
</table>

Zugelassene Hilfsmittel für Leistungsnachweis

<table>
<thead>
<tr>
<th>siehe Studienplantabelle</th>
</tr>
</thead>
</table>

Inhalte

- Praktische Ausbildung zu erneuerbaren Energien in Experiment und Simulation
- Versuche zur Energieerzeugung, Energiewandlung und Speicherung
- Darstellung und Diskussion der Messergebnisse in Form von Kennlinien
- Anwendung theoretischer Gesetzmäßigkeiten zur Auswertung von Messdaten
- Vergleich der Messergebnisse mit den theoretischen Grundlagen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Eigenschaften der wichtigsten regenerativen Energiequellen zu kennen (1) und deren Einsatzmöglichkeiten zu verstehen. (2)
- die Eigenschaften von Speichern, leistungselektronischen Wandlern zu kennen (1) und deren Einsatzbereich zu verstehen. (2)
- Messungen an Regenerativen Energiesystemen zu planen (2), durchzuführen (1) und diese zu bewerten. (3)
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Praktikum Energietechnik 2 (Lab course Energy Engineering 2)

- Experimente zu Regenerativen Energiesystemen zu planen (2), aufzubauen (2) in Teamarbeit durchzuführen und die Ergebnisse zu diskutieren und richtig zu interpretieren. (3)
- Mess- und Simulationsergebnisse zu ermitteln (2), zu beschreiben (2) zu bewerten und diese in einem wissenschaftlichen Bericht zu einem der Versuche zusammenzufassen. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Arbeitsblätter, Literaturliste

Lehrmedien
Labor, Rechner

Literatur
Skripte der Vorlesungen Windenergie, Wasserkraftanlagen, Grundlagen elektrischer Maschinen, elektrische Anlagentechnik, elektrische Netztechnik, Photovoltaik, Solarthermie, Leistungselektronik, Energiespeicher

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Praxissemester (Practical Semester)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praxissemester (Practical Semester)</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Pflicht</td>
<td>24</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Für Industriepraktikum: siehe Studien- und Prüfungsordnung

Für Präsentation & Moderation: Zulassung zum Praxissemester
Die Veranstaltung Präsentation & Moderation darf nicht vor dem Beginn des Industriepraktikums absolviert werden.

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>2.</td>
<td>Präsentation & Moderation</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praktikum</td>
<td>PR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Praktikum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemacht</th>
<th>Lehramfang [SWS oder UE]</th>
<th>Lehre</th>
<th>Sprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>deutsch</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>660 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
- zeitl. Nachweis über 20 Wochen Industrietätigkeit
- Praktikumsbericht
- Praktikums- / Arbeitszeugnis der Firma

Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte
- Ingenieurmaßiges Arbeiten
- Projektarbeiten in der Industrie
- Anfertigen technischer Berichte

Aus den folgenden Arbeitsgebieten sind höchstens 3 auszuwählen:
- Forschung und Entwicklung
- Projektierung und Konstruktion
- Fertigung und Arbeitsvorbereitung
- Planung, Betrieb und Instandhaltung von Anlagen
- End- und Abnahmeprüfungen, Qualitätssicherung
- Technischer Vertrieb

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- verschiedene Arbeitsfelder in Unternehmen anzugeben (1) und zu beurteilen (3),
- die im Studium erworbenen Kenntnisse zur Lösung von Problemen anzuwenden (3),
- größere Projekte zu strukturieren (3) und zu planen (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- zielgerichtet in einem Team zu arbeiten (3),
- zeitliche Vorgaben einzuschätzen (3) und effizient mit der zur Verfügung stehenden Zeit umzugehen (3),
- die eigenen Stärken und Schwächen zu erkennen (3).

Daneben gelten die im Vorspann dieses Modulhandbuchs genannten persönlichen Kompetenzen

Angebote Lehrunterlagen
- Datenbank mit Firmen, die für Industriepraktikum zugelassen sind
- Merkblätter zum Erstellen des Praktikumsberichts

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
Präsentation & Moderation | PS

Verantwortliche/r	Fakultät
Prof. Dr. Andreas Maier | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Andreas Maier | in jedem Semester

Lehrform
Seminar

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
[SWS oder UE]		[ECTS-Credits]	
5 | 2 SWS | deutsch | 2

Zeitaufwand:
Präsenzstudium	Eigenstudium
Blockveranstaltung mit 8 h | Onlinephase: 20 h; Eigenstudium: 32 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
Die Lehrveranstaltung gliedert sich in eine betreute Online-Phase und eine Präsenzphase außerhalb der Vorlesungszeit.

Online-Phase
- Lehrtexte zum Thema Gestaltung wissenschaftlicher Arbeiten, Präsentation und Moderation sowie Feedback
- Erarbeitung des Vortragsthemas und -inhalts sowie einer Gliederung des Vortrags durch die Studierenden (eine DIN A4 Seite), online Bewertung durch die Dozentin
- Erstellung eines Vortragsvideos (10 min.) als Screencast oder Video und hochladen auf die eLearning-Plattform
- Feedback durch Kommilitonen und Dozentin über die eLearning-Plattform

Präsenz-Phase
- Präsentation des überarbeiteten Vortrags live vor den Kommilitonen (bzw. im Rahmen einer Videokonferenz)
- Feedback durch die Kommilitonen
- Diskussion
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• potentielle Arbeitgeber und ihre Spezifika zu benennen (1)
• Arbeitsfelder und Projekte anderer Seminarteilnehmer zu benennen (1)
• potentielle Arbeitsfelder und Arbeitgeber einzuschätzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• die grundlegende Vorgehensweise bei der Gestaltung wissenschaftlicher Arbeiten bzw. der Ausarbeitung eines Vortrags zu benennen (1)
• Feedbackregeln wiederzugeben (1), Feedback zu geben und anzunehmen (3)
• einen Vortrag zum Inhalt des eigenen Industriepraktikums zu konzipieren, vorzubereiten und innerhalb der Zeitvorgaben vorzutragen (3)
• Arbeitsergebnisse verständlich aufzubereiten und situationsgerecht zu präsentieren (3)
• Zuhörer durch klare Kommunikation und Struktur zu überzeugen (3)

Angebotene Lehrunterlagen
Lehrtexte, Bewertungsschemata

Lehrmedien
Rechner/Beamer, Tafel, eLearning-Plattform, Videokonferenztool zoom

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektarbeit (Project Work)</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Projektarbeit</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
Projektarbeit | PA

Verantwortliche/r | Fakultät
Prof. Dr. Michael Sterner | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Betreuender Professor-betreuende Professorin | jährlich

Lehrform
Seminaristischer Unterricht mit 80% Übungsanteil, Seminar

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
56 h | Ausarbeitung Projekt: 94 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Projektorganisation, Projektstrukturierung, Projekt-Controlling
- Fallbeispielorientierte Problem- und Zielanalyse
- Datenerhebung und -darstellung, Schwachstellenanalyse
- Zielorientierte Problembearbeitung und -lösung im Team unter Berücksichtigung von methodischen, systemtechnischen und wertanalytischen Vorgehensweisen
- Systematische Dokumentation der Ergebnisse und Präsentation des Projekts

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- konkrete Problemstellungen zu lösen
- erarbeitete komplexe Erkenntnisse aus dem Projekt im Projektteam zu präsentieren
- das im Studium erworbene interdisziplinäre Fach- und Methodenwissens unter Anleitung anzuwenden
- im Team wissenschaftlich zu arbeiten

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- in einem Team zu organisieren und zu arbeiten (2)
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Projektarbeit (Project Work)

- fachliche Fragen zu stellen (3) und technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)
- kritische Diskussionen in sachlicher Atmosphäre zu führen (2)
- sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3)
- die Prinzipien guter wissenschaftlicher Praxis zu kennen (1) und sich mit wissenschaftlicher Literatur auseinanderzusetzen (2)

Angebotene Lehrunterlagen
Projekt-, fallspezifische Arbeitsunterlagen und Fachbücher

Lehrmedien
Overheadprojektor, Rechner/Beamer, Exponate

Literatur
Jahrbuch Erneuerbare Energien
Quaschning, V.: Regenerative Energiesysteme, Hanser Verlag, München, 2013
Heier, S.: Windkraftanlagen, Teubner Verlag, Stuttgart, 2005

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Regelungstechnik (Control Engineering)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungstechnik (Control Engineering)</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Birgit Rösel</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Mathematik 2 zumindest gehört

Inhalte
- Regelkreise in Natur und Technik und deren Modellierung
- Beschreibung linearer, zeitinvarianter Systeme (LZI) im Zeit- und Frequenzbereich
- Laplacetransformation
- Stabilitätsprüfung mit verschiedenen Verfahren
- Regler-Entwurf mittels Einstellregeln, Wurzelortskurve, Frequenzkennlinien, Gütekriterien

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,
- den Aufbau und Wirkungsweise von Regelkreisen zu erläutern (1), darstellen und das Verhalten zu untersuchen (2) sowie Steuerung und Regelung voneinander abzugrenzen (3)
- verschiedene Reglertypen zu unterscheiden (1), Methoden zur Bestimmung eines geeigneten Reglers zu charakterisieren (1), zu verwenden (2) und hinsichtlich ihrer Eignung zu bewerten (3)
- technische Systeme mit einem mathematischen Modell zu beschreiben (2) und dieses geeignet zu vereinfachen (2) sowie das Modell zu analysieren (3)
- lineare, zeitinvariante Systeme im Zeit- und Frequenzbereich mit verschiedenen Methoden zu beschreiben (2) sowie zu analysieren (3) und zu synthetisieren (3)
- die Laplace-Transformation zu verwenden (2)
- das Konzept der Stabilität darzustellen (1), verschiedene Methoden zur Stabilitätsprüfung zu verwenden (2) und die Stabilität von Regelkreisen zu beurteilen (3)
- neue Inhalte aus technischen Texten zu erschließen (2) und fachliche Zusammenhänge mit eigenen Worten darzustellen (3)
- Messergebnisse in einem Protokoll darzustellen (2) und einen technischen Bericht anzufertigen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,
- die Grundprinzipien der Teamarbeit und Feedbackregeln zu benennen (1) und in einem Team zu arbeiten (2)
• fachliche Inhalte vor einem Publikum darzustellen (2), fachliche Fragen an die Dozentin zu stellen (3) und technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)
• die Prinzipien guter wissenschaftlicher Praxis zu benennen (1) und zu verwenden (2)
• die Herangehensweise für effektives Studieren zu benennen (1) und einen Lernplan für ein Semester aufzustellen (2)
• die Notwendigkeit einer Vorbereitung der Veranstaltungen zu erkennen (2) und sich zur Teilnahme zu motivieren (3)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Regelungstechnik</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Regelungstechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Regelungstechnik (Control Engineering)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Regelungstechnik</td>
<td>PRA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Birgit Rösel</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Birgit Rösel</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Praktische Übungen im Labor für Regelungstechnik und als virtuelle Experimente

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
<table>
<thead>
<tr>
<th>28 h</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Versuchsvorbereitung: 16 h, Versuchsauarbeitung: 16 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
Das Praktikum (PRA) dient der gezielten Vertiefung der Lehrinhalte der Veranstaltung Regelungstechnik (RT) und ist parallel zu dieser zu belegen.
- Untersuchung des Verhaltens von gesteuerten bzw. geregelten Systemen (virtuelles Experiment)
- Messung des Zeitverhaltens verschiedener Operationsverstärkerschaltungen hinsichtlich Übergangsverhalten und stationärem Verhalten
- Messung des Frequenzverhaltens technischer Systeme und Darstellungsmöglichkeiten
- Analyse des Verhaltens von geschlossenen Regelkreisen mit verschiedenen Reglertypen (virtuelles Experiment)

Angebotene Lehrunterlagen
Versuchsvorlagen
Lehrmedien
verschiedene OP-Schaltungen, e-learning-Plattform, Matlab-Programme

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Autor</th>
<th>Titel</th>
<th>Verlag, Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunze, J.</td>
<td>Regelungstechnik 1/2</td>
<td>Springer, 2013</td>
</tr>
<tr>
<td>Föllinger, O.</td>
<td>Regelungstechnik</td>
<td>Hüthig, 1994</td>
</tr>
<tr>
<td>Unbehauen, H.</td>
<td>Regelungstechnik I</td>
<td>Vieweg-Verlag, 2005</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Regelungstechnik (Control Engineering)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungstechnik</td>
<td>RT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Birgit Rösel</td>
<td>Elektro- und Informationstechnik</td>
<td>Prof. Dr. Birgit Rösel</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht: 15-20% Übungsanteil sowie Blended Learning Lehreinheiten

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>
| 56 h | Vor- und Nachbereitung: 70 h
| | Prüfungsvorbereitung: 24 h |

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte

siehe Gesamtmodul

Angebotene Lehrunterlagen
Skript, Übungen, Praktikumsunterlagen, Lehrtexte, Lehrvideos, Wochenpläne, Matlab-Programme

Lehrmedien
Tafel, Beamer, Clickersystem, elearning-Plattform, Online-Konferenztool zoom

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Seite 106
Literatur

Föllinger, O.: Regelungstechnik, Hüthig, 1994
Unbehauen, H.: Regelungstechnik I, Vieweg-Verlag, 2005
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strömungsmaschinen (Turbomachinery)</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Lesser</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Strömungsmechanik (SM), Thermodynamik (TD)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strömungsmaschinen</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Das Modul wird durch die Fakultät Maschinenbau angeboten.
Teilmodul	TM-Kurzbezeichnung
Strömungsmaschinen | SMA

Verantwortliche/r	Fakultät
Prof. Dr. Andreas Lesser | Maschinenbau
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Andreas Lesser | jedes 2. Semester

Lehrform
Seminaristischer Unterricht

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
60 h | 90 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
Die Lehrveranstaltung ist als Einführungsvorlesung in das Gebiet der Thermischen und Hydraulischen Strömungsarbeits- und Strömungskraftmaschinen konzipiert. Im Fokus stehen folgende Inhalte und Qualifikationsziele:

- Grundlegende Kenntnis der thermo- und hydrodynamischen Funktionsweise von Strömungsmaschinen
- Analyse und Interpretation der Einflussgrößen und der Randbedingungen bei der Entwicklung von Strömungsmaschinen
- Auswahl und Auslegung von Strömungsmaschinen für gegebenen Randbedingungen
- Aero- bzw. Hydrodynamische Berechnung und Dimensionierung der Komponenten von Strömungsmaschinen
- Grundlegende Kenntnis über Verlustquellen und deren qualitative Beurteilung in Strömungsmaschinen
- Interpretation, Berechnung und Analyse von Kennfeldern von Strömungsmaschinen
- Auswahl, Regelung und Bewertung von Strömungsmaschinen für gegebene Anlagen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Arten von Strömungsmaschinen und deren Einteilung sowie ihre Anwendungsbereiche von Strömungsmaschinen zu nennen, relevanter Kennzahlen und gebräuchlichen Fachbegriffe zu kennen (1)
Die thermodynamischen und aerodynamischen Grundlagen von Strömungsmaschinen sowie die Energiewandlung in Strömungsmaschinen zu verstehen (3)
• Ähnlichkeitsgesetze (Cordier-Diagramm) anzuwenden (2)
• Die Vorgehensweise bei der aero-/thermodynamischen Auslegung von Strömungsmaschinen zu kennen (1) und einfache Auslegungen analytisch durchführen zu können (3)
• Arten und Entstehung von Verlusten sowie instationäre Aspekte zu benennen (1)
• Typische Konstruktionsarten von Turbos maschinen, Welle-Nabeverbindungen sowie Schwingungsaspekte zu kennen (1)
• Festigkeit von Rotoren, Schaufeln und Scheiben zu berechnen (2)
• Kennfelder von Arbeitsmaschinen zu charakterisieren und Bereichsgrenzen zu beurteilen (3)
• Kennfelder von Kraftmaschinen und geeignete Anwendungen zu beurteilen (3)
• Strömungsmaschinen im Anlagenverbund planen und auslegen zu können (2) und ihre Betriebsarten zu kennen (1)
• Regelung (Drehzahlregelung, Drosselregelung, Bypassregelung etc.) zu kennen, auszuwählen und beurteilen zu können (3)
• Reihen- und Parallelschaltung von Strömungsmaschinen zu beurteilen (3)
• Die strömungstechnischen Grundlagen von Windturbinen und ihre Regelung zu kennen und zu verstehen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (3)
• in interdisziplinären Teams erfolgreich mit Strömungsmaschin enexperten zu interagieren (2)
• die Folgen der Strömungsmaschinenauswahl für Mensch und Umwelt zu beschreiben (1)

Angebotene Lehrunterlagen

Vorlesungsunterlagen

Lehrmedien
Tafel, Dokumentenkamera, Rechner/Beamer

Literatur

Auszug aus der Literaturliste:
• Pfleiderer; Petermann: Strömungsmaschinen, 7. Auflage, Springer 2005
• Sigloch, Herbert: Strömungsmaschinen, 4. Auflage, Hanser 2009
• Bohl/Elmendorf: Strömungsmaschinen (Bd. 1+2), 10.+7. Auflage, Vogel 2008+2005
• Menny: Strömungsmaschinen, 5. Auflage, Teubner, 2006
• Kalide, Sigloch: Energieumwandlung in Kraft- und Arbeitsmaschinen, 10. Aufl., Hanser 2010

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Strömungsmechanik (Fluid Mechanics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strömungsmechanik (Fluid Mechanics)</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stephan Lämmlein</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1, Mathematik 2, Technische Mechanik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Strömungsmechanik</th>
<th>TM-Kurzbezeichnung</th>
<th>SM</th>
</tr>
</thead>
</table>

Verantwortliche/r

Prof. Dr. Stephan Lämmlein

Fakultät

Maschinenbau

Angebotsfrequenz

jährlich

Lehrform

Seminaristischer Unterricht, 15% Übungen

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Anwendungsüberblick der Strömungsmechanik im Maschinenbau
- Physikalische Eigenschaften von Fluiden, Materialgesetze
- Hydrostatik in ruhenden und beschleunigten Behältern, Atmosphäre
- Hydrodynamik, Bahmlinie, Stromlinie, Streichlinie, Zeitlinie
- Kontinuitätsgleichung (Erhaltungssatz des Massestroms)
- Bernoulligleichung (Energieerhaltung), Druckverlauf in reibungsfreien Strömungen
- Impulssatz (Impulserhaltung)
- Unterscheidung laminare/turbulente Strömung
- Strömungsmechanische Ähnlichkeit, Reynoldssche Zahl
- Rohrleitungsverluste

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- lineare von nichtlinearen Fluiden zu unterscheiden (2)
- Druckverteilungen und die daraus resultierenden Wandkräfte in ruhenden Behältern zu berechnen (3)
- die atmosphärische Druckverteilung zu verstehen (2)
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Strömungsmechanik (Fluid Mechanics)

- Strömungsgeschwindigkeiten im Rahmen der Stromfadentheorie zu berechnen (3)
- Integrale Fluidkräfte auf Wände zu berechnen (2)
- Druckverluste in Rohrleitungssystemen zu berechnen (2)
- Ergebnisse hinsichtlich Plausibilität und Größenordnung abzuschätzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Relevanz des Fachs Strömungsmechanik in der Technik einzuschätzen (2)
- in fachlichen Gesprächen mit Experten die physikalischen Zusammenhänge zu verstehen (2)
- einfache Berechnungen von Strömungsgeschwindigkeiten, Drücken und Kräften durch zu führen (3)
- einfache Abschätzungen zur Energieaufwand anzugeben
- die wichtigsten Zusammenhänge im Sinne einer Technikfolgeabschätzung auf Mensch und Umwelt zu verstehen und zu beschreiben (1)

Angebotene Lehrunterlagen

Übungsaufgabensammlung, Formelsammlung, Links zu erklärenden Videos (Moodle), alte Prüfungsaufgaben

Lehrmedien

Rechner/Beamer mit pdf annotator, Videos, Multimedia Clips

Literatur

- W. Bohl: Technische Strömungslehre, Vogel Verlag
- L. Böswirth: Technische Strömungslehre, Vieweg Verlag
- H. Kuhlmann: Strömungsmechanik, Pearson Verlag
- D. Surek, S. Stempin: Angewandte Strömungsmechanik, Tubner Verlag
- V. Schröder: Übungsaufgaben zur Strömungsmechanik 1, Springer Verlag
- J. Strybny: Ohne Panik Strömungsmechanik, Vieweg Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Thermodynamik (Thermodynamics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamik (Thermodynamics)</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Thermodynamik</td>
<td>5 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Thermodynamik (Thermodynamics)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamik</td>
<td>TD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christian Rechenauer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht, Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitenaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 h</td>
<td>110 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Thermodynamische Grundbegriffe
- Hauptsätze der Thermodynamik
- Zustandsgleichungen von idealen Gasen und Gasmischungen
- Zustandsänderungen idealer Gase
- Zustandsgleichungen von realen Gasen und Dämpfen
- Kreisprozesse mit Gasen und Dämpfen
- Mischungen von Gasen und Dämpfen (feuchte Luft)
- Grundlagen der Verbrennungsrechnung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundbegriffe der Thermodynamik anzugeben (1)
- die Massen- und Energieerhaltungsgesetze darzustellen (2)
- den zweiten Hauptsatz der Thermodynamik zu interpretieren (1)
- Thermomechanische Exzerz zu bestimmen und zu erläutern (2)
- Zustandsgleichungen von idealen Gasen und Gasmischen anzuwenden (2)

Stand: 15.03.2022

Ostbayerische Technische Hochschule Regensburg
Seite 115
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Thermodynamik (Thermodynamics)

- Zustandseigenschaften und Zustandsänderungen idealer Gase und Fluidce mit Phasenübergang zu analysieren und zu bewerten (3)
- Kreisprozesse mit Gasen und Dämpfen zu bewerten und darzustellen (3)
- die Gesetzmäßigkeiten der Energieumwandlung auf Komponenten und Gesamtsysteme anzuwenden (3)
- praxisrelevante Kreisprozesse zu Wärmekraftmaschinen sowie Wärmepumpen und Kälteinlagen zu berechnen und zu evaluieren (3)
- Effizienzsteigerungsmaßnahmen der Energieumwandlungsprozesse zu identifizieren, zu bewerten und darzustellen (3)
- Gas-Dampf-Gemische am Beispiel der feuchten Luft zu bewerten (3)
- die Grundoperationen der Klimatisierung zu berechnen und zu beurteilen (3)
- Grundlagen der Verbrennungsrechnung zu evaluieren (3)
- die Reaktionsgleichungen gasförmiger sowie flüssiger und festförmiger Brennstoffe aufzustellen und zu analysieren (3)
- die Massen- und Stoffmengenanteile der Abgase im trockenen und feuchten Zustand zu berechnen und zu bewerten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Grundprinzipien der Teamarbeit und Feedbackregeln zu benennen und auszüben (1)
- in kleinen Gruppen Lösungsansätze für unterschiedliche Aufgabenstellungen der Energieumwandlung zu erarbeiten und sachlich und fachlich zu diskutieren (3)
- die Grundbegriffe und Kenngrößen der Energieumwandlung in englischer Schriftsprache einzulernen (1)
- mit Datenblättern und Stoffdaten der unterschiedlichen Komponenten und Materialien der Energiesystemtechnik in englischer Sprache umzugehen (1)
- Zunehmende Bedeutung der Thermodynamik und Energieeffizienz im Rahmen interdisziplinärer Projekte in einem beruflichen Selbstbild zu entwickeln
- ihr berufliches Handeln kritisch in Bezug auf gesellschaftliche Erwartungen und Folgen zu reflektieren

Angebotene Lehrunterlagen

Skript, Formelsammlung, Aufgabensammlung, Zusatzdiagramme und Tabellen

Lehrmedien

Rechner/Beamer, Tafel

Literatur

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Modulabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wärmeübertragung</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>
Teilmodul: Wärmeübertragung

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>WUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeübertragung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht, Übungen

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3</td>
<td>2 SWS</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>62 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Grundlagen der Wärmeübertragung
- Differenzialgleichung der Wärmeleitungs- und Randbedingungen
- Stationäre, eindimensionale Wärmeleitungs-
- Instationärer Wärmetransport (Halbunendlicher Körper, Ideal gerührter Behälter)
- Konvektiver Wärmetransport
- Wärmeübertrager (Bauarten/Stromführung/Bilanzierung/Auslegung)
- Wärmestrahlung (Grundlagen, einfache Strahlungsaustauschbeziehungen)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die jeweiligen Wärmetransportphänomene zu differenzieren (1) und Wärmetransportprobleme entsprechend danach zu analysieren (3).
- die Wärme- und Enthalpieströme zu bilanzieren (2) sowie Temperaturverläufe (stationär/transient) zu berechnen (2) und zu bewerten (3), sowie weitere relevante Transportgrößen (thermische Widerstände, Wärmeübergangskoeffizienten, Strahlungsgrößen) zu berechnen (2) und sinnvoll anzuwenden (3).
- Wärmeübertrager auszulegen (2) und deren Funktionalität zu bewerten (3).
- die 0D- und 1D - Differenzialgleichungen und Randbedingungen für den stationären und transienten Temperaturverlauf in Festkörpern zu kennen (1).
mit temperatur- und druckabhängigen Stoffwertetabellen umzugehen (2) und die darin implizit enthaltenen Informationen zum Stoffsystem zu bewerten (3).

die grundlegenden Geschwindigkeits- und Temperaturprofile bei erzwungener und freier Konvektion zusammenzustellen (2).

die grundlegenden Phänomene bei Verdampfung und Kondensation zu nennen (1) sowie den resultierenden Wärmstrom zu ermitteln (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
fachspezifisch mit Fachvertretern sowie Fachfremden zu kommunizieren (2) sowie zu gesellschaftlichen Energiediskussionen konstruktiv und nachhaltig beizutragen (2).

strukturiert und zielorientiert wärmetechnische Fragestellungen zu bearbeiten (2).

eigenständig das weiterführende fachspezifische Wissen zu vertiefen (3).

die fundamentale Rolle der Wärmeübertragung in der Energiewende zu analysieren (3).

die branchenübergreifenden Anwendungsfelder (Automotive, Gebäudetechnik, Elektrotechnik, Energie- und Prozesstechnik, Kälte- und Klimatechnik) der Wärmeübertragung zu identifizieren (3).

bewusster mit Energienutzung und Energieumwandlung im Hinblick auf die Umwelt umzugehen (3).

Angebotene Lehrunterlagen
Arbeitsunterlagen, Aufgabensammlung, Folien-Handout

Lehrmedien
Rechner/Beamer, Overheadprojektor, Tafel

Literatur

Baehr/Stephan: Wärme- und Stoffübertragung, 2010, Springer Verlag

Wagner: Wärmeübertragung, 1998, Vogel Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15.03.2022
Ostbayerische Technische Hochschule Regensburg
Seite 119
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akustische Kommunikation (Acoustic Communication)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Akustische Kommunikation</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Akustische Kommunikation (Acoustic Communication)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akustische Kommunikation</td>
<td>AK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

ca. 75% Seminaristischer Unterricht, ca. 25% Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Prüfungствие</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>60 h</td>
</tr>
<tr>
<td>Eigenstudium</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Schallleistung, Schallintensität, Schallpegel, Schalldruck
- Schallfelder, Schallwellen
- Ebene Welle, Kugelwelle, Wellenreflexion, Wellenausbreitung
- Kolbenmembran: Quell- und Lastimpedanz, Schallabstrahlung
- Bündelung, Richtungsfaktor, Richtungsmaß, Bündelungsmaß
- Elektromechanische Entsprechungen
- Elektroakustische Wandler
- Mikrophone
- Lautsprecher
- Nachhallzeit, Hallradius, Schallabsorber, Absorptionsgrad
- Lautheit, Tonhöhe, Schärfe, Rauhigkeit, Schwankungsstärke
- Räumliches Hören
- Ultraschallakustik
- Praktikumsversuche

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Grundlagen der Schallfelder und Schallwellen zu erklären (2).
- mit Hilfe elektromechanischer Analogien mechanische Aufgabenstellungen zu lösen (3).
• die Prinzipien elektroakustischer Wandler zu erklären (2).
• die Akustik eines Raumes mit unterschiedlichen Kenngrößen zu beschreiben (2) und zu bewerten (3).
• psychoakustische Effekte zu benennen (1) und deren Bedeutung einzuordnen (2).
• Schallfelder zu berechnen (2).
• Geeignete Mikrofone für eine konkrete Aufgabe auszuwählen (3).
• die Eigenschaften von Lautsprechern zu benennen (1) und zu erklären (2).
• Lautsprecherfrequenzgänge zu messen (3).
• Raumimpulsantworten zu messen (3).
• den Nahbesprechungseffekt zu erklären (2) und zu erkennen (2).
• Mikrofon- und Lautsprecherdaten kritisch zu beurteilen (3).
• interdisziplinär zu arbeiten (Akustik, Mechanik, Elektrotechnik) (3).
• Messergebnisse zu beurteilen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
 Vorlesungsfolien, Übungsaufgaben, Versuchsanleitungen

Lehrmedien
 Tafel, Beamer, Versuchsaufbauten

Literatur
 M. Zollner: Elektroakustik, Springer
 R. Lerch, G. Sessler: Technische Akustik, Springer
 H. Fastl, E. Zwicker: Psychoacoustics, Springer

Weitere Informationen zur Lehrveranstaltung
 Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlagen- und Kraftwerkstechnik (Power Plant Technology)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Thermodynamik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Anlagen- und Kraftwerkstechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Anlagen- und Kraftwerkstechnik</th>
<th>AKT</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Robert Leinfelder</th>
<th>Maschinenbau</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, Übung

Studiensemester

gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

1) Energienachfrage, energiewandlung und gesellschaftliche Relevanz
2) Begriffsdefinitionen im Energiesektor und Energiebereitstellung in Deutschland
3) Methoden zur Berechnung und Darstellung des Primärenergieverbrauchs
4) Einordnung konventioneller Energiewandlungsanlagen zur Gesamtenergiebereitstellung in Deutschland
5) Energieerhaltung (1. Hauptsatz)
6) Irreversibilität (2. Hauptsatz)
7) Thermodynamische Kreisprozesse zu Wärmekraftmaschinen
8) Dampfkraftwerke
9) Gasturbinenkraftwerke
10) Kombination von Gas- und Dampfturbinenkraftwerken (G&D-Kraftwerke)
11) Kernkraftwerke

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Energiewandlung im Allgemeinen zu kennen (1)
- die thermodynamischen Grundlagen zur Energiewandlung durch Kraftwerksanlagen handzuhaben (2)
• den Kraftwerksaufbau, dessen wesentliche Komponenten, dessen Aufbau und technische Bedeutung, Gewinnung und Eigenschaften von verwendeten Brennstoffen, die Abgasreinigung und Entsorgung von Brennstoffen zu verstehen (3)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechner/Beamer, Overheadprojektor, Tafel, Video, Exponate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Veranstaltung wird durch die Fakultät Maschinenbau angeboten.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Antriebstechnik (Electrical Drives)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antriebstechnik (Electrical Drives)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Anton Haumer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
- Grundlagen der Elektrotechnik 1-3
- Vorlesung Elektrische Energiewandler
- Vorlesung Elektrische Maschinen

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Antriebstechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antriebstechnik</td>
<td>AT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Anton Haumer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Anton Haumer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht, 10-15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
<th>Vor- und Nachbereitung: 62 h</th>
<th>Prüfungsvorbereitung: 32 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Aufbau und Funktionsweise elektrischer Antriebe mit elektrischer Antriebsmaschine, Getriebe, Arbeitsmaschine, Stromrichter, Energieversorgung, Steuerung
- Untersuchung der Mechanik des Antriebes mit Bestimmung des stationären Arbeitspunktes, Drehmoment-Drehzahl-Kennlinien, Einfluss eines Getriebes sowie Berechnung von Hochlauf- und Bremsvorgängen
- Drehzahlverstellung von Gleichstrom- und Drehstrommaschinen miteleistungselektronischen Stromrichtern/Frequenzumrichter

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- das Zusammenwirken von elektrischen Antriebsmaschinen und mechanischen Arbeitsmaschinen zu beschreiben (1)
- die Funktionsweise von Frequenzumrichtern zu beschreiben (1)
- Arbeitspunkte und Drehzahlverläufe elektrischer Antriebsmaschinen zu berechnen (2)
- im Betrieb auftretende Verluste und Temperaturen elektrischer Antriebe zu berechnen (2)
- Antriebe für mechanische Arbeitsmaschinen, bestehend aus elektrischen Maschinen und Stromrichtern, zu projektieren (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebote Lehrunterlagen

- Präsentation, Beiblätter, Tafelbild, Übungen, Formelsammlung

Lehrmedien

- Rechner/Beamer, Tafel

Literatur

Weitere Informationen zur Lehrveranstaltung

Documents English, teaching language is German or English depending on students.

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Kapitel der Regelungstechnik (Selected Topics in Control Engineering)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Claus Brüdigam</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Regelungstechnik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ausgewählte Kapitel der Regelungstechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>AKR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name des Studiengangs:</td>
<td>Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulname:</td>
<td>Ausgewählte Kapitel der Regelungstechnik (Selected Topics in Control Engineering)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Claus Brüdigam</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Claus Brüdigam</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform: Seminaristischer Unterricht mit praktischer Arbeit im Labor

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Beziehungen:

Präsenzstudium: 60 h
Eigenstudium: Vor- und Nachbereitungszeit, Prüfungsvorbereitung: 90 h

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte:

- Modellbildung (z.B. eines autonomen Fahrzeugs)
- Reglerentwurf (Wurzelortskurvenverfahren) und zeitdiskrete Realisierung auf einem Mikrocontroller (z.B. für ein autonomes Fahrzeug)
- Systembeschreibung im Zustandsraum
- Steuerbarkeit/Beobachtbarkeit
- Reglerentwurf mit vollständiger Zustandsrückführung (Polvorgabe und Riccati-Entwurf)
- Beobachterentwurf (Luenberger-Beobachter, Kalman Filter)
- PI-Zustandsregler
- Zeitdiskrete Systembeschreibung
- Realisierung von zeitdiskreten Standard- und Beobachterreglern auf Mikrocontrollern

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die grundlegenden Ideen der Zustandsraumdarstellung, der Zustandsregelung (Polvorgabe und Riccati-Entwurf), des Beobachterentwurfs (Luenberger-Beobachter und Kalman-Filter) und der zeitdiskreten Systembeschreibung zu kennen (1)
- technische Systeme modellieren zu können (2)
- die erworbenen Kenntnisse auf den Regler- und Beobachterentwurf für Mikrocontrollersysteme anzuwenden (3)
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Ausgewählte Kapitel der Regelungstechnik (Selected Topics in Control Engineering)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die fachlichen Inhalte mindestens zu etwa 50 % zu beherrschen.

Persönliche Kompetenzen werden in der Veranstaltung indirekt vermittelt, z.B. beim Formulieren von Fragen und Anliegen oder Absolvieren von Laborterminen, was ganz allgemein den Umgang mit anderen Menschen (z.B. Kommilitonen und Dozenten) schult. Die Vorbereitung auf die Prüfung lehrt das gewissenhafte Planen und eine gründliche Vorbereitung. Gezielt abgeprüft werden diese Kompetenzen aber nicht.

Angebotene Lehrunterlagen
Hilfsblätter, Übungsaufgaben, Matlab Tutorial, Mikrocontroller Entwicklungsumgebung, Beispielprogramme

Lehrmedien
Tafel, Beamer, PC-Arbeitsplatz mit Matlab/Simulink, Laboraufbauten

Literatur
G. Schulz: Regelungstechnik 2 (Mehrgrößenregelung, Digitale Regelungstechnik, Fuzzy-Regelung). Oldenbourg Verlag München
O. Föllinger: Lineare Abtastsysteme. Oldenbourg Verlag, München
H. Unbehauen: Regelungstechnik II - Zustandsregelungen, digitale und nichtlineare Regelsysteme. Vieweg Verlag, Braunschweig
J. Lunze: Regelungstechnik 2 - Mehrgrößensysteme, Digitale Regelung: Springer Verlag, Berlin
E.-G. Feindt: Regeln mit dem Rechner, Abtastregelungen mit besonderer Berücksichtigung der digitalen Regelungen. Oldenbourg Verlag
Angermann, Beuschel, Rau, Wohlfarth: Matlab - Simulink - Stateflow. Oldenbourg Verlag München
J. Wendel: Integrierte Navigationssysteme – Sensordatenfusion, GPS und Inertiale Navigation, Oldenbourg Verlag, München, Wien

Weitere Informationen zur Lehrveranstaltung
- Maximal 18 Teilnehmer
- Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg Seite 131
Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

| Prof. Dr. Robert Leinfelder |

Modulbezeichnung (ggf. englische Bezeichnung) | Modul-KzBez. oder Nr. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse (Biomass)</td>
<td></td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biomasse</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomasse</td>
<td>BIM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht: 20-30 % Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitauflaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>56 h</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einordnung der Biomasse als Energiewandlungssystem in den Energiesektor</td>
</tr>
<tr>
<td>• Grundlagen zur Biomasse (Entstehung, Aufbau, Stoffkreislauf, Potential)</td>
</tr>
<tr>
<td>• Thermochemische Umwandlung von Biomasse (Pyrolyse, Vergasung, Verkohlung, Verflüssigung, vollständige Oxidation)</td>
</tr>
<tr>
<td>• Verbrennungsrechnung</td>
</tr>
<tr>
<td>• Feuerungsanlagen</td>
</tr>
<tr>
<td>• Biogasanlagen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• die Grundlagen zu Biomasse (Entstehung, Aufbau, Nutzung, Potentiale) zu kennen (1)
• thermo-chemische sowie bio-chemische Biomasse-Konversionsverfahren analysieren zu können (3)
• Aufbau und Funktionsweise von thermo-chemischen sowie bio-chemischen Biomasse-Konversionsanlagen zu verstehen und zu bewerten (3)
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Biomasse (Biomass)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Übungen, Fachbücher</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheadprojektor, Rechner/Beamer, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaltschmitt, Hartmann: Energie aus Biomasse, Springer Verlag, 2009</td>
</tr>
<tr>
<td>Biotechnologische Energieumwandlung, T. Bley, Springer Verlag, 2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Die Veranstaltung wird durch die Fakultät Maschinenbau angeboten.</th>
</tr>
</thead>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennstoffzellentechnologie (Fuel cell technology)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florian Uhrig (LB)</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Stand: 15. 03. 2022

Ostbayerische Technische Hochschule Regensburg

Seite 135
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennstoffzellentechnologie</td>
<td>BZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florian Uhrig (LB)</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florian Uhrig (LB)</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 94 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>
Inhalte

1. Einführung
2. Grundlagen
 - Thermodynamik
 - Elektrochemie
3. Die Brennstoffzelle
 - Die Arten
 - Der Aufbau
 - Der Betrieb
 - Der Brennstoffzellen-Stapel
 - Charakterisierung von Brennstoffzellen-Stacks
4. Das Brennstoffzellensystem
 - Luftversorgung
 - Brennstoffversorgung
 - Kühlung
 - Elektrischer Anschluss
 - Besonderheiten in der Fahrzeuganwendung
5. Wasserstoff als Energieträger
 - Eigenschaften
 - Erzeugung
 - Transport
 - Speicherung

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

- Skript, Übungsaufgaben
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Brennstoffzellentechnologie (Fuel cell technology)

<table>
<thead>
<tr>
<th>Lehrmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Tafel (Whiteboard)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Brennstoffzellentechnik“, P. Kurzweil et al., Springer Vieweg, 2016, DOI: 10.1007/978-3-658-14935-2</td>
</tr>
<tr>
<td>„Wasserstoff in der Fahrzeugtechnik“, M. Klell et al., Springer Vieweg, 2018, DOI: 10.1007/978-3-658-20447-1</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Codierung in der Informationsübertragung (Coding for Information Transmission) |

Modulverantwortliche/r	Fakultät
Prof. Dr. Peter Kuczynski | Elektro- und Informationstechnik |

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

### Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2 | Schwerpunkt Wahlpflichtmodul | 5 |

Empfohlene Vorkenntnisse
1. Studienabschnitt

Zugeordnete Teilmodule:
Nr.	Bezeichnung der Teilmodule	Lehrumfang [SWS o. UE]	Arbeitsaufwand [ECTS-Credits]
1. | Codierung in der Informationsübertragung | 4 SWS | 5 |
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Codierung in der Informationsübertragung (Coding for Information Transmission)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codierung in der Informationsübertragung</td>
<td>CI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminartisicher Unterricht, 10-30% Übungsanteil, Praktikumsversuche

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 62 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Einführung in die Grundlagen der Wahrscheinlichkeitslehre
- grundlegende Begriffe der Informationstheorie (z.B. Entropie, Redundanz, Transinformation) und deren Bedeutung
- diskrete und kontinuierliche Informationsquellen
- Übertragungskanäle (z.B. DMC, AWGN)
- Maximum-Likelihood-Entscheidung
- gedächtnisbehafte und gedächtnislose Informationsquellen
- Markoff-Quelle erster Ordnung
- Quellencodierung (ausgewählte Beispiele und Verfahren)
- Huffman-Codierung
- Kanalcodierung und Decodierung (ausgewählte Beispiele und Verfahren)
- Hamming-Distanz, Linearer Code
- Hamming-Codes, zyklische Codes, Faltungscodes
- Kanalkapazität (Definition, Bedeutung, Berechnung, Beispiele)
- Hauptsätze von Shannon
- praxisorientierte Übungen mithilfe von MATLAB

Stand: 15. 03. 2022

Ostbayerische Technische Hochschule Regensburg

Seite 140
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- grundlegende Verfahren der Quellencodierung anzuwenden und zu bewerten (3)
- grundlegende Verfahren der Kanalcodierung und der Kanaldecodierung anzuwenden und zu bewerten (3)
- die Grundlagen der Wahrscheinlichkeitslehre zu verstehen und anzuwenden (2)
- grundlegende Begriffe der Informationstheorie zu verstehen und ausgewählte Berechnungen (z.B. der Entropie) durchzuführen und zu bewerten (3)
- gedächtnislose und gedächtnisbehaftete Quellen zu modellieren und zu bewerten (3)
- grundlegende diskrete und kontinuierliche Übertragungskanäle zu modellieren und zu bewerten (3)
- die Definition der Kanalkapazität zu verstehen und ausgewählte Berechnungen der Kanalkapazität durchzuführen und zu bewerten (3)
- optimale Entscheidungsverfahren zu verstehen und anzuwenden (2)
- ausgewählte Verfahren der Quellen- und Kanalcodierung mithilfe von MATLAB zu realisieren und die Ergebnisse der MATLAB-Simulationen zu bewerten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
- Skripte, Übungen, Literaturliste

Lehrmedien
- Overheadprojektor, Tafel, Rechner/Beamer

Literatur
- Firoz Kaderali: Digitale Kommunikationstechnik I, Vieweg 1995

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Mensch in einer technischen Welt: Innovation, ethische Verantwortung, Nachhaltigkeit (Human Beings in a Technological World: Innovation, Ethical Responsibility, Sustainability)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Kriza</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Elektro- und Informationstechnik
- Mechatronik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Der Mensch in einer technischen Welt: Innovation, ethische Verantwortung, Nachhaltigkeit</td>
<td>4 SWS</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Der Mensch in einer technischen Welt: Innovation, ethische Verantwortung, Nachhaltigkeit (Human Beings in a Technological World: Innovation, Ethical Responsibility, Sustainability)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Mensch in einer technischen Welt: Innovation, ethische Verantwortung, Nachhaltigkeit</td>
<td>MTW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Kriza</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Kriza</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache [ECTS-Credits]</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>50 h Vor- und Nachbereitung, 44 h Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

Die technikethische Lehrveranstaltung thematisiert die Dynamiken der modernen Technik, die Möglichkeiten eines ethisch verantwortlichen Umgangs mit der Technik und das ethische Prinzip der Nachhaltigkeit. Thematisiert werden insbesondere:

- einzelne innovative, dynamische Technologiefelder wie die Digitalisierung (mit Aspekten wie künstliche Intelligenz und Big Data), erneuerbare Energien, Biotechnologie u.a.
- die generellen Wirkweisen der (modernen) Technik und die dahinterstehenden Denkmuster.
- die gewollten und ungewollten Folgen einer globalisierten, durch den Einsatz von Technik geprägten Lebensweise.
- die bestimmenden kulturellen Menschenbilder, Wertvorstellungen und Sinnhorizonte der Gegenwart.
- die ethische Verantwortung des Menschen im Umgang mit Technik.
- Nachhaltigkeit als umfassendes ethisches Prinzip und als zentrale Herausforderung der Gegenwart.

Die Auswahl der Beispiele und Anwendungsfelder wird einen direkten Bezug zum Studienfach der Teilnehmenden aufweisen.
Name des Studiengangs: Bachelor Regenerative Energiotechnik u. Energieeffizienz (PO: 20152)

Modulname: Der Mensch in einer technischen Welt: Innovation, ethische Verantwortung, Nachhaltigkeit (Human Beings in a Technological World: Innovation, Ethical Responsibility, Sustainability)

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• wichtige innovative und „disruptive“ Technologien zu kennen (1) und den Kern ihrer Funktionsweise zu verstehen (3).</td>
</tr>
<tr>
<td>• ein vertieftes Verständnis für die generellen Dynamiken der modernen Technik herauszubilden (3).</td>
</tr>
<tr>
<td>• grundlegende kulturelle Wertvorstellungen und Menschenbilder zu kennen (1) und die Potentiale innovativer Technologien vor diesem Hintergrund ethisch zu beurteilen (3).</td>
</tr>
<tr>
<td>• die Grundidee von Ethik und ethischer Verantwortung in Abgrenzung zu (natur)wissenschaftlicher Beweisbarkeit und technischer Machbarkeit zu verstehen (2).</td>
</tr>
<tr>
<td>• ein Verständnis von Nachhaltigkeit als umfassendes ethisches Prinzip und als zentrale Herausforderung der Gegenwart herauszubilden (3).</td>
</tr>
<tr>
<td>• anhand von konkreten Anwendungsfällen das ethische Streben nach mehr Nachhaltigkeit, die Suche nach technischen und nichttechnischen Lösungen und die hierbei auftretenden Widersprüche zu analysieren (3).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• eigenständig und kritisch über die Seminarthemen zu reflektieren, dabei eigene ethische Positionen einzunehmen und sie vor anderen zu begründen (3).</td>
</tr>
<tr>
<td>• in freien Diskussionen mit anderen ein Bewusstsein für ethisch verantwortliches Handeln im Umgang mit Technik herauszubilden (3).</td>
</tr>
<tr>
<td>• sich selbstständig und eigenverantwortlich Wissen aus geeigneten Quellen anzueignen, dabei auch englischsprachige Fachliteratur zu berücksichtigen und sich damit auf den Leistungsnachweis vorzubereiten (3).</td>
</tr>
<tr>
<td>• die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>z. B. Präsentationen, Texte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>z. B. Tafel, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist ein Angebot der Regensburg School of Digital Sciences (RSDS) und daher für Studierende der Fakultät Elektro- und Informationstechnik auf 20 Teilnehmer*innen begrenzt.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitalelektronik (Digital Electronics)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Florian Aschauer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zu weiteren Studiengängen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechatronik</td>
</tr>
<tr>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Intelligent Systems Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Kenntnisse Vorlesung Digitaltechnik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digitalelektronik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Modul: Digitalelektronik (Digital Electronics)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitalelektronik</td>
<td>DE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Florian Aschauer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Florian Aschauer</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
- Seminaristischer Unterricht, Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 62 h Prüfungsvorbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
- siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
- siehe Studienplantabelle
Inhalte

CMOS-Grundschaltungen kombinatorisch
- Inverter, NAND, NOR, Complex Gates

CMOS-Grundschaltungen sequentiell
- Latch, D-Flipflop, Register, Schieberegister, diverse Universalregister

Bipolar-Grundschaltungen kombinatorisch
- Grundprinzip ECL-Schaltungstechnik, OR/NOR

Komplexe Grundfunktionen; Addierer, Multiplizierer
- Halbbaddierer, Volladdierer, Carry Look Ahead
- Realisierung der Addiererstufen als Complex Gates
- Ripple-Carry-Multiplizierer, Carry-Save-Multiplizierer, Serieller Multiplizierer

Zustandsautomaten
- Moore- Mealy-Maschine
- Entwurf über Zustandstabelle
- Entwurf über Zustandsdiagramm
- Entwurf mit Hardwarebeschreibungssprachen

Einführung in die Hardwarebeschreibungssprache VHDL
- Sprachelemente Concurrent und Sequential
- Codierungsbeispiele der Grundblöcke

Systematischer Entwurf komplexer Digitalsysteme
- Registerplanung
- Timingplanung mit Tabellenkalkulation
- Anwendungsbeispiel RS232-Schnittstelle - Anwendungsbeispiel SPI-Schnittstelle

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Grundschaltungen der digitalen Mikroelektronik anzugeben (1)
- die Grundblöcke komplexer Systeme zu nennen (1)
- den Schaltungsentwurf von Digitalschaltungen auf FPGA- oder ASIC-Basis durchzuführen (2)
- das Systemdesign von Digitalschaltungen auf FPGA- oder ASIC-Basis zu generieren (2)
- komplexe digitale Systeme auf Gatter- und Register-Transfer-Ebene mit Hilfe von Hardwarebeschreibungssprachen systematisch zu entwerfen (3)
- die Machbarkeit digitaler Systeme zu beurteilen (3)
- komplexe Projekte in Teilprojekte aufzuteilen, Teilspezifikationen und Schnittstellen zu definieren (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
- Skript
- Übungen
- Musterlösungen
- Literaturliste
- Simulationsmodelle

Lehrmedien
- Interaktives Lückenskript mit Rechner/Beamer, Tafel, Simulationsoftware

Literatur

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Digitale Signalverarbeitung (Digital Signal Processing)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitale Signalverarbeitung (Digital Signal Processing)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
- Signale und Systeme

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Digitale Signalverarbeitung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 15. 03. 2022

Ostbayerische Technische Hochschule Regensburg
Seite 149
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Digitale Signalverarbeitung (Digital Signal Processing)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitale Signalverarbeitung</td>
<td>DSV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Maier</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ca. 50% Seminaristischer Unterricht, ca. 50% Praktikum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 60 h
- Eigenstudium: 90 h

Studien- und Prüfungsleistung
- siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
- siehe Studienplantabelle

<table>
<thead>
<tr>
<th>Inhalte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zeitdiskrete Signale und Systeme</td>
<td></td>
</tr>
<tr>
<td>• Entwurf digitaler Filter</td>
<td></td>
</tr>
<tr>
<td>• Diskrete Fourier Transformation und Frequenzanalyse</td>
<td></td>
</tr>
<tr>
<td>• Analog-Digital und Digital-Analog-Wandlung</td>
<td></td>
</tr>
<tr>
<td>• Praktische Umsetzung mit Hilfe eines Simulationstools</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- verschiedene Realisierungen von linearen zeitinvarianten (LTI) Systemen zu unterscheiden (2).
- zeitdiskrete Signale und Systeme im Zeit-, Frequenz-, und Bildbereich zu beschreiben (2).
- Eigenschaften unterschiedlicher digitaler Filter einzuordnen (2).
- Spektren von zeitdiskreten Signalen zu berechnen (3).
- eine Frequenzanalyse mit Hilfe eines Simulationstools, wie z.B. Matlab, durchzuführen (3) und dabei Probleme zu erkennen (2).
- unterschiedliche Beschreibungsformen für LTI-Systeme ineinander umzuwandeln (3).
- Algorithmen der Signalverarbeitung mit Hilfe eines Simulationsstools zu implementieren (3) und zu bewerten (3).
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Digitale Signalverarbeitung (Digital Signal Processing)

- eine Spezifikation für ein digitales Filter aus einer Aufgabenstellung abzuleiten (3) und danach mit einem Simulationstool das Filter zu entwerfen (3).
- konkrete Problemstellungen der Signalverarbeitung zu analysieren (3) und mit Hilfe eines Simulationstools zu lösen (3).
- zu erkennen, welche Probleme sich mit digitales Signalverarbeitung lösen lassen (3).

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesungsfolien, Übungsaufgaben, Praktikumsaufgaben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Beamer, Matlab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppenheim, Schafer, Buck: Zeitdiskrete Signalverarbeitung, Pearson</td>
</tr>
<tr>
<td>Proakis, Manolakis: Digital Signal Processing, Pearson</td>
</tr>
<tr>
<td>Werner: Signale und Systeme, Vieweg Springer</td>
</tr>
<tr>
<td>Werner: Digitale Signalverarbeitung mit Matlab, Vieweg Springer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echtzeit-Signalverarbeitung (Real-Time Signal Processing)</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Armin Sehr</th>
</tr>
</thead>
</table>

Fakultät

<table>
<thead>
<tr>
<th>Elektro- und Informationstechnik</th>
</tr>
</thead>
</table>

Zuordnung zu weiteren Studiengängen

- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

<table>
<thead>
<tr>
<th>Signale und Systeme</th>
</tr>
</thead>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Echtzeit-Signalverarbeitung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energiotechnik u. Energieeffizienz (PO: 20152)
Modulname: Echtzeit-Signalverarbeitung (Real-Time Signal Processing)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echtzeit-Signalverarbeitung</td>
<td>ESV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
cia. 50% Seminaristischer Unterricht, ca. 50% Praktikum am Rechner

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
60 h | 90 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Festkommaarithmetik und Gleitkommaarithmetik
- Filterstrukturen
- Auswirkung von Quantisierung und Rechenungenaugkeiten auf FIR- und IIR-Filter
- Statistische Signalverarbeitung
- Effizienzsteigerung bei Signalverarbeitungs-Algorithmen
- Umsetzung von Signalverarbeitungs-Algorithmen in Echtzeitanwendungen
- Programmierung von Signalverarbeitungs-Algorithmen auf einem digitalen Signalprozessor (DSP)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Vor- und Nachteile von Fest- und Gleitkommaarithmetik aufzuzählen (1) und je nach Problemstellung die geeignete Option auszuwählen (3).
- die unterschiedlichen Filterstrukturen zu benennen (1) und ineinander umzuwandeln (3).
- die Auswirkung von Quantisierung und Rechenungenaugkeiten auf FIR- und IIR-Filter zu verstehen (2) und einzuschätzen (3).
- statistische Signale auf unterschiedliche Arten zu beschreiben (2) und zu analysieren (3).
- Besonderheiten der Echtzeit-Signalverarbeitung bei der Implementierung von Systemen zu berücksichtigen (3).
- Ein System mit einem digitalen Signalprozessor (DSP) in Betrieb zu nehmen (3).
• Signalverarbeitungs-Algorithmen in Echtzeitanwendungen umzusetzen (3), auf einem DSP zu implementieren (3) und die korrekte Funktion zu verifizieren (3).
• selbständig Probleme zu analysieren (3) und Vorgaben in eine Echtzeit-Implementierung umzusetzen (3).
• Fehler systematisch zu suchen (3).
• unterschiedliche Lösungen bezüglich Funktionalität, Entwicklungsaufwand und Kosten zu beurteilen (3)
• Software zur Lösung von Signalverarbeitungs-Problemen systematische zu entwerfen

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

zusätzlich:
Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage, zielgerichtet im Team an der Lösung eines Problems zu arbeiten und die unterschiedlichen Rollen in einem Team sinnvoll zu verteilen.

Angebotene Lehrunterlagen
Vorlesungsfolien, Versuchsanleitungen, Beispielprogramme

Lehrmedien
Rechner, Beamer, Tafel, Versuchsaufbauten mit DSP-Board

Literatur
• M. Werner: Digitale Signalverarbeitung mit Matlab, Springer Vieweg 2012
• D. Reay: Digital Signal Processing and Applications with the OMAP-L138 eXperimenter, Wiley 2012
• T. Welch et al.: Real-Time Digital Signal Processing from Matlab to C with the TMS320C6x DSPs, CRC Press 2012

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Elektrische Netztechnik (Electrical Power Systems) |

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Grundlagen elektrischer Maschinen, Elektrische Anlagentechnik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elektrische Netztechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Modulname:</th>
<th>Elektrische Netztechnik</th>
<th>TM-Kurzbezeichnung</th>
<th>ENT</th>
</tr>
</thead>
</table>

Verantwortliche/r

- **Prof. Dr. Oliver Brückl**
 Elektro- und Informationstechnik

Lehrende/r / Dozierende/r

- **Prof. Dr. Oliver Brückl**
 nur im Sommersemester

Lehrform

Seminaristischer Unterricht mit 10-15 % Übungsanteil

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Historie der Stromversorgung
- Aufbau von Stromversorgungsnetzen
- Aufbau und Ersatzschaltbilder der Netzbetriebsmittel
- Auslegung und Betrieb von Netzen
- Kurzschluss und Erdschluss in Netzen
- Sternpunktbehandlung von elektrischen Netzen
- Innovative Bausteine und Konzepte zur Umsetzung der Energiewende

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Den Aufbau und den Betrieb von Stromversorgungsnetzen erklären zu können (1)
- Lastflüsse berechnen zu können (2)
- Netztopologien und Netzbetriebsmittel zur Erfüllung einer Versorgungsaufgabe auswählen zu können (2)
- die Sternpunktbehandlung von el. Netzen mit ihren Vor- und Nachteilen zu unterscheiden (1)
- El. Leitungen el. bemessen zu können (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebote Lehrunterlagen

Skript, Präsentationsunterlagen und Übungen

Lehrmedien

Tafel, Rechner/Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energieotechnik u. Energieeffizienz (PO: 20152)

Modulname: EMV gerechter Leiterplatten- und Systementwurf (EMC compliant PCB and System Design)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMV gerechter Leiterplatten- und Systementwurf (EMC compliant PCB and System Design)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Umgang mit Matlab, LTSpice, HFSS (FEM Feldsimulationen), Eagle (PCB Layout) hilfreich aber nicht zwingend notwendig

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EMV gerechter Leiterplatten- und Systementwurf</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
EMV gerechter Leiterplatten- und Systementwurf | ELE

Verantwortliche/r	Fakultät
Prof. Dr. Thomas Stücke | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Thomas Stücke

Lehrform
Seminaristischer Unterricht, Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>Vor- und Nachbereitung: 60 h Prüfungsvorbereitung: 30 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Grundlagen der EMV
- Planung der EMV beim System und auf der Leiterplatte (PCB)
- EMV-Ersatzschaltbilder von Bauelementen
- Design-Regeln: Allgemeine, für Digital- und Analogschaltungen
- EMV Maßnahmen im PCB-Layout (Masse- und Signalstrukturen, Abblockung)
- Anwendung von Feldsimulationen zur Analyse von Verkopplungen
- Schaltungssimulationen zur EMV Optimierung (LTSpice)
- Systemberechnungen und numerische Auswertung von Simulationsdaten mit Matlab und Excel
- Durchführung von Layout Anpassungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Grundprinzipien der EMV zu beschreiben, die unterschiedlichen Verkopplungsarten zu erklären, interne u. externe EMV zu unterscheiden und Ursachen elektromagnetischer Unverträglichkeit zu klassifizieren (2)
- EMV-Ersatzschaltbilder von Bauelementen und Leitungen anzugeben und damit Verhalten von Schaltungen vorherzusagen (2)
- symmetrische und unsymmetrische Schaltungen unterscheiden zu können sowie die Auswirkungen von Gleichakt- und Gegentaktstörungen auf diese zu erläutern (2)
- die Entstehung und Auswirkungen von elektrostatischen Entladungen (ESD) einschließlich Effekt der Zweitentladung zu erklären (2)
- Leitungs- und Gehäuseschirmungen korrekt auszuführen und Leiterplatten in Gehäusenrichtige anzuordnen (3)
- passende ESD und Überspannungsschutzelemente auszuwählen, diese richtiganzuschließen und gestaffelten Schutz auszulegen (3)
- die Herausforderungen bei Koexistenz zu beschreiben, günstige CLK-Frequenzen auszuwählen und systematische Übersprechanalysen durchzuführen (3)
- eine EMV geeignete Separierungen einzelner Versorgungsspannungssebenen zu erstellen sowie Versorgungsnetze und Masse auf der Leitplatte EMV geeignet auszuführen (3)
- geeignete schaltungstechnische Maßnahmen zur Verbesserung der EMV für analoge und digitale Schaltungen umzusetzen (3)
- Spice, 2.5D und 3D-Feldsimulationssoftware voneinander abzugrenzen und problembezogen die geeigneten auszuwählen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Folien und Beispieldateien

Lehrmedien

Beamer, Tafel, Computer in den CIP Pools

Literatur

- Franz: EMV - störungssicherer Aufbau elektronischer Schaltungen. Springer Verlag, 2013
- Durcansky: EMV-gerechtes Gerätedesign. Franzis Verlag, 1999

Weitere Informationen zur Lehrveranstaltung

- Vorkenntnisse im Umgang mit folgender Software sind hilfreich, aber nicht zwingendnotwendig: Matlab, LTSpice, HFSS (FEM Feldsimulations), EAGLE (PCB Layout)
- Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenzangeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiespeicher</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Physik, Mathematik 1 und 2, Grundlagen der Elektrotechnik 1 und 2, Technische Mechanik, Werkstofftechnik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Energiespeicher</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiespeicher</td>
<td>ENS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit ca. 10-20 % Übungsanteil</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>60 h</td>
<td>Vor- und Nachbereitung: 60 h; Prüfungsvorbereitung: 30 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Energiespeicher im Wandel der Zeit</td>
<td></td>
</tr>
<tr>
<td>- Definition und Klassifizierung von Energiespeichern</td>
<td></td>
</tr>
<tr>
<td>- Speicherbedarf in der Stromversorgung</td>
<td></td>
</tr>
<tr>
<td>- Speicherbedarf in der Wärmeversorgung</td>
<td></td>
</tr>
<tr>
<td>- Speicherbedarf im Verkehrssektor</td>
<td></td>
</tr>
<tr>
<td>- Elektrische Energiespeicher</td>
<td></td>
</tr>
<tr>
<td>- Elektrochemische Energiespeicher</td>
<td></td>
</tr>
<tr>
<td>- Chemische Energiespeicher</td>
<td></td>
</tr>
<tr>
<td>- Mechanische Energiespeicher</td>
<td></td>
</tr>
<tr>
<td>- Thermische Energiespeicher</td>
<td></td>
</tr>
<tr>
<td>- Lastmanagement als Energiespeicher</td>
<td></td>
</tr>
<tr>
<td>- Vergleich der Speichersysteme</td>
<td></td>
</tr>
<tr>
<td>- Speicherintegration in einzelnen Energiesektoren</td>
<td></td>
</tr>
<tr>
<td>- Speicherintegration zur Kopplung unterschiedlicher Energiesektoren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
<td></td>
</tr>
<tr>
<td>- die Definition und Wirkungsgradberechnungen von Energiespeichern zu kennen (1) und</td>
<td></td>
</tr>
<tr>
<td>anzuwenden (3)</td>
<td></td>
</tr>
</tbody>
</table>
• den Diskussionsstand um den Bedarf an Speichern zu kennen (1)
• die Eigenschaften der wichtigsten Energiespeicher zu analysieren (3) und deren Einbindung in Energiesysteme auszuarbeiten (2)
• die wichtigsten technischen und wirtschaftlichen Speichergrößen zu berechnen (2)
• Energiespeicher für verschiedene Anwendungen auszulegen (3)
• Potenziale, Größen und Einordnungen von Energiespeicher untereinander abzuschätzen und zu analysieren (3) und
• die Integrationsmöglichkeiten für Energiespeicher in der Sektorenkopplung zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• in einem Team zu organisieren und zu arbeiten (2)
• fachliche Fragen zu stellen (3) und technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)
• kritische Diskussionen in sachlicher Atmosphäre zu führen (2)
• sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3)
• die Bedeutung sorgfältigen, selbstständigen Arbeitens für Ihren Lernerfolg einzuschätzen (3)
• den Unterschied zwischen Verständnis und bloßer Anwendung von Lösungswegen zu erkennen und die Vorteile beider Herangehensweisen zu nutzen (3)
• die Prinzipien guter wissenschaftlicher Praxis zu kennen (1) und
• sich mit wissenschaftlicher Literatur auseinandersetzen zu können (2)

Angebotene Lehrunterlagen
Extra angefertigtes Buch zur Vorlesung in deutscher und englischer Sprache, Übungen mit Lösungen, Datenblätter, Videos, Literaturliste

Lehrmedien
Tafel, Rechner/Beamer, Buchkapitel

Literatur
• Sterner Michael und Ingo Stadler: Energiespeicher – Bedarf, Technologien, Integration ISBN 978-3-642-37380-0; Springer-Verlag Heidelberg Berlin, 2017
• Jossen, Weydanz: Moderne Akkumulatoren richtig einsetzen, 2006

Weitere Informationen zur Lehrveranstaltung
Bei Bedarf wird die Lehrveranstaltung auf Englisch gehalten.

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erzeugung neuer Energieträger (Generating new energy carrier)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.-Ing. Robert Daschner (LB)</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen:
- Elektro- und Informationstechnik
- Mechatronik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse:

Lehrinhalte des ersten Studienabschnittes:

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Erzeugung neuer Energieträger</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energiotechnik u. Energieeffizienz (PO: 20152)

Modulname: Erzeugung neuer Energieträger (Generating new energy carrier)

Teilmodul	**TM-Kurzbezeichnung**
Erzeugung neuer Energieträger | ENE

Verantwortliche/r	**Fakultät**
Dr.-Ing. Robert Daschner (LB) | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Dr.-Ing. Robert Daschner (LB) | nur im Wintersemester

Lehrform
seminaristischer Unterricht, Übungsanteil: 10-20%

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>5</td>
</tr>
<tr>
<td>4 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 54 h, Prüfungsvorbereitung: 40 h</td>
</tr>
</tbody>
</table>

Inhalte

- Grundlagen zu biogenen Reststoffen und Biomasse
- Grundlagen der thermo-chemischen Konversionsverfahren von festen Einsatzstoffen, insbesondere Reststoffen (Schwerpunkt: Pyrolyse und Vergasung)
- Erzeugung von Treibstoffen der 3. Generation (aus Vergasung und Pyrolyse)
- Verfahrensvergleich zum Stand der Technik von thermo-chemischen Konversionsverfahren
- Innovative Verfahren zur Konversion
- Grundlagen zur Analytik der Konversionsprodukte
- Charakterisierung und Bewertung der Produkte aus der Konversion von Biomasse und Reststoffen
- Einsatzoptionen der erzeugten Produkte
- Betrieb von thermo-chemischen Konversionsanlagen
- Sicherheitsrelevante Aspekte von Konversionsanlagen
- Versuchsplanung und -auswertung
- Parametervariation und Entwicklung gezielter Versuchsreihen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

die grundlegenden Kenntnisse hinsichtlich dem Betrieb von verfahrenstechnischen Anlagen und der sicherheitsrelevanten Betrachtung bei der Anwendung von Konversionsverfahren anwenden zu können (2).

ihre Fertigkeiten hinsichtlich der Bedienung von innovativen Konversionstechnologien zur Erzeugung von neuen Energieträgern auf Basis von Reststoffen und Biomasse sowie der Auswertung von Versuchsreihen und Parametervariationen in ingenieursmäßigen Arbeiten und Projekten anzuwenden (3).

Versuchsablaufprozedere für Konversionsverfahren der 3. Generation grundlegend erstellen zu können (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Skript, Übungen, Aufgabenbeschreibung, Aufgabenstellung

Lehrmedien

Rechner/Beamer, Tafel/Flipchart

Literatur

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Finite Elemente (EI, ISE, REE)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Elemente (EI, ISE, REE)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
- Grundlagen der Elektrotechnik, Technische Mechanik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Finite Elemente (EI, ISE, REE)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Finite Elemente (EI, ISE, REE)</th>
<th>FE</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Robert Sattler</th>
<th>Elektro- und Informationstechnik</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Vorlesungen mit Praktikum am Rechner

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>[SWS oder UE]</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 62 h; Prüfungsvorbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

Mathematische Grundlagen der Finite-Elemente-Methode

- Aufstellen des Elementgleichungssystems aus Energieprinzipien bzw. mit Variationsansätzen und verschiedenen Ansatzfunktionen
- Aufstellen des Gesamttgleichungssystems unter Berücksichtigung der Randbedingungen
- (iterative) Lösungsverfahren für (nicht)lineare Gleichungssysteme

Praktische Vorgehensweise bei der Erstellung von FE-Modellen

Geometrierestellung oder -import, Materialzuweisung, Festlegen verschiedener Randbedingungen, Vernetzungssteuerung, Extrahieren und Darstellen von Berechnungsergebnissen, Nutzen von Symmetrien zur Reduktion der Modellgröße

Berechnungsbeispiele

- Berechnungen in verschiedenen physikalischen Domänen (thermisch, mechanisch, elektrisch, magnetisch, fluidisch) und deren Kopplung
- Stationäre und dynamische (Modal- und transiente Analyse) Fragestellungen

Stand: 15. 03. 2022

Ostbayerische Technische Hochschule Regensburg Seite 168
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den Ablauf einer FE-Simulation zu beschreiben (1)
- die mathematischen Grundlagen der FEM zu benennen (1)
- einfache Berechnungen mit einem FE-Programm durchzuführen (2)
- komplexere Berechnungen mit einem FE-Programm durchzuführen (3)
- Fehlermeldungen des Programms zu interpretieren (3)
- Ergebnisse der Berechnung zu beurteilen (3)
- zur selbständigen Einarbeitung in unbekannte Funktionen des FE-Programms unter Nutzung der englischen Programmdokumentation (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Übungsaufgaben, Arbeitsblätter, Literaturliste, Beispielprogramme

Lehrmedien
Tafel, Beamer, Rechner

Literatur
A first course in finite Elements, B. Fish
Eindimensionale Finite Elemente: Ein Einstieg in die Methode, M. Merkel
The Finite Element Method: Basic Concepts and Applications with MATLAB, MAPLE, andCOMSOL, D. Pepper
Finite Element Methods: A Practical Guide, J. Whiteley
Methode der finiten Elemente, O.C. Zienkiewicz

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochspannungstechnik mit Praktikum (High Voltage Engineering with Lab Course)</td>
<td>HSP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Franz Fuchs</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
- Grundlagen der Elektrotechnik; Elektrische Energienetze

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hochspannungstechnik</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Hochspannungstechnik</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
Hochspannungstechnik | HS

Verantwortlichere/r	Fakultät
Prof. Dr. Franz Fuchs | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
---|---
Prof. Dr. Franz Fuchs | in jedem Semester

Lehrform
Seminaristischer Unterricht: 15-20% Übungsanteil

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
[SWS oder UE]		[ECTS-Credits]	
2 SWS	deutsch	2.5	

Zeitaufwand:
Präsenzstudium	Eigenstudium
28 h	Vor- und Nachbereitung: 32 h
Prüfungsvorbereitung: 15 h	

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Arbeitsgebiete der Hochspannungstechnik
- Elektrische Felder und Beanspruchungen (Begriffe, Feldgleichungen, Homogenitätsgrad, Beanspruchungen)
- Ermittlung elektrischer Felder (Elementare Felder, Überlagerung elementarer Felder, Technische Felder)
- Elektrische Festigkeit und Isolierstoffe (Statistische Grundlagen, Durchschlagsprozess, Lebensdauer)

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Die Begriffe und Elektrodenanordnungen der Hochspannungstechnik zu kennen (1)
- die Grundprinzipien der Hochspannungstechnik, den Überblick über die Verfahren der Feldberechnung, das Grundlagenwissen über die Durchschlagsprozesse und die elektrischen Eigenschaften gasförmiger, flüssiger und fester Isolierstoffe zu können (2)
- die analytische und näherungsweise Lösungsansätze für die Berechnung elektrischer Felder zu verstehen und anzuwenden und die hochspannungstechnischen Anforderungen zu beurteilen (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Literaturliste, Präsentationsfolien, Übungen

Lehrmedien
Tafel, Rechner/Beamer

Literatur
Küchler, A: Hochspannungstechnik, Springer-Verlag, 2017
Kind, D., Kärner, H.: Hochspannungs-Isoliertechnik, Vieweg-Verlag, 1982

Weitere Informationen zur Lehrveranstaltung
- Ergänzendes Angebot: Praktikum Hochspannungstechnik
- Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul: Praktikum Hochspannungstechnik

Verantwortliche/r: Prof. Dr. Franz Fuchs
Fakultät: Elektro- und Informationstechnik
Lehrende/r / Dozierende/r: Prof. Dr. Franz Fuchs
Angebotsfrequenz: in jedem Semester

Lehrform

siehe Studienplan

Studiensemester: gemäß Studienplan
Lehrumfang: 2 SWS
Lehrsprache: deutsch
Arbeitsaufwand: 2.5 ECTS-Credits

Zeitaufwand:
Präsenzstudium: 28 h
Eigenstudium: Vor- und Nachbereitung der Versuche: 32 h, Vorbereitung Leistungsnachweis: 15 h

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Sicherheitseinrichtungen in einem Hochspannungslabor
- Verlustfaktor- und Kapazitätsmessung unter Hochspannung
- Stossspannungsprüfung- und -messtechnik
- Durchschlagmechanismen in Gasen
- Berechnung elektrostatischer Felder mit der Finite-Elemente-Methode

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Sicherheitseinrichtungen und die Prüf- und -Messeinrichtungen in einem Hochspannungslabor zu kennen (1)
- die Durchschlagsprozesse bei Gasen und deren grundlegenden Einfluss-Parameter zu können (2)
- Hochspannungs-Prüf- und -Messeinrichtungen für Stoß- und Wechselspannung sicher zu bedienen und einzusetzen (2)
- Zerstörungsfreie Diagnoseverfahren, wie z.B. die Verlustfaktormessung zu verstehen und anzuwenden (3)
- ein FEM-Programm für die elektrische Feldberechnung zu verstehen und anzuwenden (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Versuchsanleitungen zu den einzelnen Versuchen
Zusatzinformationen auf der Homepage des Labors

Lehrmedien
Versuchsaufbauten, elektronische Messprotokolle, Programm zur Feldberechnung mit FEM

Literatur
D. Kind / K. Feser Einführung in die Hochspannungs-Versuchstechnik. Vieweg-Verlag, Braunschweig, 1995
Küchler, A: Hochspannungstechnik, Springer-Verlag, 2017

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: IC-Technologie (Integrated Circuit Technology)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-Technologie (Integrated Circuit Technology)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IC-Technologie</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum IC-Technologie</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
IC-Technologie | TI

Verantwortliche/r | Fakultät
Prof. Dr. Rainer Holmer | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Rainer Holmer | nur im Sommersemester

Lehrform
Seminaristischer Unterricht mit 10 - 15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium

<table>
<thead>
<tr>
<th></th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 46 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 16 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
Methoden und Prozesse der Halbleiterherstellung:
- Herstellung von Silizium-Wafern
- Fotolithografie (und ihre physikalischen Grenzen)
- Ätzverfahren
- thermische Oxidation
- CVD- und PVD-Verfahren zur Schichtabscheidung
- Dotierverfahren und Diffusionsprozesse
- GesamtprozesskonzepteProzesssteuerungsmethoden (SPC)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundlegende Produktionsprozesse zur Herstellung von monolithisch integrierten Halbleiterbauelementen und mikroelektronischen Schaltkreisen zu beschreiben (1)
- Wichtige physikalische Grenzen der modernen Halbleiterproduktion zu interpretieren (3)
- Größen(ordnungen) von Prozessparametern richtig einzuschätzen (3)
- Einfache Prozessabläufe zur Produktion von Halbleiterstrukturen (ggf. auch deren Simulation) zu interpretieren (3)
- Einfache Prozessabläufe zur Produktion von Halbleiterstrukturen selbst zu konzipieren (3)
- Prozesskonzepte zu beurteilen (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Skript, Übungen, Literaturliste

Lehrmedien
Overheadprojektor, Tafel, Rechner/Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: IC-Technologie (Integrated Circuit Technology)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum IC-Technologie</td>
<td>PTI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Projektpraktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

Entwurf, Herstellung, Messung und Auswertung von Dickschichtschaltungen (Hybridintegration):

- Entwurf einer Dickschichtschaltung mittels eines CAD-Werkzeugs nach vorgegebenen Schaltungsspezifikationen
- Herstellung von drei Sieben für Leitbahn-, Widerstands- und Lotdruck
- Leitbahndruck, Widerstandsdruk, Lotdruck
- Bestücken der Substrate
- Reflowlöten
- Vereinzelnde Substrate
- elektrische Messungen an Teststrukturen und -schaltungen
- statistische Auswertung der MessungenPräsentation der Ergebnisse

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Substrat- und Pasteneigenschaften der Dickschicht-Technologie zu handhaben (2)
- Die Prozessschritte zur Herstellung integrierter Schaltungen in Dickschichttechnik zu handhaben (2)
- Notwendige Entwurfsregeln anzuwenden (1)
- Den Einfluss von Fertigungsbedingungen auf Schaltungseigenschaften zu interpretieren (3)
Die statistische Erfassung und Beschreibung von Fertigungsschwankungen zu handhaben (2)
Eine Layouterstellung nach vorgegebenen Schaltungsspezifikationen unter Einhaltung der Entwurfsregeln durchzuführen (2)
Ein Protokoll des Fertigungsablaufs effektiv zu erstellen (2)
Eine kritische Beurteilung und Kommentierung von Messungen an Dickschichtschaltungen auszuführen (2)
Technische Sachverhalte und Kompetenzen wirkungsvoll zu präsentieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Versuchsanleitungen, Fachbuch

Lehrmedien
Overheadprojektor, Tafel, Rechner/Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Machine Learning

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

Mechatronik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>Machine Learning</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Machine Learning

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning</td>
<td>ML</td>
</tr>
</tbody>
</table>

Verantwortliche/r Fakultät

Prof. Dr. Armin Sehr Elektro- und Informationstechnik
Lehrende/r / Dozierende/r Angebotsfrequenz

Prof. Dr. Robert Sattler in jedem Semester
Prof. Dr. Armin Sehr

Lehrform
ca. 50% Seminaristischer Unterricht, ca. 50% Praktikum am Rechner

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Überwachtes und unüberwachtes Lernen
- Regression, Klassifikation
- Lineare Regression, Logistische Regression
- Support Vector Machines und Kernel Methods
- K-means Clustering
- Neuronale Netze und Deep Learning
- Convolutional Neural Networks und Bilderkennung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Begriffe wie Merkmale, Klassifikation, Regression, überwachtes und unüberwachtes Lernen zu benennen (1) und zu erklären (2).
- Ansätze wie lineare Regression, logistische Regression, Support Vector Machines, Kernel Methods, k-Means-Clustering, Neuronale Netze, Deep Learning, Convolutional Neural Networks zu benennen (1), zu erklären (2) und zur Lösung konkreter Problemstellungen einzusetzen (3).
- Methoden zur Reduktion der Merkmalsraumdimension wie Principal Component Analysis und Lineare Diskriminanzanalyse einzusetzen (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebote Lehrunterlagen

Vorlesungsfolien, Übungsaufgaben, Versuchsanleitungen, Beispielprogramme

Lehrmedien

Rechner, Beamer, Tafel

Literatur

G. James et al.: An Introduction to Statistical Learning: with Applications in R, Springer 2011
A. Geron: Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow, O'Reilly 2019
G. Strang: Linear Algebra and Learning from Data, Wellesley-Cambridge Press 2019

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Mess- und Testtechnik (Measurement and Test)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mess- und Testtechnik (Measurement and Test)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Lehrinhalte des ersten Studienabschnitts

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mess- und Testtechnik</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Mess- und Testtechnik</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Modulname: Mess- und Testtechnik</th>
<th>TM-Kurzbezeichnung: TT</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Rainer Holmer</th>
<th>Elektro- und Informationstechnik</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit ca. 10 - 15% Übungsanteil

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits] 3</td>
</tr>
</tbody>
</table>

| 2 SWS |

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 40 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 22 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Grundlagen der Diskreten Fourier-Transformation
- Fensterfunktionen
- Anwendung der Diskreten Fourier-Transformation zur Charakterisierung von AD- und DA-Wandlern
- Statische Charakterisierung von Analog-Digital-Konvertern
- Dynamische Charakterisierung von Analog-Digital-Konvertern im Frequenzbereich
- Messtechnische Bestimmung der Parameter von AD-Konvertern
- Statische Charakterisierung von Digital-Analog-Konvertern
- Dynamische Charakterisierung von Digital-Analog-Konvertern in Zeit- und Frequenzbereich
- Testfreundlicher Entwurf von integrierten Digitalschaltungen
- Testen von integrierten Digitalschaltungen mit dem Testautomaten
- Fehlersimulation
- Testen von digitalen Systemen mit Boundary Scan
- Statische Charakterisierung von Operationsverstärkern
- Dynamische Charakterisierung von Operationsverstärkern
- Messtechnische Erfassung der Parameter von Operationsverstärkern
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Mess- und Testtechnik (Measurement and Test)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Messverfahren von AD- und DA-Konvertern im Detail zu kennen und einzusetzen (3)
• Testverfahren und testfreundlichen Entwurf integrierter digitaler Schaltungen zielgerichtet einzusetzen (2)
• grundlegenden Verfahren zum Test von Digitalschaltungen zielgerichtet einzusetzen (2)
• analoge Messverfahren am Beispiel ausgewählter Analogschaltungen zu beschreiben (1)
• Messprobleme selbstständig zu lösen (3)
• state-of-the-art- Test-Hard- und Software für den Test integrierter und diskreter Schaltungen zielgerichtet einzusetzen (3)
• Auswirkungen des Testaufwands auf Time-to Market und Kosten zu beschreiben (1)
• Test-Hard- und Software auszuwählen (3), anzuwenden (3) und kostenmässig zu bewerten (1)
• Die Wechselbeziehung zwischen Test und Design zu beurteilen (2)
• Die Positionierung des Tests im kompletten Production Flow genau zu beschreiben (2)
• Verschiedene Messverfahren der Mikroelektronik gezielt und kompetent einzusetzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter “2. Lernziele” erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Skript, Übungen, Literaturliste

Lehrmedien
Tafel, Beamer

Literatur
Bennet, B.: Boundary Scan Tutorial, ASSET InterTech Inc., 2002

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg

Seite 185
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Mess- und Testtechnik (Measurement and Test)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Mess- und Testtechnik</td>
<td>PTT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laborpraktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>28 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Messung der Parameter von integrierten Analogschaltungen: IEC-Bus-Messtechnik am Operationsverstärker</td>
</tr>
<tr>
<td>• Testprogrammerstellung und Fehlersuche an einer Digitalschaltung: Umgang mit Testautomat (Eigenentwicklung)</td>
</tr>
<tr>
<td>• Fehlersimulation und Testprogrammvalidierung für eine Digitalschaltung</td>
</tr>
<tr>
<td>• Messung der Parameter von AD- und DA-Konvertern: Dynamische Parameter, Statische Parameter (Simulation, Eigenentwicklung)</td>
</tr>
<tr>
<td>• Erstellung und Test eines Boundary-Scan-Testprogramms (Simulation auf VHDL-Basis, Eigenentwicklung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Teststrategien für komplexe Testobjekte zu beschreiben (1)
• rechnergestützte Testverfahren zu erläutern (1)
• Design-Flow-relevante Softwaretools zur Testvorbereitung einzusetzen (2)
• Strategien für testfreundlichen Entwurf zu verwenden (1)
• gängige Testhardware und -software für den Test integrierter Schaltungen anzuwenden (2)
• Ergebnisse von Serienmessungen in interpretieren (3) und zu visualisieren (1)
• Testprogramme und Testverfahren für analoge, digitale und gemischte integrierte Schaltungen selbstständig zu entwerfen (3)

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg
Seite 186
- die wichtigsten Mess- und Testverfahren der Mikroelektronik praktisch umzusetzen (2)
- die Problematik der Testkosten richtig einzuschätzen (2)
- praktische Versuche in Gruppenarbeit zu planen (3)
- Versuche in Gruppenarbeit durchzuführen (2)
- Versuchsergebnisse im Team zu interpretieren (3)
- gemeinsamen im Team eine Dokumentation zu erarbeiten (2)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufgabenstellungen, Aufbaubeschreibung, Kataloge, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchsaufbauten, Rechner, C-Compiler, Simulatoren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRSIM-Manual</td>
</tr>
<tr>
<td>Bennet, B.: Boundary Scan Tutorial, ASSET InterTech Inc., 2002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Netzplanung und Netzregelung (Network planning and grid control)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzplanung und Netzregelung (Network planning and grid control)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
Elektro- und Informationstechnik
Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
El. Energieverteilung bzw. el. Netztechnik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Netzplanung und Netzregelung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Netzplanung und Netzregelung (Networkplanning and grid control)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzplanung und Netzregelung</td>
<td>NPR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht: 10-15 % Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 SWS</td>
<td></td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>56 h</td>
</tr>
<tr>
<td>Eigenstudium</td>
</tr>
<tr>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Netzplanung</td>
</tr>
<tr>
<td>Erstellung von Netzmodellen mit Nachbildung von Netznutzern</td>
</tr>
<tr>
<td>Grundlagen und Maßnahmen zur Spannungshaltung</td>
</tr>
<tr>
<td>Grundlagen zur Frequenzhaltung (Netzkennlinienverfahren und vereinfachte Dynamik)</td>
</tr>
<tr>
<td>Versorgungszuverlässigkeit</td>
</tr>
<tr>
<td>Netzentwicklungsplan</td>
</tr>
<tr>
<td>Spannungsqualität</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>Grundzüge der Netzplanung darlegen zu können (1)</td>
</tr>
<tr>
<td>El. Netze modellieren zu können (2)</td>
</tr>
<tr>
<td>Herausforderungen und Lösungsmaßnahmen zur Integration von neuen Netznutzern erklären zu können (3)</td>
</tr>
<tr>
<td>die Frequenzhaltung beschreiben (1) und das Netzkennlinienverfahren anwenden zu können (3)</td>
</tr>
<tr>
<td>beschreibende Parameter der Versorgungszuverlässigkeit angeben zu können (1)</td>
</tr>
<tr>
<td>den Netzentwicklungsplan beschreiben zu können (3)</td>
</tr>
</tbody>
</table>

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg
Seite 189
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
- Folien, Skript inkl. Übungen

Lehrmedien
- Tafel, Rechner/Beamer

Literatur
- IfE-Schriftenreihe Heft 23 - "Frequenz-Wirkleistungs- und Spannungs-Blindleistungs-Regelung", E & M Verlag, Herrsching

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Optoelektronik, LED- und Lasertechnik (Optoelectronics, LED- & Laser-Technology) |

Modulverantwortliche/r	Fakultät
Prof. Dr. Heiko Unold | Elektro- und Informationstechnik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2 | Schwerpunkt Wahlpflichtmodul | | 5

Empfohlene Vorkenntnisse
1. Studienabschnitt, Physik, Bauelemente und Elektronik

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang [SWS o. UE]	Arbeitsaufwand [ECTS-Credits]
1. | Optoelektronik, LED- & Lasertechnik | 4 SWS | 5

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Optoelektronik, LED- und Lasertechnik (Optoelectronics, LED- & Laser-Technology)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optoelektronik, LED- & Lasertechnik</td>
<td>OLL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Praktikum (ca. 30%)

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 60 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 34 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Wahrnehmung und Beschreibung von Licht
- Grundlagen der Optik (Strahloptik, Matrixoptik, Gauß-Strahlen)
- Wellenoptik und Anwendungen (Messstechnik, Beschichtungen, Polarisation)
- Halbleitermaterialien und -strukturen zur effizienten Erzeugung und Detektion von optischer Strahlung
- Aufbau, Betrieb und Messtechnik moderner Leistungs-LEDs
- Funktionsprinzip, Bauformen, Betriebsmodi, Eigenschaften und Anwendungen verschiedener Lasertypen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Grundlegende Begriffe und Maße der Lichttechnik und Optoelektronik sinnhaft zu gebrauchen (1)
- Aus einer vorher bekannten Auswahl an Themen (s. Inhalte) und zugehörigen Aufgabentypen mindestens 40% innerhalb der Prüfungszeit korrekt zu beantworten (2)
- Im Team eigenständig ein selbst gewähltes Projekt (optoelektronische Messtechnik, Simulation, Aufbau einfacher Demonstratoren) erfolgreich zu bearbeiten und verständlich und kompetent zu präsentieren (3)
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Optoelektronik, LED- und Lasertechnik (Optoelectronics, LED- & Laser-Technology)

- vorgegebene Texte aus der Fachliteratur möglicherweise in Zusammenhang mit dem Vorlesungsinhalt zu bringen und zu verstehen (3, wird nicht überprüft)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentationsfolien, Übungsaufgaben, Simulationsdateien, Literatur (e-Books)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaktiver GRIPS-Kurs, Beamer, Tafel, Experimente, Labor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Photovoltaik und Solarthermie (Photovoltaics and Solar Thermal Energy)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaik und Solarthermie (Photovoltaics and Solar Thermal Energy)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Physik, Mathematik 1 und 2, Grundlagen der Elektrotechnik 1 und 2, Technische Mechanik, Werkstoffkunde

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Photovoltaik und Solarthermie</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg Seite 194
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Photovoltaik und Solarthermie (Photovoltaics and Solar Thermal Energy)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaik und Solarthermie</td>
<td>PUS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit ca. 10-20 % Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

- Die Sonne als Energiequelle - Physikalische Grundlagen, Strahlungsgesetze
- Solarmeteorologie - Strahlungsarten, Einfluss der Atmosphäre auf die Solarstrahlung
- Solargeometrie - Berechnung von Sonnenposition und Einfallswinkel, Einstrahlungsarten auf horizontaler und geneigter Ebene, optimale Ausrichtung, Nachführung, Verschattung
- Messtechnik für Solarstrahlung
- Solarzellen: Funktionsprinzip, Photoeffekt, Aufbau, Elektrische Eigenschaften, Ersatzschaltbilder, Technologien, Herstellungsverfahren, Marktanteile
- Solargeneratoren: Aufbau, Funktionsweise, Verkabelung, Abschattung, Komponenten, Wechselrichter
- Wirtschaftlichkeit und Ökologie von PV-Anlagen: Investitionsrechnungen, Ökobilanzen (CO2, Umweltgifte), Emissionen (Elektrosmog, Lärm), Recycling, energetische Amortisation
- Solarkollektoren
- Komponenten solarthermischer Anlagen
- Solarthermische Anlagentechnik
- Solarthermische Kraftwerke

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Eigenschaften der Solarstrahlung und deren energetischen Nutzung für Photovoltaik, solarthermische Kraftwerke und Anlagen zu kennen (1) und wiederzugeben (1)
- solare Größen wie Einfallswinkel, Sonnenstand und Solarbahnen, Verschattungen zu berechnen (2)
- die Grundlagen der Photovoltaik, der Funktionsweise von PV-Zellen und PV-Modulen, der notwendigen Komponenten zu verstehen (2) und fachlichen Laien erklären zu können (3)
- netzgekoppelte und autarke PV-Anlagen auslegen zu können (3), inklusive Bewertung der Einsatzmöglichkeiten auf verschiedenen Gebäuden und Freiflächen
- wichtige Größen wie den Energieertrag, der Wirtschaftlichkeit und Abschätzung der Ökobilanzen zu berechnen (2) und erklären zu können (3)
- die Auslegung und Wirtschaftlichkeit von PV- und Solarthermieanlagen potenziellen Kunden erklären zu können (3) und sie dazu beraten zu können (3)
- die Grundlagen der Solarthermie, der Funktionsweise von Solarkollektoren, Solarmodulen, Solaranlagen und solarthermischen Kraftwerken und der notwendigen Komponenten zu verstehen (2) und fachlichen Laien erklären zu können (3)
- die Solarenergie im Kontext der Energiewende fachlich fundiert diskutieren zu können (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- in einem Team zu organisieren und zu arbeiten (2)
- fachliche Fragen zu stellen (3) und technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)
kritische Diskussionen in sachlicher Atmosphäre zu führen (2)
sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3)
die Bedeutung sorgfältig, selbständigen Arbeitens für Ihren Lernerfolgeinzuschätzen (3)
den Unterschied zwischen Verständnis und bloßer Anwendung von Lösungswege zu erkennen und die Vorteile beider Herangehensweisen zu nutzen (3)
die Prinzipien guter wissenschaftlicher Praxis zu kennen (1) und
sich mit wissenschaftlicher Literatur auseinandersetzen können (2)

Angebotene Lehrunterlagen
Skript, Übungen mit Lösungen, Datenblätter, Videos, Literaturliste

Lehrmedien
Tafel, Rechner/Beamer, Buchkapitel

Literatur
- Quaschning, V.: Regenerative Energiesysteme, Hanser Verlag, München, 2013
- Häberlin, H.: Photovoltaik, AZ Verlag, Aarau, 2010
- DGS: Leitfaden Photovoltaische Anlagen, DGS Berlin, (Deutsche Gesellschaft für Sonnenenergie), 2013

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Praktikum Antriebstechnik und Leistungselektronik (Lab course Electrical Drives and Power Electronics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Antriebstechnik und Leistungselektronik (Lab course Electrical Drives and Power Electronics)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Anton Haumer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt</td>
<td>Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
- Für Praktikumsteil Antriebstechnik: Vorlesung Elektrische Maschinen und Vorlesung Antriebstechnik
- Für Praktikumsteil Leistungselektronik: Vorlesung Leistungselektronik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Antriebstechnik und Leistungselektronik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
Praktikum Antriebstechnik und Leistungselektronik | PAL

Verantwortliche/r	Fakultät
Prof. Anton Haumer | Elektro- und Informationstechnik
Prof. Dr. Manfred Bruckmann

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Dr. Manfred Bruckmann | in jedem Semester
Prof. Anton Haumer

Lehrform

Laborpraktika

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung der Versuche: 64 h, Klausurvorbereitung: 30 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Messtechnische Erfassung und Bewertung der Eigenschaften antriebstechnischer Systeme im stationären und dynamischen Betrieb
- Betriebsverhalten und Wirkungsweise der Drehzahlverstellung von elektrischen Maschinen
- Systembetrachtungen von Umkehrstromrichtern und Gleichstrommaschinen sowie von Frequenzumrichtern und Drehstrommaschinen
- Praktische Versuche zu leistungselektronischen Schaltungen
- Simulation leistungselektronischer Schaltungen
- Anwendung theoretischer Gesetzmäßigkeiten zur Fehlersuche sowie der Auswertung von Messdaten
- Darstellung und Diskussion der Messergebnisse in Form von Kennlinien
- Vergleich der Messergebnisse mit den theoretischen Grundlagen
- Präsentation und Diskussion der Ergebnisse

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Gefahrenpotentiale zu benennen (2) und zu beurteilen (3)
- Messungen an Antriebssystemen zu planen (2) und durchzuführen (3)
- Leistungselektronische Schaltungen funktionssicher zu planen (2) und aufzubauen (3)

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg
• Messergebnisse zu ermitteln (2), zu beschreiben (2) und zu bewerten (3)
• Simulationsmodelle zu erstellen (2) und zielgerichtet einzusetzen (3)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des</td>
</tr>
<tr>
<td>Modulhandbuchs).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufgabenstellungen, Skript, Literaturliste, Handbücher der Simulationssoftware</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinensätze, Stromrichter, Leistungselektronische Versuchseinrichtungen, Messgeräte,</td>
</tr>
<tr>
<td>Simulationsoftware, PC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jäger, Stein: Übungen zur Leistungselektronik, VDE Verlag, Berlin, 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz</td>
</tr>
<tr>
<td>angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige</td>
</tr>
<tr>
<td>Studienplantabelle.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Prozessinformatik

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessinformatik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Bock</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Prozessinformatik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Für eine Beschreibung des Moduls Prozessinformatik vgl. Modulhandbuch für den Bachelorstudiengang Produktions- und Automatisierungstechnik (Fakultät Maschinenbau) auf der Homepage des Studiengangs: https://www.oth-regensburg.de/de/fakultaeten/maschinenbau/studiengaenge/bachelor-produktions-und-automatisierungstechnik.html
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessinformatik</td>
<td>PI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Bock</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Bock</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Literatur

Weitere Informationen zur Lehrveranstaltung

Für eine Beschreibung des Moduls Prozessinformatik vgl. Modulhandbuch für den Bachelorstudiengang Produktions- und Automatisierungstechnik (Fakultät Maschinenbau) auf der Homepage des Studiengangs:

https://www.oth-regensburg.de/de/fakultaeten/maschinenbau/studiengaenge/bachelor-produktions-und-automatisierungstechnik.html
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Regelungstechnik Anwendungen (Applications of Control Engineering)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungstechnik Anwendungen (Applications of Control Engineering)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Claus Brüdigam</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

 Zuordnung zu weiteren Studiengängen
Elektro- und Informationstechnik
Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Regelungstechnik
Mikrocomputertechnik, Praktikum Mikrocomputertechnik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Regelungstechnik Anwendungen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regelungstechnik Anwendungen</td>
<td>RTA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Claus Brüdigam</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Claus Brüdigam</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit praktischer Arbeit im Labor

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

| Präsenzstudium | Eigenstudium
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>Vor- und Nachbereitung, Prüfungsvorbereitung: 90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

- Grundstruktur und Funktionsweise analoger und digitaler Regelkreise
- Modellierung von mechatronischen Systemen am Beispiel einer Kfz-Drosselklappe
- Regleereinstellung nach Ziegler/Nichols am Beispiel einer Temperaturregelstrecke
- Reglerentwurf mit Hilfe von Wurzelortskurven (zeitkontinuierlich)
- Digitale Realisierung analoger Regelkonzepte
- Implementierung eines Regelalgorithmus auf einem Mikrocontroller
- Untersuchung der Stabilität und des Zeitverhaltens in Abhängigkeit der Reglerparameter und der Pollagen des Systems
- Korrespondenzen und Rechenregeln der z-Transformation
- Berechnung der Systemantwort im Zeitbereich (z-Rücktransformation)
- z-Übertragungsfunktion,
- Erstellung eines Blockschaltbilds aus der z-Übertragungsfunktion
- Kausalität, Stabilität
- Reglerentwurf mit Hilfe von Wurzelortskurven (zeitdiskret)
- Entwurf eines zeitdiskreten Regelalgorithmus
- Zwei- und Dreipunktregler
- Test, Fehlersuche und Optimierung des entworfenen Reglers
- Verwendung von Matlab beim Entwurf von Regelkreisen
- Simulation von Systemen und Regelkreisen mit Simulink
- Praktische Aspekte bei der Realisierung digitaler Regelsysteme: Pulsweitenmodulation, Quantisierung, numerische Probleme, Anti Wind-Up, Task Scheduling

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den grundsätzlichen Aufbau und die Funktionsweise analoger und digitaler Regelkreise zu kennen (1)
- die grundlegenden Ideen der zeitdiskreten Systembeschreibung zu kennen (1)
- die z-Übertragungsfunktion und Verfahren zur Erstellung eines Algorithmus zu kennen (1)
- die Funktionsweise der Pulsweitenmodulation zur Leistungseinstellung zu kennen (1)
- komplexe Systeme und Regelkreise modellieren und simulieren zu können (2)
- verschiedene Verfahren zur Reglerauslegung anzuwenden (3)
- Computer-Tools zur Auslegung und Simulation von Regelkreisen anzuwenden (3)
- Algorithmen zur zeitdiskreten Realisierung eines Reglers erstellen zu können (2)
- geeignete Regler zur Erreichung der gewünschten Regelziele auswählen und dimensionieren zu können (2)
- digitale Regelungen auf Mikrocontrollern / Digitalrechnern für reale Anwendungen entwickeln zu können (2)
- die Regelungsqualität beurteilen zu können (2) und Maßnahmen zur Optimierung anzuwenden (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die fachlichen Inhalte mindestens zu etwa 50 % zu beherrschen. Persönliche Kompetenzen werden in der Veranstaltung indirekt vermittelt, z.B. beim Formulieren von Fragen und Anliegen oder Absolvieren von Laborterminen, was ganz allgemein den Umgang mit anderen Menschen (z.B. Kommilitonen und Dozenten) schult. Die Vorbereitung auf die Prüfung lehrt das gewissenhafte Planen und eine gründliche Vorbereitung. Gezielt abgeprüft werden diese Kompetenzen aber nicht.
Angebotene Lehrunterlagen

Hilfsblätter, Übungsaufgaben mit Musterlösungen, Versuchsanleitungen, Matlab Tutorial, Literaturliste

Lehrmedien

Tafel, Whiteboard, Beamer, PC-Arbeitsplatz mit Matlab/Simulink und µC-Entwicklungsumgebung

Literatur

- G. Schulz: Regelungstechnik 2 (Mehrgrößenregelung, Digitale Regelungstechnik, Fuzzy-Regelung). Oldenbourg Verlag München
- O. Föllinger: Lineare Abtastsysteme. Oldenbourg Verlag, München
- H. Unbehauen: Regelungstechnik II - Zustandsregelungen, digitale und nichtlineare Regelsysteme. Vieweg Verlag, Braunschweig
- J. Lunze: Regelungstechnik 2 - Mehrgrößensysteme, Digitale Regelung: Springer Verlag, Berlin
- E.-G. Feindt: Regeln mit dem Rechner, Abtastregelungen mit besonderer Berücksichtigung der digitalen Regelungen. Oldenbourg Verlag
- Angermann, Beuschel, Rau, Wohlfarth: Matlab - Simulink - Stateflow. Oldenbourg Verlag München

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltungsintegration (Circuit Integration)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christian Schimpfe</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
- Keine

Empfohlene Vorkenntnisse
- Inhalte der Vorlesung Elektronische Bauelemente

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Schaltungsintegration</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Schaltungsintegration</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Stand: 15. 03. 2022

Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Schaltungsintegration (Circuit Integration)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Schaltungsintegration</td>
<td>PSI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christian Schimpfle</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christian Schimpfle</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehlfom</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laborversuche</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Schaltplan- und Layoutentwurf mikroelektronischer Funktionsgruppen mittels CAE
 - Full-Custom-Entwurf
 - Standardzellenentwurf

- Verifikation des Schaltungslayouts der Funktionsgruppen
 - Design-Rule-Check, Layout-vs.-Schematic-Check
 - Untersuchung des dynamischen Schaltverhaltens von CMOS-Gattern durch Simulation
 - Untersuchung der Metastabilität bei Digitalschaltungen

- Synthese und Analyse eines komplexeren CMOS-Funktionsblocks

- Messungen an Halbleiter-Produktionsscheiben (Wafer)
 - Bestimmung der elektrischen Eigenschaften integrierter Transistoren durch Messung mit Parameteranalyser
 - Bestimmung der SPICE-Parameter durch Abgleich der Messungen mit den beschreibenden Gleichungen (Parameter-Fitting)

Stand: 15. 03. 2022

Ostbayerische Technische Hochschule Regensburg
Seite 208
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Schaltungsintegration (Circuit Integration)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- wichtige CAE-Werkzeuge für Entwurf und Validierung integrierter Schaltungen zu kennen (1)
- geometrische Entwurfsregeln anzuwenden (2)
- zur Verfügung gestellte CAE-Werkzeuge zur Schaltplan- und Layouterzeugung sowie zur Validierung zu bedienen (2)
- Schaltungsinformationen aus Layouts zu extrahieren und darauf basierend Simulationen durchzuführen (2)
- Validierungs- und Simulationsergebnisse kritisch zu hinterfragen und zu interpretieren (3)
- Schaltpläne und korrekte Layouts selbständig zu erstellen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- gestellte Aufgaben in einer kleinen Gruppe zu organisieren und aufzuteilen (3)
- in einem gegebenen zeitlichen Rahmen innerhalb einer Gruppe Probleme zu lösen und Fehler zu beheben (3)
- mit anderen Gruppen zu diskutieren und sich fachlich auszutauschen (3)

Angebotene Lehrunterlagen

Versuchsanleitungen, Skript, Literaturliste

Lehrmedien

PC, Beamer Tafel, Parameteranalyser

Literatur

- J. Lienig: Layoutsynthese elektronischer Schaltungen, Springer, 2006
- K. Hoffmann; Systemintegration, Oldenbourg Verlag, 2011

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.

Stand: 15. 03. 2022

Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltungsintegration</td>
<td>SI</td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Christian Schimpfle
 - Fakultät: Elektro- und Informationstechnik

Lehrende/r / Dozierende/r
- Prof. Dr. Rainer Holmer
 - Angebotsfrequenz: nur im Sommersemester
- Prof. Dr. Christian Schimpfle

Lehrform
- Seminaristischer Unterricht, 10-15% Übungsanteil

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeit aufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>3</td>
</tr>
<tr>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 28 h
- Eigenstudium: Vor- und Nachbereitung: 46 h, Prüfungsvorbereitung: 16 h

Inhalte
- Mikroelektronische Systeme
- Entwurfsarten/-stile
- Geometrische Entwurfseigenschaften
- Schaltverhalten von CMOS-Gattern
- Integrierte Komponenten
- Einflüsse der Technologie auf den Schaltungsentwurf
- Rechnerunterstützter Layoutentwurf

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Full-Custom-Entwurf, Zellenorientierten Entwurf und Array-Entwurf zu unterscheiden und Vor- und Nachteile zu benennen (1)
- die Kriterien zur Festlegung geometrischer Eigenschaften zu kennen und zu verstehen (1)
- den Aufbau von CMOS-Gattern prinzipiell zu verstehen und ihre charakteristischen Eigenschaften zu benennen können (1)
- Realisierungen von Grundkomponenten (Bipolar-/Feldeffektkristalldioden, passive Bauelemente) in integrierten Schaltungen zu kennen (1)
- Einflüsse der Technologie auf den Schaltungsentwurf zu beurteilen (1)
- Layout-Datenformate ([CIF, GDFII, EDIF]) zu kennen (1)
• Verschiedene Arten der Layout-Datenverwaltung (Lineare Listen, Bins, Baumstrukturen) zu kennen (1)
• Floorplanning sowie Platzierungs- und Verdrahtungsmethoden (Clustering, Min-Cut, Maze-Routing, Lee-Algorithmus, Channel-Routing) durchzuführen (3)
• Grundprinzipien der Layout-Kompaktierung zu kennen (1)
• geometrische Entwurfsregeln anzuwenden (2)
• kennengelernte Platzierungs- und Verdrahtungsalgorithmen auf einfache Schaltungsbeispiele anzuwenden (2)
• eine zur Verfügung stehende Chipfläche optimal einzuteilen (3)
• ein optimales Layout von CMOS-Gattern zu erstellen (3)
• Platzierungs- und Verdrahtungsergebnisse zu beurteilen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
Skript, Literaturliste

Lehrmedien
Tafel, Beamer

Literatur
J. Lienig: Layoutsynthese elektronischer Schaltungen, Springer, 2006
K. Hoffmann; Systemintegration, Oldenbourg Verlag, 2011

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulationstechniken, Matlab - Simulink (Simulation Techniques with MATLAB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik, Informatik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Simulationstechniken, Matlab - Simulink</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 15. 03. 2022
Teilmodul
Simulationstechniken, Matlab - Simulink
TM-Kurzbezeichnung SIM

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht, Praktikum am Rechner mit 50% Übungen

Studiensemester gemäß Studienplan
<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
<th>Vor- und Nachbereitung: 70 h</th>
<th>Prüfungsvorbereitung: 24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inhalte
- Einführung in Matlab/Simulink
- Import und Export von Daten in verschiedenen Formaten
- Datenverarbeitung
 - Symbolische und analytische Berechnungen
 - Integration, Differentiation
 - Optimierung und statistische Methoden
 - Datenfit (Fourieranalyse, Regression)
 - Interpolation von Daten
 - Lösung von Gleichungen und Gleichungssystemen
 - Lösung von Differentialgleichungen und Gleichungssystemen
- Datenvvisalisierung (2D, 3D und Animation)
- Programmierung eigener Funktionen
- Programmablaufsteuerung
- Nutzung diverser Datenformate
- Anwendung auf ingenieurtechnische Probleme

Stand: 15. 03. 2022
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die wichtigsten Befehle und Routinen von Matlab-Simulink zu benennen (1)
- einfache ingenieurtechnische Probleme mit Hilfe von Matlab/Simulink zu lösen (2)
- komplexe ingenieurtechnische Probleme mit Hilfe von Matlab/Simulink zu lösen (3)
- Sich unter Nutzung der englischsprachigen Programmdokumentation selbständig in unbekannte Funktionen von Matlab/Simulink einzuarbeiten (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Übungsaufgaben, Arbeitsblätter, Literaturliste, Beispielprogramme

Lehrmedien

Tafel, Beamer, Rechner

Literatur

Schweizer, Wolfgang: Matlab kompakt. Oldenbourg V., München 2013
Angermann, Anne / Beuschel, Michael / Rau, Martin / Wohlfahrt, Ulrich: Matlab-Simulink-Stateflow. Oldenbourg Verlag, München 2009

Weitere Informationen zur Lehrveranstaltung

Bei Bedarf kann diese Lehrveranstaltung für ausländische Studierende auf Englisch durchgeführt werden.

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Simulation Unternehmensführung für Ingenieure (m/w/d) (Simulation Business Management for Engineers)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Unternehmensführung für Ingenieure (m/w/d) (Simulation Business Management for Engineers)</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Prof. Dr. Sean Patrick Saßmannshausen
Fakultät: Betriebswirtschaftslehre

Zuordnung zu weiteren Studiengängen:
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse:
Der Kurs richtet sich explizit an Studierende der Ingenieurswissenschaft auch und gerade wenn diese noch keine Kenntnisse in Betriebswirtschaftslehre erworben haben. Daher sind Vorkenntnisse für diesen Kurs nicht erforderlich.

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Simulation Unternehmensführung für Ingenieure (m/w/d)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>Simulation Unternehmensführung für Ingenieure (m/w/d)</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UFI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Sean Patrick Saßmannshausen</td>
<td>Betriebswirtschaftslehre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Sean Patrick Saßmannshausen</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Helmut Wittenzellner (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehreform

Seminaristischer Unterricht mit ca. 80% Übungsanteil in Form einer Businessplanerstellung und einer Planspielsimulation

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>94 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

Der Kurs vermittelt Grundlagen der Unternehmensplanung und der kennzahlenbasierten Analyse und Entscheidung zur Unternehmensführung. Anhand der Entscheidungen der Seminarteilnehmenden werden Unternehmenssimulationen durchgeführt um den Stoff Anwendungsnah zu vermitteln. Im Einzelnen ist inhaltlich Gegenstand des Kurses:

- Unternehmensplanung bei Neugründungen und bei neuen Produkten
- Erstellen von Businessplänen und Business-Cases
- Kennzahlenorientierte Unternehmensführung
- Betriebswirtschaftliche Auswertungen und Kennzahlsysteme
- Grundlagen des internen und externen Rechnungswesens
- Begriffe und Strukturen der Kosten- und Leistungsrechnung
- Grundlegende betriebswirtschaftliche Begriffe und Größen des Rechnungswesens, ihre Zusammenhänge und ihre Bedeutung für die betriebliche Steuerung
- Kostenstellen, Kostenträger und Kostenartenrechnung
- Deckungsbeitragsrechnung und ihre Bedeutung für die betriebliche Steuerung und den wirtschaftlichen Erfolg
- Zuordnungsgerechte Kosten- und Leistungsrechnung und kennzahlenbasierte Unternehmensführung in Mehrproduktunternehmen
- Kennzahlenbasierte Unternehmensführung in einer computergestützten Simulation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die Studierenden verstehen es, sowohl den qualitativen als auch den kaufmännisch-quantitativen Teil eines Business-Plans für Unternehmensgründungen oder für die Markteinführung neuer Produkte bestehender Unternehmen (Business Cases) zu erstellen (3).
- Die Studierenden werden in die Lage versetzt, das betriebliche Rechnungswesen, die periodengerechte Betriebswirtschaftliche Auswertung, die kaufmännische Kosten- und Leistungsrechnung und die kennzahlenbasierte Entscheidungsfindung zur Unternehmenssteuerung anwendungsnah zu kennen und zu verstehen (2).
- Die Studierenden können Jahresabschlüsse bestehend aus GuV und Bilanz lesen und verstehen (1).
- Die Studierenden kennen die Grundlagen der Unternehmensfinanzierung, der Struktur von Eigen- und Fremdkapital und die praktische Relevanz von Mezzaninen Kapitalpositionen, sowie die Insolvenzgründe (1).
- Sie beherrschen die wesentliche Fachterminologie und können die Begriffe in einen Zusammenhang stellen und deuten, sie wissen um Bedeutung und Wechselbeziehungen zwischen betriebswirtschaftlichen Kenngrößen (2).
- Sie werden in die Lage versetzt, in späteren beruflichen Situationen betriebwirtschaftliche Themen und Herausforderungen mit dem Management unter Verwendung der etablierten Terminologie zu diskutieren, selbständig Lösungen zu erarbeiten und Zusammenhänge aufzuzeigen (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die Studierenden trainieren ihre Fähigkeit zur Teamarbeit (die Unternehmenssimulation wird in festen Teams durchgeführt).
Die Studierenden lernen Methoden zur normativen, strategischen und operativen Zieldefinition in Unternehmen und können diese in betrieblichen Verhandlungssituationen anwenden.

Die Studierenden schulen ihre persönliche Überzeugungskraft bei simulierten Kreditverhandlungen und durch das Halten eines Pitchs bzw. einer Business-Plan-Präsentation sowie einer Jahresabschlusspräsentation.

Angebotene Lehrunterlagen

- Computergestütztes Planspiel zur Unternehmenssimulation.
- Ergänzende Handbücher und Übungsmaterialien sowie Planspielszenarien.
- Mustervorlagen

Lehrmedien

Computergestützte Planspielsimulation (ggf. auch online durchführbar) und deren Output wie BWAs, Produkte des internen und externen Rechnungswesens usw., Tafel, Whiteboard, Beamer, Lehrvideos, Rollenspielsimulationen, Präsentationen, Gruppenarbeit. Alle Lehrmedien einschließlich des Planspiels können nötigenfalls auch online via Zoom eingesetzt werden.
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Simulation Unternehmensführung für Ingenieure (m/w/d) (Simulation Business Management for Engineers)

Literatur

Pflichtliteratur:
- Das jeweilige Handbuch zur Unternehmenssimulation (wird als PDF zur Verfügung gestellt).

Ergänzende Literatur (zur freiwilligen Vertiefung und zum Nachschlagen):

Aufsätze:

Bücher (mindestens in der jeweils angegebenen oder in einer neueren Auflage):

Die vorgenannten Bücher sind überwiegend als e-book über die Hochschulbibliothek der OTH Regensburg online verfügbar.

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Veranstaltung ist Teil des gemeinsamen Schwerpunkts Technik und Management.
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Software-Defined Radio

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software-Defined Radio</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

1. Studienabschnitt

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Software-Defined Radio</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 15. 03. 2022

Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software-Defined Radio</td>
<td>SDR</td>
</tr>
</tbody>
</table>

Verantwortliche/r	Fakultät
Prof. Dr. Peter Kuczynski | Elektro- und Informationstechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Peter Kuczynski | nur im Wintersemester

Lehrform
Seminaristischer Unterricht, 10-40% Übungsanteil, Praktikumsversuche

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 62 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Mobilfunksysteme, grundlegende Prinzipien der mobilen Kommunikation
- Zugriffsverfahren in mobilen Kommunikationssystemen: TDMA, FDMA, CDMA, SDMA
- zellulare Konzepte, Sektorisierung
- Bandpasssystem und äquivalentes Tiefpasssystem
- Transformation von Bandpasssignalen in äquivalente Tiefpasssignale (Theorie und Realisierungskonzepte)
- Mobilfunkkanal (praktische Aspekte, Theorie, Modellierung und Simulation)
- Diversity-Konzepte, Frequenzsprungverfahren
- Energiesignale und Leistungssignale
- Korrelation, Leistungs- und Energiedichtespektrum
- Signalangepasstes Filter (Matched Filter): Theorie und Anwendung
- Binärsignaulübertragung mithilfe des Matched Filters, erstes Nyquist-Kriterium
- Grundlagen der digitalen Modulation (Sender, Empfänger),
- ausgewählte digitale Modulationsverfahren z.B. PSK, QAM, MSK, GMSK
- Spread-Spectrum-Übertragung, Prozessgewinn, Anwendung orthogonalen Signale (Walsh-Funktionen, OFDM)
- Interleaving, Kanalschätzung mithilfe eines Pilotsignals
- SDR-Verfahren in ausgewählten Anwendungen z.B. in Mobilfunksystemen
- praxisorientierte Übungen mithilfe von MATLAB, Simulink und einem SDR-System

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg
Seite 221
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• ausgewählte Übertragungsverfahren von digitalen Mobilfunkstandards zu bewerten (2)
• die mobile Funkübertragung zu modellieren undzellulare Konzepte zu verstehen (3)
• die Definitionen der Korrelationsfunktionen, der Leistungsdichtespektren und der
 Energiedichtespektren zu kennen und für verschiedene Signalformen anzuwenden (3)
• die prinzipiellen Verfahren zur Transformation von Bandpasssignalen in das Basisband
 für die Realisierung von Sendern und Empfängern theoretisch zu verstehen und praktisch
 mithilfe von Software zu realisieren (3)
• die theoretischen Grundlagen der Binärsignalübertragung mithilfe des signalangepassten
 Filters zu verstehen und mithilfe von Software zu realisieren (3)
• die Anwendung von orthogonalen Signalen für die Signalübertragung in modernen
 Funkkommunikationssysteme zu verstehen und zu bewerten (3)
• ausgewählte digitale Modulationsverfahren mithilfe von Software zu realisieren (2)
• die Vorteile der Spread-Spectrum-Übertragung zu interpretieren und zu bewerten (3)
• Diversity-Verfahren zur Verbesserung der Übertragungsqualität zu interpretieren und zu
 bewerten (3)
• ausgewählte digitale Funkübertragungsverfahren zu verstehen und mithilfe von MATLAB
 und Simulink zu simulieren und zu realisieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die
im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des
Modulhandbuchs).

Angebotene Lehrunterlagen
Skripte, Übungen, Literaturliste

Lehrmedien
Overheadprojektor, Tafel, Rechner/Beamer, Simulationssoftware MATLAB und Simulink

Literatur

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz
angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige
Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering im Team</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Elektro- und Informationstechnik
- Mechatronik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
- Programmieren in C und C++ (Informatik 1 und 2, Praktikum Informatik 1 und 2)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Software Engineering im Team</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Software Engineering im Team</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SET</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Jürgen Mottok</th>
<th>Elektro- und Informationstechnik</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Prof. Dr. Jürgen Mottok</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Blockveranstaltung zur Durchführung eines Software Engineering Projektes

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>Vor- und Nachbereitung, Prüfungsvorbereitung: 90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

- Vorgehensmodellen und Phasen der Software Entwicklung
 - Wasserfall-Modell
 - V-Modell
 - W-Modell
 - Inkrementelle Modelle
 - eXTREME Programming
 - SCrum

- Phasen der Software Entwicklung
 - Requirements Engineering
 - Analyse
 - Design
 - Implementierung
 - Modul-Test
 - Integrations-Test
 - System-Test
 - Abnahme-Test
 - Wartung

- Grundlagen der funktionalen Sicherheit
- Grundlagen der Informationssicherheit
- Modellierungstechniken in der UML
 - Statisch (Klassendiagramm, …)
 - Dynamisch (Sequenz-, Aktivitäts-, Kollaborations- und Zustand-Diagramm, …)

- Methodiken des Software-Tests und Software Qualitätssicherung
- Review-Techniken
- Fortgeschrittene, objektorientierte Programmiertechniken
- Datenbanken
- Design Pattern
- Darlegung Aufgabenstellung des durchzuführenden Software Projektes

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die folgenden Kompetenzen, dem Kompetenzraster von Erpenbeck folgend zu zeigen:

Kenntnisse (1)
Kenntnisse von klassischen und agilen Vorgehensmodellen der Softwareentwicklung
Kenntnis über Inhalte, Methoden, und Tools der einzelnen Phasen im Software Lifecycle
Kenntnis wichtiger Dokumentenschablonen im Software-Entwicklungsprozess

Fertigkeiten (2)
Ein Vorgehensmodell im Team auswählen und durchführen
Requirements erheben und verwalten
Software-Design mit Hilfe der UML erstellen und verwalten

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg
In eine API einarbeiten und diese verwenden
Implementierung in C/C++, Java oder Python (je nach Projekt) erstellen
Techniken des Software Testens verwenden
Im Team zusammenarbeiten
Konflikte managen
Projektorganisation durchführen
Software verwalten

Kompetenzen

Fach- und Methodenkompetenz

• Eigenständig einen Software-Entwicklungsprozess anwenden (3)
• Eigenständige Erfassung von Requirements (3)
• Selbständige UML-Modellierung (3)
• Robuste und korrekte Implementierung in C/C++ (3)
• Kreative Entwicklung von Softwaretest-Fällen und Testdurchführung (3)
• Beherrschung von Review-Techniken (3)
• Gemeinsames Vorbereiten im Team (3)
• Dokumentation (Spezifikationen mit UML-Diagrammen) (3)
• Präsentation der Ergebnisse, Diskussion kontroverser Lösungsansätze (3)
• Schriftliche und mündliche Ausdrucksfähigkeit in Software Engineering (2)
• Analytische Fähigkeiten und Konzeptionsstärke entwickeln (3)
• Beurteilungsvermögen zeigen (3)
• Projektmanagement und Planungsverhalten (3)
• Nachweis von im Studium erworbenen Fachkenntnissen (3)
• Fähigkeit zum systematischen und methodisch korrekten Bearbeiten eines begrenzten Themas (Systematisch-methodisches Vorgehen) (3)
• Nachweis der Selbständigkeit bei der Lösung einer vorgegebenen Aufgabe (Originalität von Lösungsideen) (3)
• Fähigkeit zur Problemanalyse und (Selbst-)Kritik (Systematik in der Bewertung der Lösungen) (3)
• Fähigkeit zur logischen und prägnanten Argumentation (Beispielsweise Wissenschaftliches Schreiben) (3)
• Formal korrekte Präsentation der Ergebnisse (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die folgenden Kompetenzen, dem Kompetenzraster von Erpenbeck folgend, zu zeigen:

Personale Kompetenzen

• Entwicklung einer normativ-ethischen Einstellung hinsichtlich der gesellschaftlichen Technologiefolgen des eigenen Wissenschaftsbeitrages (3)
• Hilfsbereitschaft in einem teamorientierten Arbeitsprozess zeigen (3)
• Offenheit für veränderte Randbedingungen und neue Erkenntnisse anderer Mitglieder verifizieren und diskutieren (3)
• In Selbstmanagement den eigenen Arbeitsprozess gestalten (3)
• Mit Einsatzbereitschaft in einer Gruppe Ideen einbringen (3)
Aktivitäts- und Handlungskompetenz

- Entscheidungsfähigkeit bei mehreren Alternativen entwickeln (3)
- Tatkraft und Gestaltungswille zeigen (3)
- Mit Innovationsfreude unterschiedliche neue Ideen annehmen (3)
- Zielorientiertes Führen in Teilaufgaben in kleineren Teams (3)
- Eine Rolle im Team einnehmen und verantworten (3)
- Als Softwareentwickler Code entwickeln (3)
- Als Anforderungsmanager/ Product Owner Anforderungen erheben und verwalten (3)
- Als Projektleiter/Scrum Master das Team organisieren und managen (3)
- Als Projektleiter Statusberichte planen und verwalten (3)
- Als Architekt Software designs entwerfen (3)
- Ergebnisorientiertes Handeln entwickeln (3)
- In schwierigen Situationen Beharrlichkeit zeigen (3)
- Eine Optimistische Grundhaltungen im projektorientierten Arbeiten einnehmen (3)

Sozial- kommunikative Kompetenzen

- Konfliktlösungsfähigkeit zeigen (3)
- Integrationsfähigkeit zeigen und verschiedene Positionen im projektorientierten Arbeiten zulassen (3)
- Die eigene Teamfähigkeit weiter entwickeln (3)
- Die eigene Problemlösungsfähigkeit entwickeln (3)
- Verständnisbereitschaft zeigen im dialogischen Diskurs (3)
- Mit Experimentierfreude neue Ideen zulassen und ausprobieren (3)
- Die eigene Sprachgewandtheit im projektorientierten Arbeiten verbessern (3)
- Beziehungsmanagement mit den Stakeholdern im Entwicklungsprozess entwickeln (3)
- Pflichtgefühl in den Projektaufgaben zeigen (3)

Angebotene Lehrunterlagen

- Aufgabenstellungen, Hilfsprogramme für Grafikausgabe

Lehrmedien

- PCs im CIP-Pool, Entwicklungsumgebungen, Tafel, Beamer

Literatur

2. H. Balzert, Software-Technik, Band 1 und 2, Spektrum, 1996
3. R. Isernhagen, Software-Technik in C und C++, Hanser, 2004

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 15.03.2022

Ostbayerische Technische Hochschule Regensburg
Seite 227
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering sicherer Systeme (Software Engineering of Safe and Secure Systems)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Programmieren in C und C++ (IN1, PIN1, IN2, PIN2)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Software Engineering sicherer Systeme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Engineering sicherer Systeme</td>
<td>SES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristische Lehrform
Online Lerntagebuch und Lernportfolio
Praktischer Übungsanteil ca. 50%

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
60 h

Eigenstudium
Vor- und Nachbereitung, Prüfungsvorbereitung:
90 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle
Inhalte

Vorgehensmodellen und Phasen der Software Entwicklung
- Wasserfall-Modell
- V-Modell
- W-Modell
- Inkrementelle Modelle
- eXTREME Programming
- SCRUM

Phasen der Software Entwicklung
- Requirements Engineering
- Analyse
- Design
- Implementierung
- Modul-Test
- Integrations-Test
- System-Test
- Abnahme-Test
- Wartung

Grundlagen der funktionalen Sicherheit
- Grundlagen der Informationssicherheit
- Modellierungstechniken in der UML
 - Statisch (Klassendiagramm, ...)
 - Dynamisch (Sequenz-, Aktivitäten-, Kollaborations- und Zustand-Diagramm, ...)

Design Pattern
- Methoden des Software-Tests und Software-Qualitätssicherung
- Safe and Secure Coding Guideline
- Review-Techniken
- Fortgeschrittene, objektorientierte Programmier-techniken
- Datenbanken
- Design Pattern
- Darlegung Aufgabenstellung des durchzuführenden Software Projektes

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die folgenden Kompetenzen, dem Kompetenzraster von Erpenbeck folgend zu zeigen:

Kenntnisse (1)
- Kenntnisse von Vorgehensmodellen der Softwareentwicklung
- Kenntnis verschiedener Phasenmodelle der Software-Entwicklung
- Kenntnis wichtiger Dokumentationsablonen im Software-Entwicklungsprozess
- Kenntnisse in funktionaler Sicherheit und IT-Sicherheit

Fertigkeiten (2)
- Pattern in den verschiedenen Phasen der Softwareentwicklung zu verwenden
- Fähigkeit, Pattern hinsichtlich non-funktionaler Anforderungen zu vergleichen
- Requirements formulieren
Software-Design in UML durchführen
Korrekte Implementierung in C/C++
Techniken des Software Testens verwenden

Kompetenzen

Die Diskussion der Kompetenzen erfolgt entlang dem Kompetenzgitter nach Erpenbeck (Erpenbeck 2017).

Fach- und Methodenkompetenz

- Eigenständig einen Software-Entwicklungsprozess anwenden (3)
- Eigenständige Erfassung der Requirements (3)
- Selbständige UML-Modellierung (3)
- Selbständig Design Pattern für Problemlösungen identifizieren (3)
- Robuste und korrekte Implementierung in C/C++ (3)
- Kreative Entwicklung von Softwaretest-Fällen und Testdurchführung (3)
- Selbständige Modellierung einer FMEA und FTA (2)
- Safety Design Pattern anwenden (2)
- Security Design Pattern anwenden (2)
- Safe and Secure Coding Guideline anwenden (3)
- Beherrschung von Review-Techniken (3)
- Gemeinsames Vorbereiten im Team, Kommentierung der Programme (3)
- Dokumentation (Spezifikationen mit UML-Diagrammen) (3)
- Präsentation der Ergebnisse, Diskussion kontroverser Lösungsansätze (3)
- Schriftliche und mündliche Ausdrucksfähigkeit in Software Engineering (2)
- Analytische Fähigkeiten und Konzeptionsstärke entwickeln (3)
- Beurteilungsvermögen zeigen (3)
- Projektmanagement und Planungsverhalten (3)
- Nachweis von im Studium erworbenen Fachkenntnissen (3)
- Fähigkeit zum systematischen und methodisch korrekten Bearbeiten eines begrenzten Themas (Systematisch-methodisches Vorgehen) (3)
- Nachweis der Selbständigkeit bei der Lösung einer vorgegebenen Aufgabe (Originalität von Lösungseideen) (3)
- Fähigkeit zur Problematisierung und (Selbst-)Kritik (Systematik in der Bewertung der Lösungen) (3)
- Qualität der Ergebnisse - Neuartigkeit, Güte, Zuverlässigkeit (3)
- Fähigkeit zur logischen und prägnanten Argumentation (Beispielsweise Wissenschaftliches Schreiben) (3)
- Formal korrekte Präsentation der Ergebnisse (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die folgenden Kompetenzen, dem Kompetenzraster von Erpenbeck folgend, zu zeigen:

Personale Kompetenzen

- Entwicklung einer normativ-ethischen Einstellung (3)
- Hilfsbereitschaft in einem teamorientierten Arbeiten zeigen (3)
- Zuverlässigkeit im eigenen Team (3)
- Offenheit für veränderte Randbedingungen (3)
- In Selbstmanagement die eigene Arbeit gestalten (3)
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Software Engineering sicherer Systeme (Software Engineering of Safe and Secure Systems)

- Mit Einsatzbereitschaft Ideen ins Team einbringen (3)

Aktivitäts- und Handlungskompetenz

- Entscheidungsfähigkeit bei mehreren Alternativen entwickeln (3)
- Tatkraft und Gestaltungswille im Forschungsdesign zeigen (3)
- Mit Innovationsfreudigkeit unterschiedliche neue Ideen annehmen (3)
- Zielorientiertes Führen in Teilaufgaben in einem Team (3)
- Ergebnisorientiertes Handeln entwickeln (3)
- In schwierigen Situationen Beharrlichkeit zeigen (3)
- Impulse in Workshops des Teams geben (3)
- Optimistische Grundhaltungen im Team sich aneignen (3)

Sozial- kommunikative Kompetenzen

- Konfliktlösungsfähigkeit zeigen (3)
- Integrationsfähigkeit zeigen und verschiedene Positionen bei der Aufgabenbearbeitung zuzulassen (3)
- Die eigene Teamfähigkeit weiter entwickeln (3)
- Die eigene Problemlösungsfähigkeit entwickeln (3)
- Verständnisbereitschaft zeigen im dialogischen Diskurs (3)
- Mit Experimentierfreude neue Ideen zulassen und ausprobieren (3)
- Die eigene Sprachgewandtheit im Team ausreifen (3)
- Beziehungsmanagement im Team entwickeln (3) Pflichtgefühl in den Aufgaben zeigen (3)

Angebotene Lehrunterlagen

- Skript, Foliensatz, Weitere Quellen in Moodle
- Methodischer Ansatz inverted classroom, OLTB, Portfolio

Lehrmedien

Beamer, Tafel, moodle, Class room response system, Online-Lerntagebuch

Literatur

I., Sommerville, Software Engineering, Addison Wesley, 2009
H. Baizert, Software-Technik, Band 1 und 2, Spektrum, 1996
R. Isernhagen, Software-Technik in C und C++, Hanser, 2004
http://de.selfhtml.org/
C. Eckert, IT-Sicherheit: Konzepte - Verfahren – Protokolle, De Gruyter, 2018

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Speicher Programmierbare Steuerungen und Praktikum Automatisierungstechnik (Programmable Logic Controller) |

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Franz Graf</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
- Mikrocomputertechnik, Praktikum Mikrocomputertechnik, Digitaltechnik, Praktikum Programmierbare Logik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Automatisierungssysteme</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Speicherprogrammierbare Steuerungen</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Speicher Programmierbare Steuerungen und Praktikum Automatisierungstechnik (Programmable Logic Controller)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Automatisierungssysteme</td>
<td>PAS</td>
</tr>
</tbody>
</table>

Verantwortliche/r Fakultät
Prof. Dr. Franz Graf Elektro- und Informationstechnik
Lehrende/r / Dozierende/r Angebotsfrequenz
Prof. Dr. Franz Graf in jedem Semester

Lehrform
Laborpraktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium Eigenstudium
28 h 32 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Realisierung einer umfangreichen Automatisierungsaufgabe mit Mikrocontrollern oder SPS laut Vorschlagsliste mit einem aktuellen Entwicklungssystem
- Die Inhalte der zugehörigen Vorlesung werden intensiv vertieft
- Das Projekt wird in der Gruppe bearbeitet, so wie es in einer Industrietätigkeit üblich ist
- Die Gruppe organisiert sich selbst, erarbeitet ein Konzept, stellt das Konzept den anderen Gruppen vor, definiert die Schnittstellen, legt den Zeitplan fest und teilt die Aufgaben auf

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Aufbau, Arbeitsweise und Betrieb einer SPS, sowie die Programmiersprachen von IEC 61131-3 zu verstehen (1)
- eine SPS mit einer IEC 61131-3 Sprache zu programmieren (vorzugsweise in AWL) (2)
- eine komplexe Regelung oder Steuerung einer Anlage mit einer SPS oder einem Mikrocontroller aufzubauen, zu programmieren und zu testen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Speicher Programmierbare Steuerungen und Praktikum Automatisierungstechnik (Programmable Logic Controller)

Angebotene Lehrunterlagen
- Aufgabenstellungen
- Aufbaubeschreibung
- Skript
- Übungen
- Literaturliste

Literatur

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Teilmodul	TM-Kurzbezeichnung
Speicherprogrammierbare Steuerungen | SPS

Verantwortliche/r	Fakultät
Prof. Dr. Franz Graf | Elektro- und Informationstechnik

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Dr. Franz Graf | in jedem Semester

Lehrform
Seminaristischer Unterricht 2 SWS, Übungsanteil 50%

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
28 h	Vor- und Nachbereitung: 52 h
Prüfungsvorbereitung: 10 h	

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Aufbau einer SPS
- Gängige Entwicklungssysteme
- Baugruppen, Programmiersprachen, Operanden, Adressierung
- Verknüpfungoperationen, VKE
- Betriebssystem und Programmstruktur
- Datentypen, Akkus
- Zeiten, Zähler
- Arithmetik, Vergleiche
- Zustandsmaschinen
- Analoge I/O
- Regler

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Aufbau, Arbeitsweise und Betrieb einer SPS, sowie die Programmiersprachen von IEC 61131-3 zu verstehen (1)
- eine SPS mit einer IEC 61131-3 Sprache zu programmieren (vorzugsweise in AWL) (2)
- eine komplexe Regelung oder Steuerung einer Anlage mit einer SPS oder einem Mikrocontroller aufzubauen, zu programmieren und zu testen (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
- Skript, Übungen mit Lösungen, Datenblätter, Literaturliste

Lehrmedien
- Programmiertool, Simulationstool, Tafel, Beamer

Literatur
- http://www.mhj.de

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Systemsimulation (Systems Simulation)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemsimulation (Systems Simulation)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Systemsimulation</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul: Systemsimulation

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>SYS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht und Praktikum (ca 60% Praktikumanteil)

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Numerische Simulation als relevanter Teil des Entwicklungsprozesses (Auffinden der Prinziplösung, Optimierung)
- Vermittlung der Grundlagen eines modernen und leistungsfähigen Simulationswerkzeugs: Strukturen, verallgemeinigte mathematische Beschreibung (Netzwerktheorie), numerische Lösung des adäquaten Gleichungssystems
- Arbeitweise von SIMULATION X anhand von Beispielen, eigenständiger Aufbau und Teilprogrammierung von geeigneten Modellen in unterschiedlichen physikalischen Domänen
- Summation der Erkenntnisse und Erfahrungen bei der schrittweisen Annäherung an ein komplexes System

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Funktion und die Kopplungsmöglichkeiten von Simulationskomponenten darzustellen (1)
- Lösungsalgorithmen für gekoppelte Systeme zu unterscheiden (1) und auszuwählen (2)
- in sinnvoller Weise Teilsysteme zu bilden und die Schnittstellen zu definieren (2)
- neue Elementtypen auf Basis physikalischer Zusammenhänge zu definieren (3)
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Systemsimulation (Systems Simulation)

- bestehende multiphysikalische Modelle um Steuerungs- und Regelungskomponenten zu erweitern (2)
- das Verhalten komplexer, zeitabhängiger technischer Systeme zu modellieren (3) und zu simulieren (2)
- Analogien zwischen physikalischen Domänen zur Bildung multiphysikalischer Modelle zu nutzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Vorlesungsbegleiter

Lehrmedien

PC, Tafel, Overhead, Beamer

Literatur

SimulationX: Manual und Element-Library

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Übertragungssysteme (Radio and line transmission)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übertragungssysteme (Radio and line transmission)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fuhrmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen:
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse:
- Signale und Systeme
- Elektrische Schaltungstechnik
- Fouriertransformation
- Felder, Wellen und Leitungen

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Übertragungssysteme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

Übertragungssysteme

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>US</th>
</tr>
</thead>
</table>

Verantwortliche/r
- Prof. Dr. Thomas Fuhrmann: Elektro- und Informationstechnik
- Lehrende/r / Dozierende/r: Angebotsfrequenz
- Prof. Dr. Thomas Fuhrmann: nur im Sommersemester

Lehrform
Seminarietischer Unterricht, ca. 30% integrierter praktischer Anteil

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 62 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

- siehe Studienplantabelle

Inhalte

- Grundbegriffe der Übertragungstechnik
- Physikalische Übertragungsmedien, deren Eigenschaften, Anwendungsbereiche und Einsatzgrenzen
- Multiplexverfahren, Schichtenmodelle, Netztypologien, Zugriffsverfahren, Codierung, Kryptographie
- Modulationsverfahren und deren Eigenschaften
- Berechnung der Kanalkapazität unter Berücksichtigung von Rauschen
- Grundlagen optischer Übertragungssysteme
- Typen von optischen Wellenleitern und Wellenausbreitung
- Grundlagen Laser als Sender und Photodioden als Empfänger
- Beispiele ausgewählter Übertragungssysteme und deren Einsatzbereiche
- Einführung in die Quantenübertragung
- Ausgewählte Kapitel der Übertragungstechnik zur Selbsterarbeitung durch die Studierenden
- Praktischer Anteil: Entwicklung und Aufbau einer optischen Datenübertragung bzw. Teilnahme am Rohde & Schwarz Fallstudienwettbewerb
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die gebräuchlichen Übertragungsmedien mit deren praktischen Anwendungen zu kennen (1)
- die meistgenutzten Modulationsverfahren zu kennen (1)
- die gebräuchlichen Übertragungsverfahren zu kennen (1)
- Bauteilen und Anordnungen für einfache optische Übertragungssysteme zu kennen (1)
- die wesentlichen übertragungstechnischen Größen eines optischen Übertragungssystems zu kennen (1)
- die wesentlichen Prinzipien eines Systems zur Quantenübertragung zu kennen (1)
- einfache optische Übertragungssysteme bei gegebenen Randbedingungen auszulegen (2)
- ein geeignetes Übertragungsmedium für eine spezifische Übertragungsaufgabe auszuwählen (3)
- ein geeignetes Modulationsverfahren bei einem gegebenen Übertragungsproblem auszuwählen (3)
- ein geeignetes Zugriffsverfahren auf ein Medium auszuwählen und zu verwenden (3)
- ein geeignetes Verfahren zur Fehlersicherung oder Fehlerkorrektur und Entscheidung über eine kryptographische Methode für eine benötigte Übertragung auszuwählen und zu verwenden (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- selbständig zu arbeiten, Informationen zu recherchieren, Daten zu analysieren, Schaltungen und Systeme zu berechnen. (3)
- über die eigene technische Arbeit zu reflektieren. (3)
- zielgerichtete Projektarbeit im Team durchzuführen. (3)
- ihre Ergebnisse zu präsentieren und darüber zu diskutieren. (3)

Angebotene Lehrunterlagen
Skript, Übungen, Literaturliste, Praktikumsanleitungen

Lehrmedien
Tafel, Rechner/Beamer

Literatur
Kammeyer; Dekorsy: Nachrichtenübertragung, Springer, 2017
Werner: Nachrichten-Übertragungstechnik, Vieweg, 1. Auflage, 2006

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Vertiefung Mess- und Sensortechnik (Advanced Course on Measurements and Sensor Technology)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefung Mess- und Sensortechnik (Advanced Course on Measurements and Sensor Technology)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mikhail Chamonine</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vertiefung Mess- und Sensortechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Modulname: Vertiefung Mess- und Sensortechnik (Advanced Course on Measurements and Sensor Technology)

Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Teilmodul
Vertiefung Mess- und Sensortechnik

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>VMS</th>
</tr>
</thead>
</table>

Verantwortliche/r
Fakultät: Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Prof. Dr. Mikhail Chamonine</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r
Angebotsfrequenz: nur im Wintersemester

<table>
<thead>
<tr>
<th>Prof. Dr. Mikhail Chamonine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Anton Horn</td>
</tr>
<tr>
<td>Prof. Dr. Roland Mandl</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Laborarbeit

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>
| 56 h | Vor- und Nachbereitung: 70 h
Prüfungsvorbereitung: 24 h |

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Ausgewählte Sensorprinzipien und Bauelemente
- Ausgewählte Mess- und Sensorkonzepte (Sensornetzwerke, Sensor Fusion, DigitaleSensorsignalverarbeitung, Energy Harvesting usw.)
- Ausgewählte aktuelle Forschungs- und Entwicklungsthemen im Bereich Messtechnik undSensorik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die wichtigsten Sensorprinzipien und deren Anwendung in der Praxis zu kennen (1).
- Aktuelle Fachliteratur zu finden (2), zu verstehen (3) und auszuwerten (3).
- Aktuelle Forschungsthemen im Bereich Mess- und Sensortechnik zu verstehen (3).
- Komplexe Aufgabenstellungen definieren und eigenständig zu bearbeiten (3).
- Komplexer Untersuchungen zu aktuellen Themen durchzuführen (3).
- Eigene Ergebnisse professionelle aufzubereiten und zu präsentieren (2).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• die Bedeutung sorgfältigen, selbständigen Arbeitens für Ihren Lernerfolg einzuschätzen (2).
• die Bedeutung präziser Entwicklungsarbeit für den Entwicklungserfolg einzuschätzen (2).
• die Wichtigkeit guter Zeitplanung bei den Lernaktivitäten über das Semesterwahrzunehmen (2).
• die Gefahren und Chancen der Teamarbeit im Studium zu erkennen (2) (und diesezielgerichtet optimal einzusetzen (3)).
• Lernaktivitäten über das Semester sinnvoll zu verteilen (3).
• den Unterschied zwischen Verständnis und bloßer Anwendung von Lösungswegen zuerkennen (2) und die Vorteile beider Herangehensweisen zu nutzen (3).

Angebotene Lehrunterlagen
Arbeitsblätter, aktuelle Fachliteratur

Lehrmedien
Tafel, Projektor, Laborversuche

Literatur

Weitere Informationen zur Lehrveranstaltung
Bei Bedarf kann diese Lehrveranstaltung für ausländische Studierende auf Englisch durchgeführt werden. Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserkraftwerke (Hydropower Plants)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Lesser</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wasserkraftwerke (Hydropower Plants)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

Wasserkraftwerke (Hydropower Plants)

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Lesser</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Lesser</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Oliver Webel</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungsanteil

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Energie des Wassers
- Wasserkraftpotential
- Niederdruckanlagen
- Hochdruckanlagen
- Maschinen zur Energieerzeugung in der Wasserkraft
- Pumpspeicherkraftwerke
- Wasserkraft und Umwelt

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die Situation der Wasserkraftpotentialsituation in Deutschland zu kennen (1)
- Wesentliche Komponenten von Hoch- und Niederdruckanlagen zu kennen (1)
- Die Funktions- und Bauweise von Pumpspeicherkraftwerken zu kennen (1)
- Die wesentliche Problematik im Spannungsfeld von Wasserkraft und Umwelt erläutern zu können (1)
- Wasserkraftwerke energietechnisch zu bilanzieren (3)
- Wasserkraftpotentiale standortbezogen zu ermitteln (2)
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Wasserkraftwerke (Hydropower Plants)

- Wesentliche Kraftwerkskomponenten zu bemessen (2, 3)
- Maschinen auszuwählen, die für die Anforderungen passen (2, 3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen
- Folien, Formelsammlung, Übungsaufgaben, Literaturliste

Lehrmedien
- Tafel, Tablet, Beamer

Literatur
- Bohl W., Elmendorf W.: Strömungsmaschinen 1, Vogel Fachbuch, 2008

Weitere Informationen zur Lehrveranstaltung
Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Stand: 15. 03. 2022
Ostbayerische Technische Hochschule Regensburg

Die Zahlen in Klammern geben die zu erreichen Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Windenergie (Wind energy)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie (Wind energy)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Strömungsmaschinen, Grundlagen elektrischer Maschinen

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Windenergie</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Windenergie (Wind energy)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie</td>
<td>WMT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Franz Fuchs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit 10-15 % Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>56 h</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Historie der Windenergienutzung</td>
</tr>
<tr>
<td>• Meteorologische Grundlagen</td>
</tr>
<tr>
<td>• Zirkulations- und Strömungssysteme</td>
</tr>
<tr>
<td>• Grundlagen der atmosphärischen Dynamik</td>
</tr>
<tr>
<td>• Statistische Beschreibung der Windverhältnisse</td>
</tr>
<tr>
<td>• Wirkungsweise, Aerodynamik und Regelung von Windenergieanlagen</td>
</tr>
<tr>
<td>• Aufbau, Komponenten und Netzanbindung von Windenergieanlagen</td>
</tr>
<tr>
<td>• Projektierung von Windparks</td>
</tr>
<tr>
<td>• Offshore-Windenergienutzung</td>
</tr>
<tr>
<td>• Potential und Kosten der Windenergie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• Die meteorologischen, physikalischen, technischen und wirtschaftlichen Aspekte der</td>
</tr>
<tr>
<td>Windenergienutzung darlegen zu können (1)</td>
</tr>
<tr>
<td>• Die Windverhältnisse und die Leistungsabgabe einer Windenergieanlage in Grundzügen</td>
</tr>
<tr>
<td>berechnen zu können (2)</td>
</tr>
<tr>
<td>• Die atmosphärische Dynamik und ihre Einflussfaktoren zu verstehen (1)</td>
</tr>
</tbody>
</table>
- Die Eigenschaften und Anwendungsfälle der verschiedenen Windenergieanlagenkonzepte erläutern zu können (1)
- Windfeldmodellierungen durchführen zu können (3)
- Standortanalysen erstellen und Erträge abschätzen zu können (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

- Skript, Präsentationsunterlagen und Übungen

Lehrmedien

- Tafel, Rechner/Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Systems Design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen
- Mechatronik
- Elektro- und Informationstechnik
- Intelligent Systems Engineering

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Beschreibung von Signalen im Zeit- und Frequenzbereich
Außerdem ist der Umgang mit Matlab und LTSpice hilfreich aber nicht zwingend notwendig

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>Teilmodul</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Wireless Systems Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, 10-15% Übungsanteil, Laborversuche und Übungen im CIP-Pool

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>Vor- und Nachbereitung Unterricht: 60 h, Prüfungsvorbereitung: 30 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

1) Aufbau moderner Sender- / Empfängerarchitekturen
2) Kurze Wiederholung einiger nachrichtentechnischer Grundlagen wie z.B. Digitale Modulationsverfahren, Vielfachzugriffsverfahren, Bandspreiztechnik, OFDM, Pulsformung und die Beeinflussung bei der HF-Signalübertragung
3) Schaltungs- und systemtechnische Herausforderungen
4) Einfluss durch nichtideale Eigenschaften realer Systeme
5) Auswirkungen durch nichtlineare Systeme
6) Rauschursachen, Signal-Rausch-Verhältnis, Rauschzahl, Rauschmessung und Rauschanpassung, insbesondere Rauschen bei hochintegrierten Systemen
7) Systemauslegung - vom Standard zu den System- und Blockkennzahlen
8) Systemsimulationen und Verifikationsmessungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Schaltungs- und Systemtechnische Herausforderungen von drahtlosen Sensornetzwerken zu beschreiben (2)
- die Funktionsweise einfacher Modulationsverfahren, Codemultiplex und Bandspreizung sowie HF-Signalübertragung und Beeinflussung dabei zu erklären (2)
- den Aufbau moderner Empfängerarchitekturen und die Nichtidealitäten realer Empfänger und deren Auswirkungen (Spiegelfrequenzen, LO-Leakage und DC-Offsets, I/Q-Mismatch, Nichtlinearität) zu erläutern (2)
- Rauschzahlen und Signalrauschverhältnis von Systemen zu berechnen, Rauschanpassungen zu dimensionieren und insbesondere das Rauschen bei hochintegrierten Schaltungen darzustellen (3)
- System- und Blockkennzahlen eines Empfängers mittels Berechnungen und Systemsimulationen unter Berücksichtigung der Nichtidealitäten festzulegen (3)
- Systemverifikationen durch Simulationen und Messungen auszuführen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

- Folien, Übungen und Beispieldateien

Lehrmedien

- Beamer, Tafel, Computer in den CIP Pools, Versuchsaufbauten

Literatur

Weitere Informationen zur Lehrveranstaltung

Es ist nicht garantiert, dass die Veranstaltung in jedem Semester laut Angebotsfrequenz angeboten werden kann. Hierzu vergleichen Sie bitte die für das jeweilige Semester gültige Studienplantabelle.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden