Modulhandbuch

für den
Bachelorstudiengang

Regenerative Energietechnik
und Energieeffizienz
(B.Eng.)

SPO-Version ab: Wintersemester 2015

Wintersemester 2016/2017

erstellt am 17.10.2016
von Sandra Dirnberger

Fakultät Elektro- und Informationstechnik
Vorspann

1. Erläuterungen zum Aufbau des Modulhandbuchs

2. Standardhilfsmittel

Folgende Hilfsmittel sind bei allen Prüfungen zugelassen:
- Unbeschriebenes Schreibpapier (Name, Matrikelnummer und Modulbezeichnung dürfen vorab schon notiert werden)
- Schreibstifte aller Art (ausgenommen rote Stifte)
- Zirkel, Lineale aller Art, Radiergummi, Bleistiftspitzer, Tintenentferner

3. Wahlpflichtmodule

Die Regelungen zur Wahl der Wahlpflichtmodule sind in der SPO zu finden. Details zur Anrechenbarkeit der einzelnen Module für Studiengänge und Schwerpunkte regelt der jeweilige Studienplan.

Die Fachwissenschaftlichen Wahlpflichtfächer sind in folgenden Semestern zu belegen:

Elektro- und Informationstechnik: 6. oder 7. Semester
Mechatronik: 7. Semester
Regenerative Energietechnik und Energieeffizienz: 6. oder 7. Semester

Nähere Informationen sind im Studienverlaufsplan und in der SPO zu finden.
Modulliste

Studienabschnitt 1:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Messtechnik (Electrical Measurements)</td>
<td>6</td>
</tr>
<tr>
<td>Elektrische Messtechnik</td>
<td>8</td>
</tr>
<tr>
<td>Praktikum Elektrische Messtechnik</td>
<td>10</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 1 (Electrical Engineering 1)</td>
<td>12</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 1</td>
<td>13</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 2 (Electrical Engineering 2)</td>
<td>15</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 2</td>
<td>16</td>
</tr>
<tr>
<td>Informatik 1 (Computer Science 1)</td>
<td>18</td>
</tr>
<tr>
<td>Informatik 1</td>
<td>19</td>
</tr>
<tr>
<td>Praktikum Informatik 1</td>
<td>22</td>
</tr>
<tr>
<td>Informatik 2 (Computer Science 2)</td>
<td>24</td>
</tr>
<tr>
<td>Informatik 2</td>
<td>26</td>
</tr>
<tr>
<td>Praktikum Informatik 2</td>
<td>29</td>
</tr>
<tr>
<td>Mathematik 1 (Mathematics 1)</td>
<td>32</td>
</tr>
<tr>
<td>Mathematik 1</td>
<td>33</td>
</tr>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>36</td>
</tr>
<tr>
<td>Mathematik 2</td>
<td>37</td>
</tr>
<tr>
<td>Physik & Chemie (Physics & Chemistry)</td>
<td>40</td>
</tr>
<tr>
<td>Physik & Chemie</td>
<td>41</td>
</tr>
<tr>
<td>Technische Mechanik (Mechanical Engineering)</td>
<td>43</td>
</tr>
<tr>
<td>Technische Mechanik</td>
<td>44</td>
</tr>
<tr>
<td>Werkstofftechnik (Material Engineering)</td>
<td>47</td>
</tr>
<tr>
<td>Werkstofftechnik</td>
<td>48</td>
</tr>
</tbody>
</table>

Studienabschnitt 2:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW-Modul REE (Mandatory general studies elective module)</td>
<td>50</td>
</tr>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 1</td>
<td>51</td>
</tr>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 2</td>
<td>53</td>
</tr>
<tr>
<td>Bachelorarbeit mit Präsentation (Bachelor Thesis with Presentation)</td>
<td>55</td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>56</td>
</tr>
<tr>
<td>Präsentation der Bachelorarbeit</td>
<td>58</td>
</tr>
<tr>
<td>Bauelemente und Elektronik (Components & Electronics)</td>
<td>59</td>
</tr>
<tr>
<td>Bauelemente und Elektronik</td>
<td>60</td>
</tr>
<tr>
<td>Elektrische Anlagentechnik und Elektsicherheit (Electrical System Technology & Electrical Safety)</td>
<td>62</td>
</tr>
<tr>
<td>Elektrische Anlagentechnik und Elektsicherheit</td>
<td>63</td>
</tr>
<tr>
<td>EMV gerechter Leiterplatten- und Systementwurf</td>
<td>65</td>
</tr>
<tr>
<td>EMV gerechter Leiterplatten- und Systementwurf</td>
<td>66</td>
</tr>
<tr>
<td>Energie- und Umweltrecht, Projektmanagement (Energy and Environmental Legislation, Project Management)</td>
<td>68</td>
</tr>
<tr>
<td>Energie- und Umweltrecht</td>
<td>69</td>
</tr>
<tr>
<td>Projektmanagement</td>
<td>71</td>
</tr>
<tr>
<td>Energiewirtschaft & Energieeffizienz (Energy Economy & Energy Efficiency)</td>
<td>73</td>
</tr>
<tr>
<td>Energiewirtschaft & Energieeffizienz</td>
<td>74</td>
</tr>
<tr>
<td>Finanzierung und Investitionsrechnung (Financing and Investment)</td>
<td>77</td>
</tr>
<tr>
<td>Finanzierung und Investitionsrechnung</td>
<td>78</td>
</tr>
<tr>
<td>Finite Elemente</td>
<td>81</td>
</tr>
<tr>
<td>Finite Elemente</td>
<td>82</td>
</tr>
<tr>
<td>Grundlagen elektrischer Maschinen (Electrical Machines)</td>
<td>84</td>
</tr>
<tr>
<td>Grundlagen elektrischer Maschinen</td>
<td>85</td>
</tr>
<tr>
<td>Leistungselektronik (Power Electronics)</td>
<td>87</td>
</tr>
<tr>
<td>Leistungselektronik</td>
<td>...</td>
</tr>
<tr>
<td>Praktikum Energietechnik 1 (Lab course Energy Engineering 1)</td>
<td>..</td>
</tr>
<tr>
<td>Praktikum Energietechnik 1</td>
<td>..</td>
</tr>
<tr>
<td>Praktikum Energietechnik 2 (Lab course Energy Engineering 2)</td>
<td>..</td>
</tr>
<tr>
<td>Praktikum Energietechnik 2</td>
<td>..</td>
</tr>
<tr>
<td>Praxissemester (Practical Semester)</td>
<td>..</td>
</tr>
<tr>
<td>Praktikum</td>
<td>..</td>
</tr>
<tr>
<td>Präsentation & Moderation</td>
<td>..</td>
</tr>
<tr>
<td>Projektarbeit (Project Work)</td>
<td>..</td>
</tr>
<tr>
<td>Projektarbeit</td>
<td>..</td>
</tr>
<tr>
<td>Regelungstechnik (Control Engineering)</td>
<td>..</td>
</tr>
<tr>
<td>Praktikum Regelungstechnik</td>
<td>..</td>
</tr>
<tr>
<td>Regelungstechnik</td>
<td>..</td>
</tr>
<tr>
<td>Strömungsmaschinen (Fluid Engines)</td>
<td>..</td>
</tr>
<tr>
<td>Strömungsmaschinen</td>
<td>..</td>
</tr>
<tr>
<td>Strömungsmechanik (Fluid Mechanics)</td>
<td>..</td>
</tr>
<tr>
<td>Strömungsmechanik</td>
<td>..</td>
</tr>
<tr>
<td>Thermodynamik (Thermodynamics)</td>
<td>..</td>
</tr>
<tr>
<td>Thermodynamik</td>
<td>..</td>
</tr>
<tr>
<td>Wärmeübertragung (Heat Transfer)</td>
<td>..</td>
</tr>
<tr>
<td>Wärmeübertragung</td>
<td>..</td>
</tr>
</tbody>
</table>

Allgemein ingenieurwissenschaftliches Wahlpflichtmodul

<p>| Antriebstechnik (Electrical Drives) | .. | 130 |
| Antriebstechnik | .. | 131 |
| Apparate- und Rohrleitungsbau (Vessel and Pipe Engineering) | .. | 133 |
| Apparate- und Rohrleitungsbau | .. | 134 |
| Ausgewählte Kapitel der Regelungstechnik (Selected Topics in Control Engineering) | .. | 136 |
| Ausgewählte Kapitel der Regelungstechnik | .. | 137 |
| Hochtemperaturwerkstoffe (High Temperature Materials) | .. | 148 |
| Hochtemperaturwerkstoffe | .. | 149 |
| Java | .. | 151 |
| Java | .. | 152 |
| LabVIEW | .. | 157 |
| LabVIEW | .. | 158 |
| Mathematik 3 (Mathematics 3) | .. | 160 |
| Mathematik 3 | .. | 162 |
| Matlab für Regelungstechnik | .. | 125 |
| Matlab für Regelungstechnik | .. | 126 |
| Optoelektronik, LED- und Lasertechnik (Optoelectronics, LED- & Laser-Technology) | .. | 168 |
| Optoelektronik, LED- & Lasertechnik | .. | 169 |
| Simulationstechniken mit Matlab (Simulation Techniques with MATLAB) | .. | 174 |
| Simulationstechniken mit Matlab | .. | 175 |
| Software Engineering | .. | 177 |
| Praktikum Software Engineering | .. | 179 |
| Software Engineering | .. | 182 |
| Systemsimulation (Systems Simulation) | .. | 188 |
| Systemsimulation | .. | 189 |
| Verbrennungsmotoren (Internal Combustion Engines) | .. | 194 |
| Verbrennungsmotoren | .. | 195 |
| Vertiefung Mess- und Sensortechnik | .. | 127 |
| Vertiefung Mess- und Sensortechnik | .. | 128 |
| Vertiefung Mikrocontrollerotechnik (Advanced Microcontrol Technique) | .. | 198 |
| Vertiefung Mikrocontrollerotechnik | .. | 199 |
| Wireless Sensor Networks | .. | 207 |
| Wireless Sensor Networks | .. | 208 |</p>
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserkraftwerke (Hydropower Plants)</td>
<td>139</td>
</tr>
<tr>
<td>Biomasse (Biomass)</td>
<td>140</td>
</tr>
<tr>
<td>Solarthermie (Solar Thermal Energy)</td>
<td>142</td>
</tr>
<tr>
<td>Elektrische Netztechnik (Electrical Power Systems)</td>
<td>143</td>
</tr>
<tr>
<td>Energiespeicher (Energy Storage)</td>
<td>145</td>
</tr>
<tr>
<td>Kraftwerksanlagen (Power Plant Technology)</td>
<td>146</td>
</tr>
<tr>
<td>Netzplanung und Netzregelung (Network planning and grid control)</td>
<td>148</td>
</tr>
<tr>
<td>Biomas (Biomass)</td>
<td>154</td>
</tr>
<tr>
<td>Kraftwerksanlagen</td>
<td>155</td>
</tr>
<tr>
<td>Photovoltaik (Photovoltaics)</td>
<td>157</td>
</tr>
<tr>
<td>Solarthermie (Solar Thermal Energy)</td>
<td>158</td>
</tr>
<tr>
<td>Transformation der Energiesysteme (Transformation of power systems)</td>
<td>159</td>
</tr>
<tr>
<td>Windenergie (Wind energy)</td>
<td>161</td>
</tr>
<tr>
<td>Transformation der Energiesysteme</td>
<td>162</td>
</tr>
<tr>
<td>Wasserkraftwerke (Hydropower Plants)</td>
<td>164</td>
</tr>
<tr>
<td>Windenergie</td>
<td>166</td>
</tr>
<tr>
<td>Elektrische Netztechnik</td>
<td>168</td>
</tr>
</tbody>
</table>
Modulbezeichnung (ggf. englische Bezeichnung) | Modul-KzBez. oder Nr.
--- | ---
Elektrische Messtechnik (Electrical Measurements) | 10

Modulverantwortliche/r	Fakultät
Prof. Dr. Birgit Rösel | Elektro- und Informationstechnik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2 | 1 | Pflicht | 6

Empfohlene Vorkenntnisse
Grundlagen der Mathematik, Physik und Elektrotechnik (Gleich- und Wechselstromtechnik)

Inhalte
Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

• Einheiten, Maße, logarithmische Maße, Rechengrößen
• Begriffe der Messtechnik (Genauigkeit, Auflösung, Empfindlichkeit, Fehlerarten, Mittelwerte, Übertragungsfunktion und dynamische Messfehler)
• Funktionsprinzip Multimeter, Oszilloskop, Zeit- und Frequenzmessung, Operationsverstärker, A/D-Wandler, Brückenschaltungen in der Messtechnik, Approximation von Messdaten

Fertigkeiten

• Berechnung einfacher messtechnischer Schaltungen inkl. Messunsicherheiten
• Analyse und Berechnung einfacher Operationsverstärkerschaltungen
• Berechnung der Fehlerfortpflanzung und Umgang mit Standardverteilungen
• Aufbau und Betrieb einfacher elektrischer Schaltungen
• Dokumentation des Versuchsablaufs und Aufnehmen von Messdaten
• Bedienung von einfachen Messgeräten (Multimeter, Oszilloskop, ...)

Kompetenzen

• Arbeiten in Gruppen
• Kritisches Auswerten von Messdaten
• Erstellen aussagekräftiger Versuchsprotokolle
Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elektrische Messtechnik</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Elektrische Messtechnik</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
<th>Elektrische Messtechnik</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Lehrende/Dozierende

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, ca. 20% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>

Vor- und Nachbereitung: 45 h
Prüfungsvorbereitung: 19 h

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

1. Einleitung (Einheiten, Maße, Rechengrößen)
2. Messunsicherheit
3. Multimeter
4. Oszilloskope
5. Messverstärker
6. Zeit, Frequenz, Spektrum
7. Messbrücken
8. Übertragungsfunktion und dynamische Messunsicherheiten

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

- Einheiten, Maße, Rechengrößen
- Begriffe der Messtechnik (Genauigkeit, Auflösung, Empfindlichkeit, Fehlerarten, Mittelwerte, Übertragungsfunktion und dynamische Messfehler)
- Grundbegriffe der Messunsicherheiten, Statistik und Fehlerrechnung sowie Datenanalyse im Zeit- und Frequenzbereich
- Funktionsprinzip Multimeter, Oszilloskop, Zeit- und Frequenzmessung, Operationsverstärker, Messverstärker, Messbrücken

Fertigkeiten:

Stand: 17.10.2016
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Elektrische Messtechnik (Electrical Measurements)

- Berechnung einfacher messtechnischer Schaltungen inkl. Messunsicherheiten
- Analyse und Berechnung einfacher Operationsverstärkerschaltungen
- Berechnung der Fehlerfortpflanzung und Umgang mit Standardverteilungen

Kompetenzen:

- Ingenieurmäßige Analyse und Lösung einfacher messtechnischer Fragestellungen.

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Übungen mit Lösungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Rechner / Beamer, e-learning-Plattform, Clicker system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoffmann, Jörg: Taschenbuch der Messtechnik, Hanser-Verlag 2007</td>
</tr>
<tr>
<td>Schrüfer, E.: Elektrische Messtechnik, Hanser-Verlag 2012</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

Praktikum Elektrische Messtechnik

LV-Kurzbezeichnung

PME

Verantwortliche/r

Prof. Dr. Birgit Rösel

Lehrveranstaltung Elektrische Messtechnik (Electrical Measurements)

Studiensemester gemäß Studienplan

Lehrumfang

[Lehrstunde oder Unterrichtseinheit]

Lehrsprache

deutsch

Arbeitsaufwand

[ECTS-Credits]

2

Zeitaufwand:

Präsenzstudium

28 h

Eigenstudium

Vor- und Nachbereitung: 30 h
Prüfungsvorbereitung: 2 h

Inhalte

- Anwendung von elektronischen und messtechnischen Grundlagen mit praktischen Versuchen
- Es werden mehrere Versuche angeboten, die alle erfolgreich durchlaufen werden müssen
- Einführung in die Handhabung des Oszilloskops im Rahmen der Praktikumseinführung

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Funktionsweise einfacher Messgeräte (Multimeter, Oszilloskop, ...)

Fertigkeiten

- Aufbau und Betrieb einfacher elektrischer Schaltungen
- Dokumentation des Versuchsablaufs und Aufnehmen von Messdaten
- Bedienung von einfachen Messgeräten (Multimeter, Oszilloskop, ...)

Kompetenzen
• Arbeiten in Gruppen
• Kritisches Auswerten von Messdaten
• Erstellen aussagekräftiger Versuchsprotokolle

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufgabenstellungen, Datenblätter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Aufgabenstellung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoffmann, Jörg: Taschenbuch der Messtechnik, Hanser-Verlag 2007</td>
</tr>
<tr>
<td>Schrüfer, E.: Elektrische Messtechnik, Hanser-Verlag 2012</td>
</tr>
<tr>
<td>Modulbezeichnung (ggf. englische Bezeichnung)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 1 (Electrical Engineering 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Zulassungsvoraussetzung zur Prüfung GE1 gemäß Studienplan

Inhalte
siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grundlagen der Elektrotechnik 1</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>

Stand: 17.10.2016
Ostbayerische Technische Hochschule Regensburg
Seite 12
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Grundlagen der Elektrotechnik 1 (Electrical Engineering 1)

Lehrveranstaltung	LV-Kurzbezeichnung
Grundlagen der Elektrotechnik 1 | GE1

Verantwortliche/r | Fakultät
Prof. Dr. Heiko Unold | Elektro- und Informationstechnik
Lehrende/Dozierende | Angebotsfrequenz
Prof. Dr. Manfred Bruckmann | nur im Wintersemester
Prof. Dr. Heiko Unold |

Lehrform
Seminaristischer Unterricht, Übungsanteil ca. 15%

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsentenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 84 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 42 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Grundbegriffe zu elektrischen und magnetischen Größen
- Grundlagen Schaltungstechnik und Zweipoltheorie
- Elektrische Energie und Leistung
- Grundlagen Netzwerktheorie
- Lineare und nichtlineare Netzwerke
- Grundlagen der Feldtheorie
- Elektrische Felder
- Stationäre Magnetfelder
- Gefahren und Wirkungen des elektrischen Stroms
- Normen und Prüfzeichen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Vertieftes Verständnis der physikalischen Gesetze
- Kenntnis der Maxwell-Gleichungen in integraler Darstellung
- Verständnis zum Konzept konzentrierter Elemente
- Verständnis zu integralen und verteilten Größen
- Grundlegende Rechenmethoden
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Grundlagen der Elektrotechnik 1 (Electrical Engineering 1)

Stand: 17.10.2016

Ostbayerische Technische Hochschule Regensburg Seite 14

- Kenntnisse über Gefahren bei Umgang mit elektrischem Strom und Schutz gegen elektrischen Schlag

Fertigkeiten

- Analyse linearer und nichtlinearer Schaltungen
- Berechnung typischer Anwendungen mit elektrischen und magnetischen Feldern

Kompetenzen

- Kompetenz zur Anwendung grundlegender Rechenmethoden mit konzentrierten Elementen und Feldgrößen
- Kompetenz zur Anwendung ausgewählter mathematischer Methoden auf Probleme der Feldtheorie und Schaltungstechnik

Angebotene Lehrunterlagen

- Übungen mit Kurz- und Detaillösungen, Arbeitsblätter, Literaturliste

Lehrmedien

- Tafel, Projektor

Literatur

- Büttner: Grundlagen der Elektrotechnik 1; De Gruyter Oldenbourg 2011
- Führer/Heidemann/Nerreter: Grundgebiete der Elektrotechnik; Hanser 2011
- Hagmann: Grundlagen der Elektrotechnik; Aula-Verlag 2013
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Grundlagen der Elektrotechnik 2 (Electrical Engineering 2)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Elektrotechnik 2 (Electrical Engineering 2)</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Pflicht</td>
<td>7 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Grundlagen der Elektrotechnik 1

Inhalte
siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Grundlagen der Elektrotechnik 2</td>
<td>6 SWS</td>
<td>7</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Elektrotechnik 2</td>
<td>GE2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>seminaristischer Unterricht, Übungsanteil ca. 15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 84 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 42 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Zeitlich veränderliches Magnetfeld und Induktion
- Grundlagen Wechselstromtechnik
- Analyse linearer Schaltungen im eingeschwungenen Zustand
- Analyse linearer Systeme 2. Ordnung, Resonanz
- Analyse parasitärer Effekte bei realen Bauelementen
- Dreiphasensysteme
- Grundlagen Transformator
- Beschreibung in Zeit- und Frequenzbereich
- Spektraltransformationen und Fourieranalyse
- Schutzmaßnahmen gegen elektrischen Schlag (Basisschutz, Fehlerschutz, zusätzlicher Schutz)
- Schutz von Kabeln und Leitungen
- Geräte für Schutzmaßnahmen mit automatischer Abschaltung (Auswahl / Einsatz von Sicherungen, Fehlerströme und -arten)
- Personen in elektrischen Anlagen (5 Sicherheitsregeln, Spannungsbereiche, Schutzklassen, IP-Schutzgrad)
Lernziele/Lernergebnisse/Kompetenzen

<table>
<thead>
<tr>
<th>Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Anwendung der komplexen Rechenmethode auf Wechselstromschaltungen</td>
</tr>
<tr>
<td>• Grundlegende Kenntnis von Spektraltransformationen</td>
</tr>
<tr>
<td>• Dreiphasensystem</td>
</tr>
<tr>
<td>• Modellierung idealer und realer Übertrager</td>
</tr>
<tr>
<td>• Kenntnisse über Gefahren bei Umgang mit elektrischem Strom und Schutz gegen elektrischen Schlag</td>
</tr>
<tr>
<td>• Grundkenntnisse einer Elektrofachkraft zum Betrieb elektrischer Anlagen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertigkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Berechnung linearer Schaltungen bei Betrieb mit sinusförmigen Größen</td>
</tr>
<tr>
<td>• Analyse linearer und nichtlinearer Schaltungen bei Betrieb mit nichtsinusförmigen Größen</td>
</tr>
<tr>
<td>• Berechnung typischer Schaltungen im Dreiphasensystem</td>
</tr>
<tr>
<td>• Berechnung typischer Schaltungen mit Übertragern</td>
</tr>
<tr>
<td>• Analyse linearer Systeme 2. Ordnung am Beispiel von Parallel- und Serienresonanz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Beschreibung und Analyse linearer und nichtlinearer Schaltungen im Zeit- und Frequenzbereich</td>
</tr>
<tr>
<td>• Lösung von Problemen durch Betrachtungen im Zeit- und Frequenzbereich</td>
</tr>
</tbody>
</table>

Angebotene Lehrunterlagen

Übungen mit Kurz- und Detaillösungen, Arbeitsblätter, Literaturliste

Lehrmedien

Tafel, Projektor

Literatur

- Büttner: Grundlagen der Elektrotechnik 2; Oldenbourg 2014
- Führer/Heidemann/Nerreter: Grundgebiete der Elektrotechnik; Hanser 2011
- Hagmann: Grundlagen der Elektrotechnik; Aula-Verlag 2013
Modulbezeichnung (ggf. englische Bezeichnung) | Modul-KzBez. oder Nr.
--- | ---
Informatik 1 (Computer Science 1) | 4

Modulverantwortliche/r	Fakultät
Prof. Dr. Jürgen Mottok | Elektro- und Informationstechnik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1 | 1 | Pflicht | 6

Inhalte
- Grundbegriffe der Computertechnik
- Einführung in das Programmieren in C
- Datentypen, Operatoren und Kontrollstrukturen
- Einfache Algorithmen
- Fehlersuche in Programmen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Grundlegende Sprachelemente von C
- Einfache Standardalgorithmen
- Grundlegende Kenntnisse von Entwicklungswerkzeugen und Ausführmodell

Fertigkeiten
- Implementierung von vorliegenden Algorithmen in C
- Verstehen fremder Implementierungen
- Entwurf einfacher eigener Algorithmen
- Verwendung von Debugging-Werkzeugen

Kompetenzen
- Selbständiges Lösen von gering- bis mittelkomplexen Problemen durch Entwerfen von C-Programmen
- Fehlersuche und Behebung an eigenen und fremden C-Programmen

Zugeordnete Lehrveranstaltungen:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Informatik 1</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Informatik 1</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik 1</td>
<td>IN1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fuhrmann</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Peter Jüttner</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Roland Mandl</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Armin Sehr</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung; Übungsanteil 10%</td>
<td></td>
</tr>
</tbody>
</table>

| Ergänzendes Praktikum Informatik 1 | |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 48 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 16 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>
Inhalte
Grundbegriffe der Computertechnik
Einführung in das Programmieren in C
Der Übersetzungsvorgang: Präprozessor, Compiler, Linker
Verwendung des Debuggers
Mehrteilige Programme

Daten
- Deklaration
- Definition
- Datentypen

 Wertebereiche
 Zahldarstellung

- Sichtbarkeit und Lebensdauer

 lokale / globale Variablen
 static

- Konstanten
- Arrays

Operatoren und Ausdrücke

- Wert und Seiteneffekt
- Unäre bzw. Binäre Operatoren
- Ausdrücke
- Bitweise Operatoren
- Logische Operatoren
- Arithmetische Operatoren
- Vergleichsoperatoren

Anweisungen und Kontrollstrukturen

- Ausdrucksanweisung
- Verzweigungen
- Schleifen
- Funktionen und Funktionsaufrufe, Parametermechanismus

Pointer, Dynamische Speicherverwaltung
Strukturen
Standardbibliothek
Präprozessor
Algorithmen

- Zustandsautomaten
- Sortierverfahren
- Zufallszahlen, Monte-Carlo Algorithmen
- Iterative Verfahren
- Rekursion
- Einfache Grafikprogrammierung
- Einfache Verkettete Listen

Dateien

- Formatierte Ein- und Ausgabe
- Zeilenweise Ein- und Ausgabe
- Binäre Ein- und Ausgabe

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse</td>
</tr>
<tr>
<td>Kenntnis der C-Sprachelemente</td>
</tr>
<tr>
<td>• Operatoren und Typen</td>
</tr>
<tr>
<td>• Anweisungen und Kontrollstrukturen</td>
</tr>
<tr>
<td>Verständnis des C-Speichermodells</td>
</tr>
<tr>
<td>Kenntnis einfacher Algorithmen</td>
</tr>
<tr>
<td>Fertigkeiten</td>
</tr>
<tr>
<td>• Umsetzen vorhandener Algorithmen in ein C-Programm</td>
</tr>
<tr>
<td>• Lesen und Verstehen fremder Programme</td>
</tr>
<tr>
<td>• Erstellen einfacher Algorithmen bzw. Anwendung geeigneter Algorithmen</td>
</tr>
<tr>
<td>Kompetenzen</td>
</tr>
<tr>
<td>• Beurteilung der Performance und des Resourcenverbrauchs von Programmen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotete Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript (Informatik für Ingenieure), Programme aus der Vorlesung, Links, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Tafel, Class room response system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Informatik 1 (Computer Science 1)

Lehrveranstaltung

<table>
<thead>
<tr>
<th>Praktikum Informatik 1</th>
<th>LV-Kurzbezeichnung: PIN1</th>
</tr>
</thead>
</table>

Verantwortliche/r

| Prof. Dr. Jürgen Mottok |

Fakultät

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fuhrmann</td>
</tr>
<tr>
<td>Prof. Dr. Peter Jüttner</td>
</tr>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
</tr>
<tr>
<td>Prof. Dr. Roland Mandl</td>
</tr>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
</tr>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
</tr>
<tr>
<td>Prof. Dr. Armin Sehr</td>
</tr>
</tbody>
</table>

Angebotsfrequenz

| jährlich |

Lehrform

Betreutes Praktikum am Computer

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

Programmieraufgaben im Text- und Grafik-Modus mit Fokus auf unterschiedlichen Lernzielen wie z.B.

- Operatoren und Ausdrücke
- Kontrollstrukturen
- Pointer und Vektoren
- Unterprogramme
- Erstellung bzw. Kennenlernen einfacher Algorithmen
- Beherrschung von Entwicklungs- und Fehlersuchwerkzeugen

Anleitung zu: Lösungsfindung, Diskussionsfähigkeit, Zusammenarbeit in der Gruppe
Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Vertiefung der Kenntnis der C-Sprachelemente
 - Operatoren und Typen
 - Anweisungen und Kontrollstrukturen
- Vertiefung des Verständnisses des C-Speichermodells

Fertigkeiten
- Umsetzen vorhandener Algorithmen in ein C-Programm
- gemeinsames Vorbereiten im Team
- Dokumentation (Struktogramme, Kommentare), Präsentation der Ergebnisse, Diskussion kontroverser Lösungsansätze
- Erstellen einfacher Algorithmen bzw. Auswahl und Anwendung geeigneter Algorithmen
- Umgang mit Entwicklungsumgebungen

Kompetenzen
- Beurteilung der Performance und des Resourcenverbrauchs von Programmen
- Kompetenz, die Plausibilität von Programmergebnissen zu beurteilen
- Fehlersuche und -behebung in C-Programmen
- Verständnis für Eigenschaften unterschiedlicher Systemumgebungen (PC Konsole, PC Grafik, Mikrocontroller, mechatronische Systeme (z.B. Lego Mindstorm))
- Einblick in Wichtigkeit nichtfunktionaler Eigenschaften (Wartbarkeit, Entwicklungsaufwand) sowie in Möglichkeiten der Umsetzung

Angebotene Lehrunterlagen
- Aufgabenstellungen, Hilfsprogramme für Grafikausgabe

Lehrmedien
- PCs im CIP-Pool, Entwicklungsumgebungen, Tafel, Beamer, diverse Embedded-Systeme bzw. Lego Mindstorm je nach Aufgabenlage

Literatur
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Informatik 2 (Computer Science 2)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik 2 (Computer Science 2)</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Inhalte

Objektorientierte Programmierung und ihre Umsetzung in der Programmiersprache C++
- Klassen und Objekte
- UML als Beschreibungssprache für objektorientierte Programmentwürfe (insbesondere statische Klassen-Diagramme und dynamische Sequenz-Diagramme, auch State-Diagramme)
- Lebenszyklen von Objekten
- Vererbung und Polymorphie
- Daten kapselung
- Abstrakte Klassen und Abstrakte Methoden
- Exception-Mechanismus
- Umsetzung von Datenstrukturen und Algorithmen in C++
- Referenzen und andere neue Datentypen
- Überladen von Funktionen und Operatoren
- Default-Argumente von Funktionen
- Die C++ Standardbibliothek und der Template-Mechanismus

Grundlegende Themen des Softwareeengineering

- Versionsmanagement in der Softwareentwicklung
- Entwicklung und Umsetzung einfacher Algorithmen
• Design und Implementierungskonzepte mit Rekursison contra Iteration

Lernziele/Lernergebnisse/Kompetenzen

Folgende Kenntnisse werden in diesem Modul erworben:

- Grundlegende Sprachelemente der Sprache C++
- Grundlegende Kenntnisse der Funktionsweise und Bedienung Entwicklungswerkzeugen und Ausführungsmodell
- Vertiefung der Kenntnis der C++-Sprachelemente
- Vertiefung des Verständnisses des C++-Speichermodells
- Versionsmanagement in der Softwareentwicklung

Folgende Fertigkeiten werden in diesem Modul erworben:

- Eigenständige Implementierung von vorliegenden Algorithmen in C++
- Selbständiges Verstehen fremder Implementierungen in C++ anhand des Quellcodes
- Selbständiger Entwurf einfacher objektorientierter Softwarelösungen
- Eigenständige Verwendung von Debugging-Werkzeugen zur Fehlersuche
- Dokumentation (UML Diagramme, Kommentare), Präsentation der selbst entwickelten Softwarelösungen sowie Diskussion kontroverser Lösungsansätze
- Erstellen objektorientierten Software Designs und korrekte Implementierung
- Umgang mit Entwicklungsumgebungen
- Umgang mit moderner Versionsmanagement-Software zur Quellcodeverwaltung und Kollaboration
- Fertigkeit, Objektorientierung in Programmen praktisch anzuwenden
- Einblick in die Wichtigkeit nichtfunktionaler Eigenschaften (Wartbarkeit, Entwicklungsaufwand, minimale Redundanz im Quellcode) sowie in Möglichkeiten der Umsetzung

Folgende fachliche und nichtfachliche Kompetenzen werden in diesem Modul erworben:

- Selbständige Problemanalyse und strukturiertes problemlösendes Denken
- Selbständiges Lösen von gering- bis mittelkomplexen Problemen durch Entwerfen von C++-Programmen
- Selbständige Fehlersuche und Behebung an eigenen und fremden C++-Programmen
- Eigenständiger Entwurf leistungsfähiger, fehlerfreier und robuster C++-Programme
- Beurteilung der Performance und des Resourcenverbrauchs von Programmen
- Beurteilung der Plausibilität von Programmergebnissen

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>Informatik 2</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Informatik 2</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatik 2</td>
<td>IN2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r Fakultät
Prof. Dr. Jürgen Mottok

Lehrende/Dozierende Angebotsfrequenz
Prof. Dr. Roland Mandl jährlich
Prof. Dr. Jürgen Mottok
Prof. Dr. Michael Niemetz

Lehrform
Vorlesung mit 15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 46 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 16 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle
Inhalte

Objektorientierte Programmierung und ihre Umsetzung in der Programmiersprache C++
- Klassen und Objekte
- UML als Beschreibungssprache für objektorientierte Programmentwürfe
- Lebenszyklen von Objekten
- Vererbung und Polymorphie
- Daten kapselung
- Abstrakte Klassen und Methoden
- Exception-Mechanismus
- Umsetzung von Datenstrukturen und Algorithmen in C++
- Referenzen und andere neue Datentypen
- Überladen von Funktionen und Operatoren,
- Defaultargumente von Funktionen
- Die C++ Standardbibliothek und der Templatemechanismus

Grundlegende Themen des Softwareengineering
- Versionsmanagement in der Softwareentwicklung
- Entwicklung und Umsetzung einfacher Algorithmen
- Rekursive Programme

Lernziele/Lernergebnisse/Kompetenzen

Folgende Kenntnisse werden von den Teilnehmern des Kurses erworben:
- Grundlegende Sprachelemente der Sprache C++
- Grundlegende Kenntnisse von Entwicklungswerkzeugen und Ausführungsmodell
- Versionsmanagement in der Softwareentwicklung

Folgende Fertigkeiten werden von den Teilnehmern des Kurses erworben:

- Eigenständige Implementierung von vorliegenden Algorithmen in C++
- Verstehen fremder Implementierungen in C++
- Entwurf einfacher objektorientierter Softwarelösungen
- Verwendung von Debugging-Werkzeugen
- Dokumentation (UML Diagramme, Kommentare), Präsentation der selbst entwickelten Softwarelösungen sowie Diskussion kontroverser Lösungsansätze
- Einblick in die Wichtigkeit nichtfunktionaler Eigenschaften (Wartbarkeit, Entwicklungsaufwand, minimale Redundanz im Quellcode) sowie in Möglichkeiten der Umsetzung

Folgende fachliche und nichtfachliche Kompetenzen werden von den Teilnehmerndes Kurses erworben:

- Eigenständiger Entwurf leistungsfähiger, fehlerfreier und robuster C++-Programme
- Beurteilung der Performance und des Resourcenverbrauchs von Programmen
- Beurteilung der Plausibilität von Programmergebnissen

Angebotene Lehrunterlagen

Skript bzw. Literaturverweise, Praktikumsaufgaben
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Rechner mit Entwicklungsumgebung, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.: C++ für C-Programmierer. 12. Auflage, RRZN-Scripten, Hannover</td>
</tr>
<tr>
<td>Meyers S.: Eektiv C++ programmieren. 3. Aufl., Addison-Wesley (2008)</td>
</tr>
<tr>
<td>Stroustrup B.: Die C++-Programmiersprache. 4. Aufl., Addison-Wesley (2009)</td>
</tr>
<tr>
<td>Dattatri, Kayshav: C++: Eective Object-Oriented Software Construction</td>
</tr>
<tr>
<td>Jürgen Wolf, Grundkurs C++, Galileo Computing</td>
</tr>
<tr>
<td>Jürgen Wolf, C++ Das umfassende Handbuch, Galileo Computing</td>
</tr>
<tr>
<td>Stanley B. Lippman, Josée Lajoie, Barbara E. Moo: C++ Primer, Addison Wesley</td>
</tr>
<tr>
<td>Andrew Koenig, Barbara E. Moo: Accelerated C++, Addison Wesley</td>
</tr>
<tr>
<td>Richard M. Reese: Understanding and Using C Pointers, O'Reilly</td>
</tr>
<tr>
<td>Lippmann S.B., Lajoie, J.: C++ Primer, mitp</td>
</tr>
<tr>
<td>Breymann U.: Der C++ Programmierer, Hanser</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
--- | ---
Praktikum Informatik 2 | PIN2

Verantwortliche/r | Fakultät
Prof. Dr. Jürgen Mottok

Lehrende/Dozierende | Angebotsfrequenz
Prof. Dr. Roland Mandl
Prof. Dr. Jürgen Mottok
Prof. Dr. Michael Niemetz

Lehrform
Praktikum an Rechnerarbeitsplätzen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>2</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
Objektorientierte Programmierung und ihre Umsetzung in der Programmiersprache C++
- Klassen und Objekte
- UML als Beschreibungssprache für objektorientierte Programmentwürfe
- Lebenszyklen von Objekten
- Vererbung und Polymorphie
- Datenkapselung
- Abstrakte Klassen und Methoden
- Exception-Mechanismus
- Umsetzung von Datenstrukturen und Algorithmen in C++
- Referenzen und andere neue Datentypen
- Überladen von Funktionen und Operatoren,
- Defaultargumente von Funktionen
- Die C++ Standardbibliothek und der Templatemechanismus

Grundlegende Themen des Softwareengineerings
- Versionsmanagement in der Softwareentwicklung
- Entwicklung und Umsetzung einfacher Algorithmen
- Rekursive Programme
Lernziele/Lernergebnisse/Kompetenzen

Folgende Kenntnisse werden von den Teilnehmern des Kurses erworben:

- Grundlegende Kenntnisse der Funktionsweise und Bedienung Entwicklungswerkzeugen und Ausführungsmodell
- Vertiefung der Kenntnis der C++-Sprachelemente
- Vertiefung des Verständnisses des C++-Speichermodells
- Versionsmanagement in der Softwareentwicklung

Folgende Fertigkeiten werden von den Teilnehmern des Kurses erworben:

- Eigenständige Implementierung von vorliegenden Algorithmen in C++
- Selbständiges Verstehen fremder Implementierungen in C++ anhand des Quellcodes
- Selbständiger Entwurf einfacher objektorientierter Softwarelösungen
- Eigenständige Verwendung von Debugging-Werkzeugen zur Fehlersuche
- Dokumentation (UML Diagramme, Kommentare), Präsentation der selbst entwickelten Softwarelösungen sowie Diskussion kontroverser Lösungsansätze
- Erstellen objektorientierten Software Designs und korrekte Implementierung
- Umgang mit Entwicklungsumgebungen
- Umgang mit moderner Versionsmanagement-Software zur Quellcodeverwaltung und Kollaboration
- Fertigkeit, Objektorientierung in Programmen praktisch anzuwenden
- Einblick in die Wichtigkeit nichtfunktionaler Eigenschaften (Wartbarkeit, Entwicklungsaufwand, minimale Redundanz im Quellcode) sowie in Möglichkeiten der Umsetzung

Folgende fachliche und nichtfachliche Kompetenzen werden von den Teilnehmern des Kurses erworben:

- Selbständige Problemanalyse und strukturiertes problemlösendes Denken
- Selbständiges Lösen von gering- bis mittelkomplexen Problemen durch Entwerfen von C++-Programmen
- Selbständige Fehlersuche und Behebung an eigenen und fremden C++-Programmen
- Eigenständiger Entwurf leistungsfähiger, fehlerfreier und robuster C++- Programme
- Beurteilung der Performance und des Resourcenverbrauchs von Programmen
- Beurteilung der Plausibilität von Programmergebnissen

Angebotene Lehrunterlagen

Praktikumsaufgaben, Programmrümpfe, Zusatzanleitungen

Lehrmedien

Rechner mit Entwicklungsumgebung, ggf. Tafel, Beamer
Literatur

N.N.: C++ für C-Programmierer. 12. Auflage, RRZN-Scripten, Hannover
Meyers S.: Eaktiv C++ programmieren. 3. Aufl., Addison-Wesley (2008)
Stroustrup B.: Die C++-Programmiersprache. 4. Aufl., Addison-Wesley (2009)
Dattatri, Kayshav: C++: Eective Object-Oriented Software Construction
Jürgen Wolf, Grundkurs C++, Galileo Computing
Jürgen Wolf, C++ Das umfassende Handbuch, Galileo Computing
Stanley B. Lippman, Josée Lajoie, Barbara E. Moo: C++ Primer, Addison Wesley
Andrew Koenig, Barbara E. Moo: Accelerated C++, Addison Wesley
Richard M. Reese: Understanding and Using C Pointers, O'Reilly
Lippmann S.B., Lajoie, J.: C++ Primer, mitp
Breymann U.: Der C++ Programmierer, Hanser
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1 (Mathematics 1)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 1</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1</td>
<td>MA1</td>
</tr>
</tbody>
</table>

Verantwortliche/r

- Prof. Dr. Wolfgang Lauf
- Dr. Gerhard Dietel (LB)
- Detlef Gröger (LB)
- Oliver Hien (LB)
- Prof. Dr. Georg Illies
- Prof. Dr. Wolfgang Lauf
- Prof. Dr. Dietwald Schuster

Fakultät

Angebotsfrequenz

- jährlich

Lehrform

- Seminaristischer Unterricht: ca. 20 % Übungsanteil

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1</td>
<td>6 SWS</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 68 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 28 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

- siehe Studienplantabelle
Inhalte

Grundlagen
- Mengen, Folgen, Reihen, Funktionen

Eindimensionale Differentialrechnung
- Ableitung elementarer Funktionen
- Differentiationsregeln
- Kurvendiskussion

Eindimensionale Integralrechnung
- Flächeninhalt und bestimmtes Integral
- Stammfunktion und unbestimmtes Integral
- Integrationsmethoden
- Uneigentliche Integrale

Reelle Vektorräume
- Vektorbegriff
- Lineare Zusammenhänge
- Betrag, Abstand, Skalarprodukt, Vektorprodukt

Matrizen und Determinanten
- Matrizenarithmetic
- Quadratische Matrizen
- Rang, Determinante
- Eigenwerte und Eigenvektoren

Lineare Gleichungssysteme
- Zeilenstufenform
- Lösungsraum

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
Kenntns grundlegender Begriffe, Festlegungen und Beispiele der
- eindimensionalen reellen Analysis: z.B. Grenzwert, Folge, Ableitung, Integral
- linearen Algebra: z.B. Vektor, Matrix, lineares Gleichungssystem

Übersicht über wesentliche Regeln und Methoden der
- eindimensionalen reellen Analysis: z.B. Differentiationsregeln, Integrationsmethoden
- linearen Algebra: z.B. Matrizenrechnung, Determinanten-, Eigenwertberechnung

Lösungsverfahren linearer Gleichungssysteme

Fertigkeiten
- Korrekte Anwendung wesentlicher Konvergenzkriterien bei Folgen und Reihen
• Beherrschung der Differentiationsregeln einer Veränderlichen
• Korrekte Anwendung wesentlicher Integrationsmethoden einer Veränderlichen
• Beherrschung der Matrizenrechnung, Rang- und Determinantenberechnung
• Sichere Bestimmung von Eigenwerten und -vektoren
• Beherrschung von grundlegenden Verfahren zur Lösung linearer Gleichungssysteme

Kompetenzen

• Sichere Konvergenzanalyse bei Folgen und Reihen
• Zielführender Einsatz der Differentialrechnung zur Diskussion des Verhaltens von reellen Funktionen einer Veränderlichen
• Nutzung der Integralrechnung zur Berechnung geometrischer Größen und zur Analyse reeller Funktionen einer Veränderlichen
• Kompetenz zum Einsatz des Matrizenkalküls und von Matrixkenngrößen bei linearen Zusammenhängen
• Grundlegende Analyse von Eigenräumen
• Sichere Analyse des Lösungsraums linearer Gleichungssysteme

Angebotene Lehrunterlagen

Übungen, Literaturliste

Lehrmedien

Overheadprojektor, Tafel, Rechner, Beamer, Mathematische Software

Literatur

Stewart, J.: Calculus, Cengage Learning Services, 2014
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Inhalte
siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 2</td>
<td>6 SWS</td>
<td>6</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematik 2</td>
<td>MA2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Dr. Gerhard Dietel (LB)</td>
<td>jährlich</td>
</tr>
<tr>
<td>Detlef Gröger (LB)</td>
<td></td>
</tr>
<tr>
<td>Oliver Hien (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Georg Illies</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Dietwald Schuster</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht: ca. 20 % Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 68 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 28 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
<tr>
<td>Inhalte</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Komplexe Zahlen</td>
</tr>
<tr>
<td>- Normal-, Polar- und Exponentialform</td>
</tr>
<tr>
<td>- Arithmetik</td>
</tr>
<tr>
<td>- Geometrische Interpretation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potenzreihen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Konvergenzverhalten</td>
</tr>
<tr>
<td>- Methoden der Potenzreihenentwicklung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Komplexe Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Definition und geometrische Deutung</td>
</tr>
<tr>
<td>- Exponentialfunktion und verwandte Funktionen</td>
</tr>
<tr>
<td>- Logarithmus und allgemeine Potenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differential- und Integralrechnung mehrerer Veränderlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Funktionen mit mehreren Variablen</td>
</tr>
<tr>
<td>- Partielle Differentiation und totales Differential</td>
</tr>
<tr>
<td>- Anwendungen</td>
</tr>
<tr>
<td>- Lokale und globale Extremwerte</td>
</tr>
<tr>
<td>- Mehrfachintegrale</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gewöhnliche Differentialgleichungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Anfangswert- und Randwertprobleme</td>
</tr>
<tr>
<td>- Differentialgleichungen 1. Ordnung</td>
</tr>
<tr>
<td>- Numerische Lösungsverfahren</td>
</tr>
<tr>
<td>- Lineare Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten</td>
</tr>
<tr>
<td>- Differentialgleichungen höherer Ordnung</td>
</tr>
<tr>
<td>- Differentialgleichungssysteme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse</td>
</tr>
<tr>
<td>- Kenntnis grundlegender Begriffe, Festlegungen und Beispiele der</td>
</tr>
<tr>
<td>- Komplexen Analysis: z.B. Darstellungsformen komplexer Zahlen, elementare Funktionen, Potenzreihen</td>
</tr>
<tr>
<td>- mehrdimensionalen reellen Analysis: z.B. Ableitungsbegriffe</td>
</tr>
<tr>
<td>- gewöhnlichen Differentialgleichungen: z.B. Kategorisierung gewöhnlicher Differentialgleichungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertigkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sicheres Rechnen mit komplexen Zahlen und elementaren komplexen Funktionen</td>
</tr>
<tr>
<td>- Sichere geometrische Veranschaulichung komplexer Zahlen und elementarer komplexer Funktionen</td>
</tr>
<tr>
<td>- Korrekte Bestimmung der Koeffizienten und Konvergenzradien einfacher Potenzreihen</td>
</tr>
<tr>
<td>- Sichere Berechnung von partiellen und totalen Ableitungen</td>
</tr>
<tr>
<td>- Korrekte Anwendung wesentlicher Integrationsmethoden bei Mehrfachintegralen</td>
</tr>
</tbody>
</table>
- Korrekter Einsatz von Lösungsmethoden für gewöhnliche Differentialgleichungen

Kompetenzen
- Sicherer Umgang mit komplexen Zahlen und elementaren komplexen Funktionen in arithmetischer und geometrischer Hinsicht
- Entwicklung von einfachen Funktionen in Potenzreihen
- Zielführender Einsatz der Differentialrechnung zur Diskussion des Verhaltens von reellen Funktionen mehrerer Veränderlicher (u.a. Extremwerte)
- Einsatz von Mehrfachintegralen zur Berechnung geometrischer Größen
- Analyse des Lösungsraums einfacher gewöhnlicher Differentialgleichungen

Angebotene Lehrunterlagen
- Übungen, Literaturliste

Lehrmedien
- Overheadprojektor, Tafel, Rechner, Beamer, Mathematische Software

Literatur
- Stewart, J.: Calculus, Cengage Learning Services, 2014
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik & Chemie (Physics & Chemistry)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Schulmathematik: Differentialrechnung, Integralrechnung, Vektorrechnung

Inhalte

Siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen

Siehe Veranstaltung

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physik & Chemie</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
---|---
Physik & Chemie | PC

Verantwortliche/r	Fakultät
Prof. Dr. Peter Bickel | Allgemeinwissenschaften und Mikrosystemtechnik
Lehrende/Dozierende | Angebotsfrequenz
---|---
Prof. Dr. Peter Bickel | jährlich
Rita Elrod

Lehrform

Seminaristischer Unterricht mit 10% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium

<table>
<thead>
<tr>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>

Vor- und Nachbereitung: 70 h
Prüfungsvorbereitung: 24 h

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Mechanik: Kinematik, Kräfte, Impuls, Potentiale, Energie, Harmonische Schwingungen
- Elemente der Wärmelehre: Allg. Gasgleichung, Wärmeleistung, Strahlung, Licht
- Chemie: Gleichgewichtsreaktionen, Chemisches Gleichgewicht, Massenwirkungsgesetz, Massen- und Stoffbilanzen, pH-Wert
- Elektrochemie: Redoxreaktionen, Spannungsreihen, Standardpotenziale, Nernstische Gleichung, Faradaysche Gesetze, Elektrolyse, Batterien, Korrosion
- Optik: Planck'sches Strahlungsgesetz, Schwarzer Strahler, Emission, Absorption von Strahlung
- Geometrische Optik: Brechung, Reflexion, Spiegel, Hohlspiegel, Parabolspiegel, Wellenoptik, Wellentheorie, Wellenausbreitung (Wanderwellen)

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Grundkenntnisse und Methoden der klassischen Physik
- Kenntnisse physikalischer Erhaltungsgrößen (Energie)
- Kenntnis der Grundlagen der Chemie und Elektrochemie
- Kenntnis der Grundlagen elektromagnetischer Strahlung und der geometrischen Optik sowie Wellenoptik, Wellentheorie und Wellenausbreitung
• Überblick über verschiedenen physikalische Energieformen und deren Umrechnung ineinander

Kompetenzen
• Kompetenz in Beschreibung mechanischer Systeme mit math. Methoden
• Kompetenz in der Anwendung der Grundgesetze der Elektrochemie
• Kompetenz in der Anwendung der Grundlagen der Wellentheorie

Angebotene Lehrunterlagen
Skript, Übungsaufgaben auf dem K-Laufwerk

Lehrmedien
Tafel, Rechner / Beamer

Literatur
F. Kuypers: "Physik für Ingenieure", Band 1/2: Mechanik und Thermodynamik, Wellen VCH
Dobrinsky

Krakau, Vogel: "Physik für Ingenieure", Teubner

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Mechanik (Mechanical Engineering)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Inhalte

Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Technische Mechanik</td>
<td>6 SWS</td>
<td>6</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Mechanik</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Armin Merten</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, Übungen (ca. 25%-30% Übungsanteil)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 64 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

Stereo- und Elastostatik:

- Grundbegriffe, grundlegende Axiome und Prinzipien, Schnittpunkt.
- Kraftsysteme am Starren Körper, Kraftmittelpunkt, Schwerpunkt.
- Gleichgewicht.
- Auflager- und Gelenkreaktionen ebener Tragwerke.
- Schnittreaktionen in Seilen, Stäben, Balken, Rahmen und Bögen.
- Coulomsche Reibung.

Elastostatik:

- Spannungen, Verformungen, Verzerrungen, Hookesches Materialgesetz.
- Spannungen und Verformungen bei Zug-Druck-Belastung.
- Wärmedehnung und Wärmeausdehnung.
- Spannungen und Verformungen bei gerader Biegung, Scherung und Torsion gerader Bauteile sowie Torsion dünnwandiger, geschlossener Profile.
- Statisch unbestimmte Systeme.
- Spannungsfreiheit und Festigkeitshypothesen.
- Stabilitätsprobleme, Knickung von Stäben.

Kinematik:

- geradlinige und allgemeine Bewegung eines Punktes.
- allgemeine Bewegung des Starren Körpers.
- gekoppelte Bewegung von Systemen Starren Körper, Zwangsbedingungen.
- Kinematik der Relativbewegung.

Kinetik:

- dynamisches Grundgesetz.
- Impulssatz, Drallsatz, Arbeitssatz und Energiesatz für den Massepunkt.
- Rotation des Starren Körpers, Massenträgheitsmomente.
- Impulssatz, Drallsatz, Arbeitssatz und Energiesatz für den Starren Körper.
- Prinzip von d’Alembert.
- Einführung in die mechanischen Schwingungen.

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnis der Grundprinzipien der Stereo- und Elastostatik, der Bewegung von Massenpunkten und Starren Körpern.
- Kenntnis der Anwendungsgrenzen durch vereinbarte Annahmen und Voraussetzungen.

Fertigkeiten

- Fertigkeit zur Bildung einfacher statischer Ersatzmodelle und zur Ermittlung unbekannter Größen (z.B. Auflager- und Schnittreaktionen) aus den Gleichgewichtsbedingungen.
- Fertigkeit zur Auslegung und Nachrechnung der Dimensionierung, Deformation und Festigkeit einfacher, statisch beanspruchter Strukturen.
- Fertigkeit zur Behandlung dynamischer Probleme durch Formulierung und Lösung der kinematischen und kinetischen Grundgleichungen.
Kompetenzen
- Kompetenz zur Anwendung der aufgezeigten Lösungswege bei der Entwicklung und Auslegung von Anlagen für regenerative Energien

Angebotene Lehrunterlagen
- Vorlesungsbegleitende Unterlagen, Übungsaufgaben, Literaturliste

Lehrmedien
- Tafel, Overhead, Beamer, einfache Anschauungsstücke

Literatur
- Hahn: Technische Mechanik, Hanser-Verlag, 1992

Weitere Informationen zur Lehrveranstaltung
- Hahn: Technische Mechanik, Hanser-Verlag, 1993
- Gross, Hauger, Schröder, Wall: Technische Mechanik, Springer-Verlag, 2013
- Holzmann, Mayer, Schumpich: Technische Mechanik, Springer-Verlag, 2014
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstofftechnik (Material Engineering)</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfram Wörner</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Folgeseite</td>
</tr>
</tbody>
</table>

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Werkstofftechnik</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
<th>WTK</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Name</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfram Wörner</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Otto Appel</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Elisabeth Beer</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Joachim Hammer</td>
<td></td>
</tr>
<tr>
<td>Andreas Hüttnner</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Ulf Noster</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Wolfram Wörner</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, 5-10% Übungen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6 SWS</td>
<td>deutsch 6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 80 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 16 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Grundlagen der Werkstoffkunde
- Aufbau von Werkstoffen
- Mechanismen zur Festigkeitssteigerung
- Eigenschaften von Werkstoffen (elektrisch, thermisch, magnetisch, optisch)
- Grundlagen der Legierungsbildung
- Das Eisen-Kohlenstoff-Diagramm
- Die Wärmebehandlung der Stähle
- Die Zeit-Temperatur-Umwandlungsschaubilder
- Die normgerechte Werkstoffbezeichnung
- Aluminium-Werkstoffe
- Beschreibung der wichtigsten Verfahren zur Fertigung von Kunststoffprodukten
Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnis des Aufbaus und der Besonderheiten von Werkstoffen
- Kenntnis der Manipulierbarkeit der Werkstoffeigenschaften

Fertigkeiten
- Fertigkeit zur Verknüpfung von Struktur mit Werkstoffeigenschaften
- Fertigkeit, die Eignung von Werkstoffen für bestimmte Anwendungsfälle zu beurteilen

Kompetenzen
- Kompetenz, Werkstoffe unter technischen, wirtschaftlichen und ökologischen Gesichtspunkten auszuwählen und einzusetzen

Angebotene Lehrunterlagen

- Skript, Übungen, Literaturliste, Veröffentlichungen, Videos

Lehrmedien

- Overheadprojektor, Tafel, Rechner / Beamer

Literatur

- Bargel, Schulze: Werkstoffkunde, Springer Verlag, 2013
- Werkstoffkunde für Bachelors, J.Reissner, Carl Hanser Verlag, 2010
- Material Science and Engineering, Callister, Wiley-VCH, 2014
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: AW-Modul REE (Mandatory general studies elective module)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW-Modul REE (Mandatory general studies elective module)</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

I.d.R. keine
(Ausnahme bspw. höhere Sprachkurse oder Fächer von aufeinander aufbauenden Zusatzausbildungen)

Empfohlene Vorkenntnisse

I.d.R. keine
(Ausnahme bspw. höhere Sprachkurse oder Fächer von aufeinander aufbauenden Zusatzausbildungen)

Inhalte

Je nach Kurs

Lernziele/Lernergebnisse/Kompetenzen

Je nach Kurs

Orientierungswissen: Horizont erweitern, fachliches Wissen außerhalb des Fachstudiums erwerben
Soft Skills: persönliche, soziale und methodische Kompetenzen erwerben Sprachen: Fremdsprachen verstehen, sprechen, schreiben

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 1</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 2</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtfach 1</td>
<td>AW1</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Gabriele Blod</th>
</tr>
</thead>
</table>

Fakultät

| Allgemeinwissenschaften und Mikrosystemtechnik |

Lehrende/Dozierende

<table>
<thead>
<tr>
<th>N.N.</th>
</tr>
</thead>
</table>

Angebotsfrequenz

| in jedem Semester |

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 24 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 8 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

Je nach Kurs

Lernziele/Lernergebnisse/Kompetenzen

Je nach Kurs:

- Orientierungswissen: Horizont erweitern, fachliches Wissen außerhalb des Fachstudiums erwerben
- Soft Skills: persönliche, soziale und methodische Kompetenzen erwerben
- Sprachen: Fremdsprachen verstehen, sprechen, schreiben

Angebotene Lehrunterlagen

Je nach Kurs

Lehrmedien

| Overheadprojektor, Tafel, Rechner / Beamer |

Literatur

Je nach Kurs
Weitere Informationen zur Lehrveranstaltung
Verantwortlich für das AW-Angebot: Prof. Dr. Gabriele Blod
Verantwortlich für das Sprachenangebot: Prof. Dr. Katherine Gürtler
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>2 ECTS-Credits</td>
</tr>
<tr>
<td>5</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 24 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 8 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

- siehe Studienplantabelle

Inhalte

Je nach Kurs

Lernziele/Lernergebnisse/Kompetenzen

- Orientierungswissen: Horizont erweitern, fachliches Wissen außerhalb des Fachstudiums erwerben
- Soft Skills: persönliche, soziale und methodische Kompetenzen erwerben
- Sprachen: Fremdsprachen verstehen, sprechen, schreiben

Angebotene Lehrunterlagen

- Je nach Kurs

Lehrmedien

- Overheadprojektor, Tafel, Rechner / Beamer

Literatur

- Je nach Kurs
Weitere Informationen zur Lehrveranstaltung
Verantwortlich für das AW-Angebot: Prof. Dr. Gabriele Blod
Verantwortlich für das Sprachenangebot: Prof. Dr. Katherine Gürtler
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Bachelorarbeit mit Präsentation (Bachelor Thesis with Presentation)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit mit Präsentation (Bachelor Thesis with Presentation)</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>Pflicht</td>
<td>15 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

siehe SPO

Empfohlene Vorkenntnisse

Alle Module des Studiums

Inhalte

- Selbstständige ingenieurmäßige Bearbeitung eines praxisorientierten Projekts
- theoretische, konstruktive experimentelle Aufgabenstellung mit ausführlicher Beschreibung und Erläuterung ihrer Lösung
- Aufbereitung und Dokumentation der Ergebnisse in wissenschaftlicher Form
- Aufbereitung und Präsentation der Ergebnisse der Bachelor-Arbeit

Lernziele/Lernergebnisse/Kompetenzen

Fertigkeiten

- Fertigkeit, sowohl fachliche Einzelheiten als auch fachübergreifende Zusammenhänge zu verstehen
- Fertigkeit, die Ergebnisse nach wissenschaftlichen und fachpraktischen Anforderungen aufzubereiten und zu dokumentieren
- Fertigkeit, die Ergebnisse der Bachelor-Arbeit, ihre fachlichen Grundlagen und ihre fachübergreifenden Zusammenhänge mündlich darzustellen, zu präsentieren und selbständig zu begründen

Kompetenzen

- Kompetenz ein größeres Projekts innerhalb einer vorgegeben Frist selbständig zu bearbeiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bachelorarbeit</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>Präsentation der Bachelorarbeit</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit</td>
<td>BA</td>
</tr>
</tbody>
</table>

Verantwortliche/r Fakultät
- Prof. Dr. Michael Niemetz Elektro- und Informationstechnik
- Lehrende/Dozierende Angebotsfrequenz
- Betreuender Professor in jedem Semester

Lehrform
Selbstständige ingenieurmäßige Bearbeitung eines praxisorientierten Projekts unter Anleitung

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>deutsch</td>
<td>12</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium
- Eigenstudium 360 h

Studien- und Prüfungsleistung
schriftliche Bachelorarbeit

Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte
- Selbstständige ingenieurmäßige Bearbeitung eines praxisorientierten Projekts
- theoretische, konstruktive experimentelle Aufgabenstellung mit ausführlicher Beschreibung und Erläuterung ihrer Lösung
- Aufbereitung und Dokumentation der Ergebnisse in wissenschaftlicher Form

Lernziele/Lernergebnisse/Kompetenzen

Fertigkeiten
- Fertigkeit, sowohl fachliche Einzelheiten als auch fachübergreifende Zusammenhänge zu verstehen
- Fertigkeit, die Ergebnisse nach wissenschaftlichen und fachpraktischen Anforderungen aufzubereiten und zu dokumentieren

Kompetenzen
- Kompetenz, ein größeres Projekt innerhalb einer vorgegebenen Frist selbständig zu bearbeiten

Angebotene Lehrunterlagen

Lehrmedien

Literatur

Samac K., Prenner M., Schwetz H.: Die Bachelorarbeit an Universität und Fachhochschule, facultas wuv, 2008
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentation der Bachelorarbeit</td>
<td>BP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Betreuender Professor</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbstständige ingenieurmäßige Präsentation eines praxisorientierten Projekts unter Anleitung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorbereitung der Bachelorarbeitspräsentation: 90 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Mündlicher Prüfungsvortrag (max. 45 Minuten)

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte

Aufbereitung und Präsentation der Ergebnisse der Bachelorarbeit

Lernziele/Lerneergebnisse/Kompetenzen

Kompetenz, die Ergebnisse der Bachelorarbeit, ihre fachlichen Grundlagen und ihre fachübergreifenden Zusammenhänge mündlich darzustellen, zu präsentieren und selbständig zu begründen

Angebotene Lehrunterlagen

Lehrmedien

Literatur

Samac K., Prenner M., Schwetz H.: Die Bachelorarbeit an Universität und Fachhochschule, facultas wuv, 2008
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Bauelemente und Elektronik (Components & Electronics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauelemente und Elektronik (Components & Electronics)</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christian Schimpfle</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Mathematik 1; Mathematik 2; Grundlagen der Elektrotechnik 1; Grundlagen der Elektrotechnik 2

Inhalte

- Grundlagen elektronischer Bauelemente
- Einführung in die Schaltungstechnik
- Grundlagen der analogen Elektronik

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Grundkenntnisse der Halbleiterbauelemente und Analogschaltungstechnik

Fertigkeiten

- Fertigkeit, einfache Analogschaltungen zu analysieren

Kompetenzen

- Kompetenz zur Schaltungssynthese und zur Auswahl geeigneter Komponenten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bauelemente und Elektronik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
--- | ---
Bauelemente und Elektronik | BEK

Verantwortliche/r	Fakultät
Prof. Dr. Christian Schimpfle |

Lehrende/Dozierende	Angebotsfrequenz
Prof. Dr. Mathias Bischoff | jährlich
Prof. Dr. Christian Schimpfle |

Lehrform
Seminaristischer Unterricht, 10-15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
56 h | Vor- und Nachbereitung: 56 h
Prüfungsvorbereitung: 38 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
• Zweitorübertragungsfunktionen
• Verstärker
• Dioden, Solarzelle
• Bipolartransistor
• Feldeffekttransistoren
• Leistungselektronische Bauelemente
• Analogle Transistorenschaltungen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
• Grundkenntnisse der Zweitortheorie, Übertragungsfunktion, Frequenzverhalten, Bode-Diagramm
• Kenntnis der Eigenschaften von Operationsverstärkern und einfacher Operationsverstärkerschaltungen
• Grundkenntnisse der Halbleiterphysik
• Kenntnis der Bauelemente Diode, Photodiode, Solarzelle, Bipolartransistor, MOS- und Sperrschichtfeldeffekttransistor, Leistungs-MOSFET, IGBT
• Kenntnis der Transistorgrundschaltungen und einfacher Transistorverstärkerschaltungen
Fertigkeiten

- Groß- und Kleinsignalanalyse von Operationsverstärkerschaltungen und Filtern
- Interpretation von Datenblättern von Halbleiterbauelementen
- Analyse von Transistorschaltungen

Kompetenzen

- Entwurf einfacher Operationsverstärkerschaltungen
- Entwurf einfacher aktiver Filterschaltungen
- Beurteilung und Auswahl geeigneter Bauelemente für diskrete Analogschaltungen

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Skript, Übungsaufgaben, Datenblätter</th>
</tr>
</thead>
</table>

Lehrmedien

<table>
<thead>
<tr>
<th>Beamer, Tafel</th>
</tr>
</thead>
</table>

Literatur

Weitere Informationen zur Lehrveranstaltung

Im WiSe 2016/2017 neu: Brückenkurs Elektronik

Vertiefung der in der Lehrveranstaltung "Bauelemente und Elektronik" bzw. "Elektronik 1" vermittelten Inhalte durch die Durchsprache von Übungsaufgaben. Die Teilnahme ist freiwillig, aber insbesondere Prüfungswiederholern sehr empfohlen (Ansprechpartner: Prof. Rösel)
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Anlagentechnik und Elektrosicherheit (Electrical System Technology & Electrical Safety)</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Grundlagen elektrischer Maschinen

Inhalte

Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elektrische Anlagentechnik und Elektrosicherheit</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Elektrische Anlagentechnik und Elektrosicherheit (Electrical System Technology & Electrical Safety)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Anlagentechnik und Elektrosicherheit</td>
<td>EAT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit 10-15 % Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>84 h</td>
<td>Vor- und Nachbereitung: 82 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 44 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Grundlagen der Wechselstrom- und Gleichstrom-Schalttechnologien
- Aufbau und Funktionsweise von Leistungsschaltern und Schaltanlagen
- Aufbau von Kondensatoren und Drosseln
- Aufbau und Funktionsweise von Kompensationsanlagen, Aktivfiltern und FACTS
- Aufbau und Funktionsweise von Umspannwerken und HGÜ-Stationen
- Aufbau und Funktionsweise von Stufenschaltern und Transformatorenregelung
- Grundlagen des Personenschutzes
- Netzformen für Niederspannungsnetze
- Aufbau und Wirkungsweise von Schutzeinrichtungen und -geräten
- Grundlagen des Arbeitsschutzrechtes
- Normierung und Standardisierung

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnisse über die Physik und Technologie der Schalttechnologien
- Kenntnisse über die verschiedenen Anlagen und Schutzeinrichtungen in der Stromversorgung
- Kenntnisse über Gefahren und Sicherheit bei Umgang mit Strom

Fertigkeiten

Stand: 17.10.2016
Ostbayerische Technische Hochschule Regensburg
Seite 63
• Analytisches Verstehen von Schaltungen in der Anlagentechnik
• Erklärung von Schaltvorgängen
• Erklärung der Funktionsweise der verschiedenen elektrischen Anlagen und deren Regelung/Betrieb
• Korrekte Auswahl von Schutzschalteinrichtungen

Kompetenzen
• Projektierung von elektrischen Anlagen in Grundzügen
• Einschätzung der Lösungsmöglichkeiten durch elektrische Anlagen zur Erfüllung einer stabilen und qualitativ hochwertigen Stromversorgung

Angebotene Lehrunterlagen
Skript, Präsentationsunterlagen und Übungen

Lehrmedien
Tafel, Rechner / Beamer

Literatur
www.baua.de
Kiefer, G.; Schmolke, H.: VDE 0100 und die Praxis, VDE-Verlag, 2014
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMV gerechter Leiterplatten- und Systementwurf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7</td>
<td>2</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
--

Empfohlene Vorkenntnisse
Umgang mit Matlab, LTSpice, HFSS (FEM Feldsimulationen), Eagle (PCB Layout) hilfreich aber nicht zwingend notwendig

Inhalte
siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen
siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EMV gerechter Leiterplatten- und Systementwurf</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Name des Studiengangs:</th>
<th>Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname:</td>
<td>EMV gerechter Leiterplatten- und Systementwurf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMV gerechter Leiterplatten- und Systementwurf</td>
<td>ELE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td></td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 42 h Prüfungsvorbereitung: 22 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Grundlagen der EMV
- Planung der EMV beim System und auf der Leiterplatte (PCB)
- EMV-Ersatzschaltbilder von Bauelementen
- Design-Regeln: Allgemeine, für Digital- und Analogschaltungen
- EMV Maßnahmen im PCB-Layout (Masse- und Signalstrukturen, Abblockung)
- Anwendung von Feldsimulationen zur Analyse von Verkopplungen
- Schaltungssimulationen zur EMV Optimierung (LTSpice)
- Systemberechnungen und numerische Auswertung von Simulationsdaten mit Matlab und Excel
- Durchführung von Layout Anpassungen

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse</td>
</tr>
<tr>
<td>• Grundprinzipien der EMV</td>
</tr>
<tr>
<td>• Planung EMV gerechtes Design als System und auf der Leiterplatte</td>
</tr>
<tr>
<td>• Methodik und Design-Regeln für EMV gerechte Leiterplatten und dazugehörigem Layout</td>
</tr>
<tr>
<td>Fertigkeiten</td>
</tr>
<tr>
<td>• System und Leiterplatte (auch als Layout) unter Beachtung der EMV auszulegen</td>
</tr>
<tr>
<td>• Berechnungen mit Schaltungs- und Feldsimulationsprogrammen durchzuführen</td>
</tr>
<tr>
<td>Kompetenzen</td>
</tr>
<tr>
<td>• Angewendete EMV Maßnahmen beurteilen und geeignete auswählen</td>
</tr>
<tr>
<td>• Ergebnisse von Berechnungen und Simulationen zu beurteilen und zu vergleichen</td>
</tr>
<tr>
<td>Angebotene Lehrunterlagen</td>
</tr>
<tr>
<td>Folien und Beispieldateien</td>
</tr>
<tr>
<td>Lehrmedien</td>
</tr>
<tr>
<td>Beamer, Tafel, Computer in den CIP Pools</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>• Franz: EMV - störungssicherer Aufbau elektronischer Schaltungen. Springer Verlag, 2013</td>
</tr>
<tr>
<td>• Durcansky: EMV-gerechtes Gerätedesign. Franzis Verlag, 1999</td>
</tr>
<tr>
<td>• Gustrau, Kellerbauer: Elektromagnetische Verträglichkeit. Hanser Verlag, 2015</td>
</tr>
<tr>
<td>Weitere Informationen zur Lehrveranstaltung</td>
</tr>
<tr>
<td>Vorkenntnisse: Umgang mit Matlab, LTSpice, HFSS (FEM Feldsimulationen), Eagle (PCB Layout) hilfreich aber nicht zwingend notwendig</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Energie- und Umweltrecht, Projektmanagement (Energy and Environmental Legislation, Project Management)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie- und Umweltrecht, Projektmanagement (Energy and Environmental Legislation, Project Management)</td>
<td>22</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Prof. Dr. Michael Sterner
Fakultät: Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Inhalte
Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Energie- und Umweltrecht</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Projektmanagement</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Energie- und Umweltrecht</th>
<th>USR</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Michael Sterner</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektro- und Informationstechnik</td>
<td></td>
</tr>
</tbody>
</table>

Lehrende/Dozierende

<table>
<thead>
<tr>
<th>Helmut Loibl (LB)</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>jährlich</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit 10-15% Übungsanteil

Studiensemester

<table>
<thead>
<tr>
<th>gemäß Studienplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrumfang [SWS oder UE]</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 24 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 8 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Definition Umwelt und Umwelteinflüsse
- Ökologische Zusammenhänge und Wirkungsmechanismen
- Nachhaltigkeit
- Beispiele verschiedener Ökosysteme
- Störungen des ökologischen Gleichgewichtes und deren Folgen
- Gesetzliche Regelungen, Fallbeispiele
- Gesellschaftliche Randbedingungen
- Umweltrelevante Indikatoren (an Hand von Fallbeispielen)

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Verständnis der ökologischen Zusammenhänge und Auswirkungen
- Kenntnisse der wichtigsten Gesetze und Normen des Umweltschutzes

Kompetenzen

- Kompetenz in Anwendung von Verfahren zur Bewertung der ökologischen Relevanz einer Technologie

Angebotete Lehrunterlagen

Skript, Übungen, Datenblätter, Literaturliste
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheadprojektor, Tafel, Rechner/Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen, U.: Produktkreisläufe: Schlüssel zum nachhaltigen Wirtschaften, Fraunhofer IRB Verlag, 1999</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Energie- und Umweltrecht, Projektmanagement (Energy and Environmental Legislation, Project Management)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektmanagement</td>
<td>PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Birgit Rösel</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit 35 % Einzel- und Gruppenübungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- und Nachbereitung: 24 h; Prüfungsvorbereitung: 8 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Merkmale eines Projektes, Chancen und Risiken von Projekten
- Auftraggeber, Projektlenkungsausschuss
- Stakeholder- und Risikomanagement
- Projektorganisation, Projektteam
- Projektstrukturplan, Netzplantechnik, Balkenplan
- Ressourcen- und Kostenplanung, Projektcontrolling
- Teamentwicklungsprozesse, Kommunikation
- Aufgaben des Projektleiters, Führung, Konfliktmanagement
- Qualitatives Zeitmanagement für Projektleiter
- Instrumente des Qualitätsmanagements in Projekten

Lernziele/Lernergebnisse/Kompetenzen
Nach der erfolgreichen Absolvierung dieser Veranstaltung können Sie:
- verschiedene Projektorganisationen beschreiben
- die Aufgaben und Rollen von Teams sowie des Projektleiters erläutern
- verschiedene Aspekte der Kostenplanung und des Projektcontrolling darstellen und anwenden
- verschiedene Moderationstechniken und deren Randbedingungen benennen
- eine Projektplanung realisieren (Balkenplan, Netzplan, Gantt-Diagramm)
- verschiedene Instrumente des Qualitätsmanagements benennen und anwenden
• Chancen und Risiken von Projekten darstellen sowie Risikoanalysen durchführen

Angebotene Lehrunterlagen

- Skript

Lehrmedien

- Tafel, Laptop/Beamer, Gruppenübungen

Literatur

Wird in der Lehrveranstaltung besprochen
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiewirtschaft & Energieeffizienz (Energy Economy & Energy Efficiency)</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Mathematik 1 und 2, Grundlagen der Elektrotechnik 1 und 2, Technische Mechanik, Thermodynamik, Wärmeübertragung

Inhalte

Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Energiewirtschaft & Energieeffizienz</td>
<td>6 SWS</td>
<td>7</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiewirtschaft & Energieeffizienz</td>
<td>EEE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit 10-15% Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>84 h</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Teil Energieeffizienz

- Energieeffizienz und Energieeffizienzanalyse
- Stufen der Energiewandlung
- Energetische Bewertung von Gebäuden und gebäudetechnischen Anlagen
- Energie- und Erzeugeraufwandszahlen
- Heizbedarfsbestimmung und Ansätze der Effizienzsteigerung im Wärmesektor
- Wärmepumpen und Kälteanlagen
- Verschaltungsvarianten und energetische Bewertung von kombinierten Energiesystemen auf Basis von Wärmepumpen
- Kraft-Wärme-Kopplung
- Energetische Bewertung von Kraftwärmekopplungsanlagen
- Primärenergie- und CO2-Einsparung durch Kraftwärmekopplung
- Bewertung der Energieeffizienz von Industriebetrieben

Teil Energiewirtschaft

- Notwendigkeit und Treiber der Energiewende
- Anthropogener Klimawandel und notwendige Emissionsreduktionen
- Energiessourcen und –reserven
- Potenziale erneuerbarer Energien
- Energiewandlung und Energiebilanzen
- Ur-, Primär-, Sekundär- und Endenergie, Wirkungsgradberechnungen
- Bilanzerstellungsmethoden, Bilanzen für Deutschland
- Energierechtliche Rahmenbedingungen - Gesetzgebung, Förderung, Anreize
- Rahmenbedingungen zum Klimaschutz, Energiewendebeschlüsse, Relevante Gesetze (EEG, EnWG, EnEF, EWärmeG, MAP, Emissionsminderungsvorgaben)
- Elektrizitätswirtschaft – Begriffe, Stromhandel und Strombörse, Transport und Speicher
- Gaswirtschaft – Gashandel und Gasmärkte, Gastransport und Gasspeicher
- Märkte für feste und flüssige Energieträger – Mineralölwirtschaft und Kohlemärkte, Holz- und Forstwirtschaft, Biomasse
- Investitionsberechnungen, Strom- und Wärmegestehungskosten

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnis der historischen, heutigen und zukünftigen Energieversorgungsstrukturen
- Kenntnis der energiepolitischen und rechtlichen Rahmenbedingungen
- Kenntnis der Funktionsweise der Energiemärkte für Strom, Brennstoffe und andere Energieträger
- Kenntnis der Branchensegmente regenerativer Energieformen und innovativer Heiztechnologien

Fertigkeiten

- Fertigkeit zur sachlichen Diskussion von energiewirtschaftlichen und umweltpolitischen Fragestellungen
- Einordnung unterschiedlicher energiewirtschaftlicher Gesetze
- Fertigkeit zur Bewertung und Berechnung von Energiebilanzen
- Fertigkeit zur Durchführung von Kosten- und Investitionsrechnungen
Kompetenzen

- Kompetenz zur Ermittlung und Beurteilung der Effizienz von Energieumwandlungsverfahren und kombinierten Energieversorgungssystemen

Angebotene Lehrunterlagen
- Skript, Übungen (teils mit Lösungen), Fachbücher

Lehrmedien
- Tafel, Rechner/Beamer, Umfragen, Buchkapitel

Literatur

<table>
<thead>
<tr>
<th>Jahrbuch Erneuerbare Energien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaschning, V.; Regenerative Energiesysteme; Technologie – Berechnung – Simulation, 8. Auflage, Hanser Verlag, 2013</td>
</tr>
<tr>
<td>Pehnt, M.; Energieeffizienz – Ein Lehr- und Handbuch, Springer Verlag, 2010</td>
</tr>
<tr>
<td>Nitsch et al.: Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Finanzierung und Investitionsrechnung (Financing and Investment)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierung und Investitionsrechnung (Finance</td>
<td>16</td>
</tr>
<tr>
<td>and Investment)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Schöntag</td>
<td>Betriebswirtschaftslehre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1 und 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Veranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Veranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Stand: 17.10.2016
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierung und Investitionsrechnung</td>
<td>FI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Schöntag</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Schöntag</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht, Übungen (ca. 15 - 20 %)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium

<table>
<thead>
<tr>
<th>56 h</th>
</tr>
</thead>
</table>

Eigenstudium

Vor- und Nachbereitung: 48 h
Prüfungsvorbereitung: 16 h

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
<tr>
<td>Inhalte</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Grundlagen</td>
</tr>
<tr>
<td>• Finanz-/Investitionswirtschaft und ökonomischer Bezugsrahmen</td>
</tr>
<tr>
<td>• Grundzüge des Jahresabschlusses und der Jahresabschlussanalyse</td>
</tr>
<tr>
<td>• Unternehmen und Märkte</td>
</tr>
<tr>
<td>• Geld und Zinsen</td>
</tr>
<tr>
<td>Investitionsrechnung</td>
</tr>
<tr>
<td>• Investitionen im volkswirtschaftlichen und betriebswirtschaftlichen Kontext</td>
</tr>
<tr>
<td>• Anwendung und Analyse dynamischer Verfahren der Investitionsrechnung (Kapitalwertmethode, Annuitätenmethode, Interne Zinsfuß-Methode)</td>
</tr>
<tr>
<td>• Anwendung und Analyse statischer Verfahren der Investitionsrechnung (Kostenvergleichsrechnung, Gewinnvergleichsrechnung, Amortisationsrechnung)</td>
</tr>
<tr>
<td>• Anwendung von Excel im Rahmen von investitionswirtschaftlichen Analysen</td>
</tr>
<tr>
<td>Finanzierung</td>
</tr>
<tr>
<td>• Finanzmärkte und Finanzintermediäre</td>
</tr>
<tr>
<td>• Rentabilität (Begriff, Messung und Beurteilung)</td>
</tr>
<tr>
<td>• Liquiditätsplanung und Liquiditätsmessung</td>
</tr>
<tr>
<td>• Übersicht über Innen- und Außenfinanzierungsquellen</td>
</tr>
<tr>
<td>Ausgewählte Aspekte</td>
</tr>
<tr>
<td>• Berücksichtigung von Unsicherheit im Rahmen von Investitions- und Finanzierungsentscheidungen</td>
</tr>
<tr>
<td>• Grundzüge des Insolvenzrechts</td>
</tr>
<tr>
<td>Lernziele/Lernergebnisse/Kompetenzen</td>
</tr>
<tr>
<td>Kenntnisse</td>
</tr>
<tr>
<td>• Erwerb von Grundkenntnissen des Investitions- und Finanzmanagements von Unternehmen und von Projekten, insbesondere im Bereich der regenerativen Energien.</td>
</tr>
<tr>
<td>Fertigkeiten</td>
</tr>
<tr>
<td>• Durchführung der wichtigsten Berechnungen im Bereich der Investition und Finanzierung.</td>
</tr>
<tr>
<td>Kompetenzen</td>
</tr>
<tr>
<td>• Fach- und Wissenskompetenz in Bezug auf finanzielle Zusammenhänge in Unternehmen, Projekten und auf Kapitalmärkten.</td>
</tr>
<tr>
<td>• Analyse und Beurteilung von Projekten (insbesondere aus dem Bereich der regenerativen Energien) hinsichtlich zentraler finanzwirtschaftlicher Aspekte.</td>
</tr>
<tr>
<td>• Beherrschung zentraler Fachbegriffe, Rechenverfahren und Analysemethoden aus den Gebieten der Investitionsrechnung und der Finanzierung.</td>
</tr>
<tr>
<td>• Kompetenz, fachspezifische Fragestellungen mit Betriebs- und Volkswirten zu diskutieren.</td>
</tr>
</tbody>
</table>

Angebotene Lehrunterlagen

- Skript, Übungen, Literaturliste
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Rechner/Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drukarczyk, J./Lobe, S., Finanzierung, 11. Aufl., Konstanz, 2015</td>
</tr>
<tr>
<td>Modulbezeichnung (ggf. englische Bezeichnung)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Finite Elemente</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>2</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Inhalte
siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen
siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Finite Elemente</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
<th>FE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>Ostbayerische Technische Hochschule Regensburg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Vorlesungen mit Übungen am Rechner</th>
</tr>
</thead>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>[SWS oder UE]</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 h</td>
<td>Vor- und Nachbereitung: 58 h Prüfungsvorbereitung: 20 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- **Mathematische Grundlagen der Finite-Elemente-Methode**
- Aufstellen des Elementgleichungssystems: Energieprinzipien, Variationsansätze Ansatzfunktionen
- Aufstellen des Gesamtgleichungssystems unter Berücksichtigung der Randbedingungen (iterative) Lösungsverfahren für (nicht)lineare Gleichungssysteme
- Allgemeine Vorgehensweise bei der Erstellung von FEM-Modellen
 - Preprocessor: Geometrie, Material, Randbedingungen, Vernetzung
 - Solver: Einstellungen
 - Postprocessor: Darstellung der Ergebnisse
- **Berechnungsbeispiele**
 - Nutzung von Symmetrien zur Reduktion der Modellgröße
 - Einfluss der Vernetzung und der Ansatzfunktion auf die Lösung
 - Berechnung verschiedener physikalischer Domänen (elektrisch, thermisch, mechanisch, fluidisch) und deren Kopplung
 - Berücksichtigung von Nichtlinearität und Zeitabhängigkeit
Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Mathematische Grundlagen der FEM
- Elementarer Aufbau eines FE-Programms

Fertigkeiten

- Berechnungen mit einem kommerziellen FE-Programm durchzuführen

Kompetenzen

- Ergebnisse der Berechnung zu beurteilen und zu vergleichen

Angebotene Lehrunterlagen

Beispielprogramme

Lehrmedien

- Tafel, Rechner/Beamer

Literatur

- A first course in finite Elements, B. Fisch
- Eindimensionale Finite Elemente: Ein Einstieg in die Methode, M. Merkel
- Introduction to finite elements in engineering, T. Chandrupatla
- The finite element Method, M. Larson
- COMSOL for Engineers, M. Tabatabaian
- FEM für Praktiker I: Grundlagen: Basiswissen und Arbeitsbeispiele zur Finite-Element-Methode mit dem Programm ANSYS, Müller, Groth
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen elektrischer Maschinen (Electrical Machines)</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik

Inhalte

Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Grundlagen elektrischer Maschinen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Grundlagen elektrischer Maschinen (Electrical Machines)

Lehrveranstaltung	LV-Kurzbezeichnung
Grundlagen elektrischer Maschinen | GM

Verantwortliche/r | Fakultät
Prof. Dr. Oliver Brückl |

Lehrende/Dozierende | Angebotsfrequenz
Prof. Dr. Oliver Brückl | jährlich

Lehrform
Seminaristischer Unterricht mit 10-15 % Übungsanteil

Studiensemester | Lehrumfang | Lehrsprache | Arbeitsaufwand
gemäß Studienplan | [SWS oder UE] | | [ECTS-Credits]
3 | 4 SWS | deutsch | 5

Zeitaufwand:
Präsenzstudium | Eigenstudium
56 h | Vor- und Nachbereitung: 56 h
Prüfungsvorbereitung: 38 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Grundlagen magnetischer Kreis
- Transformatoren (Wirkungsweise, Betriebsverhalten, Ersatzschaltbild, Überspannungsverhalten, Alterung, Aufbau, Einsatz, Regelung)
- Erzeugung eines Drehfeldes
- Wirkungsweise und Betriebsverhalten der Synchron- und Asynchronmaschine

Lernziele/Lernergebnisse/Kompetenzen
Kenntnisse
- Kenntnisse über die Berechnung von magnetischen Flüssen, Energien und Kräften in Eisenkreisen
- Kenntnisse über den Aufbau, Funktionsprinzip und Betriebsweisen von Transformatoren und Drehstrommaschinen

Fertigkeiten
- Berechnung von magnetischen Flüssen, Energien und Kräften in Eisenkreisen
- Berechnung des Lastverhaltens von Transformatoren und Drehstrommaschinen
- Berechnung des Alterungsverhaltens von Transformatoren

Kompetenzen
- Auswahl und Auslegung von Transformatoren
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Grundlagen elektrischer Maschinen (Electrical Machines)

- Grundverständnis für das Wirk- und Blindleistungsverhalten der Maschinen

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentationsunterlagen und Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Rechner / Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuest, K., Döring, P.: Elektrische Maschinen und Antriebe. Vieweg Verlag, 2004</td>
</tr>
</tbody>
</table>
Modulbezeichnung (ggf. englische Bezeichnung) | Modul-KzBez. oder Nr.
---|---
Leistungselektronik (Power Electronics) | 17

Modulverantwortliche/r	Fakultät
Prof. Dr. Manfred Bruckmann | Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik 1, Grundlagen der Elektrotechnik 2

Inhalte

- Grundzüge der leistungselektronischen Energiewandler
- Steller für Gleichspannung, Einquadrantensteller, Mehrquadrantensteller
- Wechselrichter einphasig / dreiphasig
- Auslegung von leistungselektronischen Systemen
- Grundzüge thermisches Verhalten, Kühlung
- Bauelemente der Leistungselektronik

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnisse von Bauelementen, Schaltungen und Berechnungsmethoden

Fertigkeiten

- Fertigkeit sich in entsprechende Problemstellungen schnell einzuarbeiten

Kompetenzen

- Kompetenz zur Analyse von Schaltungen und der Leistungselektronik durch Aufgaben und Fallstudien

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Leistungselektronik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 17.10.2016

Ostbayerische Technische Hochschule Regensburg Seite 87
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungselektronik</td>
<td>LE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit 10-15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

Grundzüge der leistungselektronischen Energiewandler
- Darstellung Unterschiede Leistungselektronik zu Analogelektronik
- Prinzipien netzgeführter Stromrichter am Beispiel B6- Gleichrichter
- Prinzipien selbstgeführter Schaltungen am Beispiel Tiefsetzsteller
- Herleitung der Beziehungen für Ausgangsgrößen
- Herleitung der Beziehungen für Eingangsgrößen
- Herleitung der Beziehungen für Belastungsgrößen

Steller für Gleichspannung
- Tiefsetzsteller
- Hochsetzsteller
- Inverswandler
- Zweiquadrantensteller
- H-Brückenschaltung

Herleitung der Beziehungen für Ausgangsgrößen
Herleitung der Beziehungen für Eingangsgrößen
Herleitung der Beziehungen für Belastungsgrößen & Dimensionierung

Wechselrichter einphasig / dreiphasig
- Brückenzweigpaar, Aufbau und Funktionsweise
- Mathematische Beschreibung der Bildung der Ausgangsspannung
- Vierquadrantensteller
- Drehstrombrückenschaltung
- Mathematische Beschreibung der Bildung der Ausgangsspannung

Herleitung der Beziehungen für Ausgangsgrößen
Herleitung der Beziehungen für Eingangsgrößen
Herleitung der Beziehungen für Belastungsgrößen & Dimensionierung

Auslegung von leistungselektronischen Systemen

Grundzüge thermisches Verhalten, Kühlung
- Thermisches Modell für den Aufbau einer leistungselektronischen Schaltung
- Aufbau und Berechnung & Dimensionierung

Bauelemente der Leistungselektronik
- Dioden
- MOSFET
- IGBT
- Thyristoren

Jeweils Funktionsprinzip, Eigenschaften, Ansteuerung und Schutz
Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnisse von Bauelementen, Schaltungen und Berechnungsmethoden der Leistungselektronik durch die Bandbreite der dargestellten Schaltungen und Methoden

Fertigkeiten
- Berechnung von leistungselektronischen Schaltungen aufgrund gegebener Anforderungen

Kompetenzen
- Kompetenz, sich in neue leistungselektronische Problemstellungen schnell einzuarbeiten
- Analyse von leistungselektronischen Schaltungen
- Dimensionierung von leistungselektronischen Schaltungen anhand vorgegebener Parameter

Angebotene Lehrunterlagen
Skript, Übungen, Literaturlisten, Simulationsprogramm, Beispiele

Lehrmedien
Tafel, Rechner / Beamer

Literatur

D. Schröder: Elektrische Antriebe 4, Springer Verlag, 1998

Jäger, Stein: Übungen zur Leistungselektronik, VDE Verlag, Berlin, 2012
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Praktikum Energietechnik 1 (Lab course Energy Engineering 1) | 25

Modulverantwortliche/r	Fakultät
Prof. Dr. Manfred Bruckmann | Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Besuch der Vorlesungen: Photovoltaik, Solarthermie, Windenergie und Wasserkraftanlagen, Energiewirtschaft & Energieeffizienz, Energiespeicher, Leistungselectronik

Inhalte
Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Energietechnik 1</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Energiotechnik 1</td>
<td>PRE1</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Name</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Lehrende/Dozierende

<table>
<thead>
<tr>
<th>Name</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Manfred Bruckmann</td>
<td></td>
</tr>
<tr>
<td>Vadim Glaser (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christian Rechenauer</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Laborpraktika

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung Versuche: 60 h; Ausarbeitung der Versuche: 34 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Praktische Ausbildung zu erneuerbaren Energien in Experiment und Simulation
- Versuche zur Energieerzeugung, Energiewandlung und Speicherung
- Darstellung und Diskussion der Messergebnisse in Form von Kennlinien
- Anwendung theoretischer Gesetzmäßigkeiten zur Auswertung von Messdaten
- Vergleich der Messergebnisse mit den theoretischen Grundlagen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnisse der Eigenschaften der wichtigsten regenerativen Energiequellen
- Kenntnisse der Eigenschaften von Speichern und leistungselektronischen Wandlern

Fertigkeiten

- Fertigkeit zur Durchführung von Versuchen in Experiment und Simulation
- Fertigkeit und Kompetenz in Auswertung und kritischen Interpretation von Versuchsergebnissen
- Fertigkeit der Erstellung eines ingenieurwissenschaftlich fundierten Berichtes

Kompetenzen
- Kompetenz zur ingenieurmäßigen Arbeit selbstständig sowie innerhalb eines Teams

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchsbeschreibung, Aufgabenstellungen, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchs einrichtungen, Messgeräte, PC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skripte der Vorlesungen Photovoltaik, Solarthermie, Wind- und Wasserkraft, Energiewirtschaft und Energieeffizienz, Energiespeicher, Leistungselektronik</td>
</tr>
<tr>
<td>Modulbezeichnung (ggf. englische Bezeichnung)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Praktikum Energietechnik 2 (Lab coruse Energy Engineering 2)</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Oliver Brückl</th>
</tr>
</thead>
</table>

Fakultät

<table>
<thead>
<tr>
<th>Elektro- und Informationstechnik</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Besuch der Vorlesungen: Windenergie, Wasserkraftanlagen, Grundlagen elektrischer Maschinen, Elektrische Anlagentechnik, Elektrische Netztechnik, Photovoltaik, Solarthermie, Leistungselektronik, Energiespeicher

Inhalte

siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen

siehe Veranstaltung

<table>
<thead>
<tr>
<th>Zugeordnete Lehrveranstaltungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Energietechnik 2</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
--- | ---
Praktikum Energietechnik 2 | PRE2

Verantwortliche/r	Fakultät
Prof. Dr. Oliver Brückl | Elektro- und Informationstechnik

Lehrende/Dozierende	Angebotsfrequenz
Prof. Dr. Oliver Brückl
Prof. Dr. Manfred Bruckmann
Prof. Anton Haumer
Prof. Dr. Bernhard Hopfensperger
Prof. Dr. Robert Leinfelder
Prof. Dr. Thomas Lex
Prof. Dr. Christian Rechenauer
Prof. Dr. Michael Sterner | jährlich

Lehrform | Laborpraktika

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
[SWS oder UE]		[ECTS-Credits]	
7 | 4 SWS | deutsch | 5

Zeitaufwand:

Präsenzstudium	Eigenstudium
56 h | Vor- und Nachbereitung Versuche: 60 h; Ausarbeitung der Versuche: 34 h

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Praktische Ausbildung zu elektrischen Anlagen, Maschinen und Netztechnik in Experiment und Simulation
- Versuche zur Energieerzeugung, Energiewandlung, Energieverteilung und Speicherung
- Darstellung und Diskussion der Messergebnisse in Form von Kennlinien
- Anwendung theoretischer Gesetzmäßigkeiten zur Auswertung von Messdaten
- Vergleich der Messergebnisse mit den theoretischen Grundlagen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnisse der Eigenschaften der wichtigsten Betriebsmittel zur Stromversorgung

Fertigkeiten

- Fertigkeit zur Durchführung von Versuchen in Experiment und Simulation
- Fertigkeit und Kompetenz in Auswertung und kritischen Interpretation von Versuchsergebnissen
- Fertigkeit der Erstellung eines ingenieurwissenschaftlich fundierten Berichtes

Kompetenzen
- Kompetenz zur ingenieurmäßigen Arbeit selbstständig sowie innerhalb eines Teams

Angebotene Lehrunterlagen
Versuchsbeschreibung, Aufgabenstellungen, Literaturliste

Lehrmedien
Versuchseinrichtungen, Messgeräte, PC

Literatur
Skripte der Vorlesungen Windenergie, Wasserkraftanlagen, Grundlagen elektrischer Maschinen, Elektrische Anlagentechnik, Elektrische Netztechnik, Photovoltaik, Solarthermie, Leistungselektronik, Energiespeicher
Praxissemester (Practical Semester)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praxissemester (Practical Semester)</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Pflicht</td>
<td>24</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Für Industriepraktikum: siehe Studien- und Prüfungsordnung

Für Präsentation & Moderation: Zulassung zum Praxissemester

Die Veranstaltung Präsentation & Moderation darf nicht vor dem Beginn des Industriepraktikums absolviert werden.

Empfohlene Vorkenntnisse

Keine

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>2.</td>
<td>Präsentation & Moderation</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
--- | ---
Praktikum | PR

Verantwortliche/r	Fakultät
Prof. Dr. Peter Kuczynski | Elektro- und Informationstechnik
Lehrende/Dozierende | Angebotsfrequenz
--- | ---
Prof. Dr. Peter Kuczynski | in jedem Semester

Lehrform	Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehramfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>deutsch</td>
<td>22</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
600 h |

Studien- und Prüfungsleistung
- zeitl. Nachweis über 20 Wochen Industrietätigkeit
- Praktikumsbericht
- Arbeitszeugnis der Firma

Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte
- Ingenieurmäßiges Arbeiten
- Projektarbeiten in der Industrie
- Anfertigen technischer Berichte

Aus den folgenden Arbeitsgebieten sind höchstens 3 auszuwählen:
- Forschung und Entwicklung
- Projektierung und Konstruktion
- Fertigung und Arbeitsvorbereitung
- Planung, Betrieb und Instandhaltung von Anlagen
- End- und Abnahmeprüfungen, Qualitätssicherung
- Technischer Vertrieb

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kennenlernen verschiedener Arbeitsgebiete

Fertigkeiten
- Aufbereitung, Dokumentation und Präsentation eigener Arbeiten
Kompetenzen
- Umsetzung und Vertiefung der theoretischen Vorlesungsinhalte in ingenieurmäßigen Arbeiten
- Einschätzung von Firmen als potentieller Arbeitgeber (Betriebsklima, Enführung / Betreuung neuer Mitarbeiter)
- Einschätzung zeitlicher Vorgaben, Zeitmanagement

Angebotene Lehrunterlagen
- Datenbank mit Firmen, die für Industiepraktikum zugelassen sind
- Merkblätter zum Erstellen des Praktikumsberichts

Lehrmedien

Literatur

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentation & Moderation</td>
<td>PS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Bernhard Hopfensperger</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Anton Horn</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vorbereitung Vorträge: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Zugelassene Hilfsmittel für Leistungsnachweis: alle

Inhalte

- formaler Aufbau/Struktur eines Vortrags
- Umgang mit verschiedenen Medien
- Üben von Vorträgen in einer geschützten Umgebung
- Erstellung eines Thesenpapiers: Handreichung, 1 DIN A4 (Vorstellung eines Projekts aus dem Praktikum)
- Aufbereitung eines Vortrags zu einem aktuellen Thema aus dem Praktikum (einschl. Internet-Recherche)
- Einführung in die Grundlagen der Präsentation

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kennenlernen potentieller Arbeitgeber
- Kennenlernen verschiedener Arbeitsfelder anderer Praktikanten
- Grundlegende Kenntnisse über die Planung, Aufbau und Durchführung von Präsentationen

Fertigkeiten

- Aufbereitung, Präsentation eigener Projekte des Industriepraktikums
- zeitliche Abschätzung der Vortragsdauer (vorheriges Üben)
- Körpersprache, Blickkontakt zum Publikum, Rhethorik
- Austausch von Erfahrungen aus dem Praktikum

Kompetenzen
- Vorbereitung und Durchführung von Präsentationen
- Einschätzung potentieller Arbeitsfelder und Arbeitgeber
- Kompetenz, Arbeitsergebnisse verständlich aufzubereiten und situationsgerecht zu präsentieren
- Kompetenz, Zuhörer durch klare Kommunikation und Struktur zu überzeugen und passende Medien bei Präsentationen einzusetzen

Angebotene Lehrunterlagen

Lehrmedien
Rechner / Beamer, Tafel, Overheadprojektor, Flipchart

Literatur
Hartmann, Bischoff, et al.: Die überzeugende Präsentation, Beltz, 2009
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektarbeit (Project Work)</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Inhalte

Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Projektarbeit</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektarbeit</td>
<td>PA</td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Michael Sterner
- Lehrende/Dozierende: Angebotsfrequenz
- Betreuender Professor: jährlich

Lehrform
Seminartistischer Unterricht mit 80% Übungsanteil, Seminar

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Ausarbeitung Projekt: 94 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Projektorganisation, Projektstrukturierung, Projekt-Controlling
- Fallbeispielorientierte Problem- und Zielanalyse
- Datenerhebung und -darstellung, Schwachstellenanalyse
- Zielloorientierte Problembearbeitung und -lösung im Team unter Berücksichtigung von methodischen, systemtechnischen und wertanalytischen Vorgehensweisen
- Systematische Dokumentation der Ergebnisse und Präsentation des Projekts

Lernziele/Lernergebnisse/Kompetenzen

Fertigkeiten
- Fertigkeit der Lösung einer konkreten Problemstellung
- Fertigkeit zur Präsentation erarbeiteter komplexer Erkenntnisse aus dem Projekt im Projektteam

Kompetenzen
- Kompetenz der praktischen Anwendung des im Studium erworbenen interdisziplinären Fach- und Methodenwissens unter Anleitung
- Kompetenz zum wissenschaftlichen Arbeiten im Team

Angebotene Lehrunterlagen
Projekt-, fallspezifische Arbeitsunterlagen und Fachbücher
Lehrmedien

Overheadprojektor, Rechner/Beamer, Exponate

Literatur

| Verfasser | Titel | Verlag | Tagung/Ort |
|----------------------------------|--|-----------------------|
| Quaschning, V. | Regenerative Energiesysteme | Hanser Verlag, München, 2013 |
| Heier, S. | Windkraftanlagen | Teubner Verlag, Stuttgart, 2005 |
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Regelungstechnik (Control Engineering)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Regelungstechnik (Control Engineering) | 15

Modulverantwortliche/r	Fakultät
Prof. Dr. Birgit Rösel | Elektro- und Informationstechnik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3 | 2 | Pflicht | 7

Inhalte
- Regelkreise in Natur und Technik und deren Modellierung
- Beschreibung linearer, zeitinvarianter Systeme (LZI) im Zeit- und Frequenzbereich
- Laplacetransformation
- Stabilitätsprüfung mittels Hurwitz- und Nyquist-Kriterium
- Regler-Entwurf mittels Wurzelortskurve, Frequenzkennlinien, Gütekriterien, Einstellregeln

Lernziele/Lernergebnisse/Kompetenzen
Nach der erfolgreichen Absolvierung dieses Moduls können Sie:
- den Aufbau und die Wirkungsweise von Regelkreisen erläutern
- technische Systeme mit einem mathematischen Modell beschreiben und das Modell analysieren (Bedeutung Parameter, Linearisierung)
- lineare, zeitinvariante Systeme im Zeit- und Frequenzbereich mit verschiedenen Methoden darstellen und analysieren
- die Laplace-Transformation anwenden
- verschiedene Reglertypen unterscheiden und hinsichtlich ihrer Eignung bewerten
- das Konzept der Stabilität eines Systems darstellen und verschiedene Methoden zur Stabilitätsprüfung anwenden
- verschiedene Methoden zur Bestimmung eines geeigneten Reglers charakterisieren und hinsichtlich ihrer Einsetzbarkeit für ein bestimmtes System bewerten
- neue Inhalte aus technischen Texten erschließen und fachliche Zusammenhänge mit eigenen Worten darstellen
- Messergebnisse in einem Protokoll darstellen und einen technischen Bericht anfertigen
- in einem Team arbeiten und verschiedene Techniken zur Präsentation von Ergebnissen anwenden

Zugeordnete Lehrveranstaltungen:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Regelungstechnik</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Regelungstechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
---|---
Praktikum Regelungstechnik | PRA

Verantwortliche/r | Fakultät
Prof. Dr. Birgit Rösel | Elektro- und Informationstechnik
Lehrende/Dozierende | Angebotsfrequenz
Prof. Dr. Birgit Rösel | jährlich

Lehrform
Praktische Übungen im Labor für Regelungstechnik

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Versuchsvorbereitung: 16 h, Versuchsausarbeitung: 16 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
Das Praktikum dient der gezielten Vertiefung der Lehrinhalte der Veranstaltung Regelungstechnik und ist parallel zu dieser zu belegen.
- Untersuchung des Verhaltens von gesteuerten bzw. geregelten Systemen
- Messung des Zeitverhaltens verschiedener Operationsverstärkerschaltungen hinsichtlich Übergangsverhalten und stationärem Verhalten
- Messung des Frequenzverhaltens technischer Systeme und deren Darstellungsmöglichkeiten
- Analyse des Verhaltens von geschlossenen Regelkreisen mit verschiedenen Reglertypen
- Stabilitätsuntersuchung und Reglereinstellung

Lernziele/Lernergebnisse/Kompetenzen
Nach der erfolgreichen Absolvierung dieser Lehrveranstaltung können Sie:
- den Aufbau und die Wirkungsweise von Regelkreisen erläutern
- lineare, zeitinvariante Systeme im Zeit- und Frequenzbereich mit verschiedenen Mitteln analysieren
- verschiedene Verfahren zur Regler-Auslegung anwenden
- das statische und dynamische Regelkreisverhalten beurteilen
- verschiedene Reglertypen unterscheiden und hinsichtlich ihrer Eignung bewerten
- mit Signalgenerator und Oszilloskop arbeiten
- fachliche Zusammenhänge mit eigenen Worten darstellen
• Messergebnisse in einem Protokoll darstellen und einen technischen Bericht anfertigen
• in einem Team arbeiten und verschiedene Techniken zur Präsentation von Ergebnissen anwenden

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchsvorlagen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>verschiedene OP-Schaltungen, Lego NXT-Roboter, e-learning-Plattform</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Föllinger, O.: Regelungstechnik, Hüthig, 1994</td>
</tr>
<tr>
<td>Unbehauen, H.: Regelungstechnik I, Vieweg-Verlag, 2005</td>
</tr>
</tbody>
</table>
Lehrveranstaltung
Regelungstechnik
LV-Kurzbezeichnung
 RT

Verantwortliche/r
Prof. Dr. Birgit Rösel
Fakultät
Elektro- und Informationstechnik
Lehrende/Dozierende
Prof. Dr. Birgit Rösel
Angebotsfrequenz
jährlich

Lehrform
Seminaristischer Unterricht: 10-15% Übungsanteil und 15% Praktikum sowie Blended Learning Lehrseinheiten

Studiensemester gemäß Studienplan
Lehrumfang
4 SWS
Lehrsprache
deutsch
Arbeitsaufwand
5 ECTS-Credits

Zeitaufwand:
Präsenzstudium
56 h
Eigenstudium
Vor- und Nachbereitung: 70 h
Prüfungsvorbereitung: 24 h

Inhalte

In RT werden die folgenden Inhalte vermittelt:
- Regelkreise in Natur und Technik, Grundaufbau, Wirkungsplan, Systemklassen
- Lineare Systeme im Zeitbereich: Linearisierung mittels inverser Nichtlinearität sowie durch lineare Approximation um einen Betriebspunkt, Normierung
- lineare, zeitinvariante (LZI)-Systeme im Frequenzbereich, Frequenzkennlinien, Ortskurve, Laplacetransformation
- Verhalten elementarer LZI-Übertragungsglieder im Zeit- und Frequenzbereich
- Statisches und dynamisches Führungs- und Störverhalten von Regelkreisen, analoge PID-Regler
- Stabilitätsprüfung mittels Hurwitz- und Nyquist-Kriterium
- Regler-Entwurf mittels Wurzelortskurve, Frequenzkennlinien, Gütekriterien, Einstellregeln
Lernziele/Lernergebnisse/Kompetenzen

Nach der erfolgreichen Absolvierung der Lehrveranstaltung können Sie:

- den Aufbau und die Wirkungsweise von Regelkreisen erläutern
- technische Systeme mit einem mathematischen Modell beschreiben und das Modell analysieren (Bedeutung der Parameter, Linearisierung)
- lineare, zeitinvariante Systeme im Zeit- und Frequenzbereich mit verschiedenen Methoden darstellen und analysieren
- die Laplace-Transformation anwenden
- verschiedene Reglertypen unterscheiden und hinsichtlich ihrer Eignung bewerten
- das Konzept der Stabilität eines Systems darstellen und verschiedene Methoden zur Stabilitätsprüfung anwenden
- verschiedene Methoden zur Bestimmung eines geeigneten Reglers charakterisieren und hinsichtlich ihrer Einsetzbarkeit für ein bestimmtes System bewerten
- neue Inhalte aus technischen Texten erschließen und fachliche Zusammenhänge mit eigenen Worten darstellen

Angebotene Lehrunterlagen

Skript, Übungen, Praktikumsunterlagen, Lehrtexte

Lehrmedien

Tafel, Beamer, Clickersystem, elearning-Plattform

Literatur

Föllinger, O.: Regelungstechnik, Hüthig, 1994
Unbehauen, H.: Regelungstechnik I, Vieweg-Verlag, 2005
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Strömungsmaschinen (Fluid Engines) | 20

Modulverantwortliche/r	Fakultät
Prof. Dr. Gerhard Kauke | Maschinenbau

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4 | 2 | Pflicht | 4

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Strömungsmechanik, Thermodynamik

Inhalte

- In den ersten beiden Kapiteln werden Wirkungsweise und Funktion der wichtigsten Bauteile anhand von Schnitzeichnungen ausgeführter Maschinen erläutert.
- Die abschließenden Kapitel beschäftigen sich mit dem Zusammenwirken von Kreiselpumpe und Anlage, der Kavitationsproblematik in Hydraulischen Strömungsmaschinen sowie mit ausgewählten Kapiteln aus dem Bereich der Gasturbinen.
- In zahlreichen Übungen (Übungsanteil ca. 50%) wird der theoretisch erarbeitete Stoff anhand praxisnaher Aufgabenstellungen, die durchweg ausgeführten Maschinen oder Anlagen entlehnt sind, angewendet und vertieft. Ein Teil der Übungen sind Selbstrechenübungen.
- Detaillierte Angaben zu den Inhalten finden sich in der Rubrik "Lehrveranstaltung".

Lernziele/Lernergebnisse/Kompetenzen
Zur Vermeidung von Wiederholungen wird auf die nachfolgende Rubrik "Lehrveranstaltung" verwiesen.
Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Strömungsmaschinen</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strömungsmaschinen</td>
<td>SMA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r	Fakultät
Prof. Dr. Gerhard Kauke | Maschinenbau
Lehrende/Dozierende | Angebotsfrequenz
---|---
Prof. Dr. Gerhard Kauke | jährlich

Lehrform

Vorlesungen, Übungsanteil ca. 50% (teilweise Selbstrechenübungen)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 48 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 16 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

Klassifizierung der Strömungsmaschinen (andere Bezeichnung: Turbomaschinen)

Aufgaben, Einsatzbereiche und Wirkungsweise von Thermischen und Hydraulischen Strömungsarbeitsmaschinen und Strömungskraftmaschinen

Grundlegender konstruktiver Aufbau von Dampf- und Gasturbinen, Strahltriebwerken, Verdichtern, Ventilatoren, Kreiselpumpen sowie Francis-, Kaplan- und Pelonturbinen

Strömungstechnische und thermodynamische Grundlagen
 - Absolut- und Relativsystem, Meridianschnitt und Meridiangeschwindigkeitskomponente
 - Geschwindigkeitsdreiecke (dimensionsbehaftet und dimensionslos)
 - Eulersche Hauptgleichung der Strömungsmaschinen
 - Instationäre Strömungseffekte
 - Anwendung des Ersten und Zweiten Hauptsatzes der Thermodynamik

Gesetzmäßigkeiten von kompressiblen und inkompressiblen Fluiden

Energieumsetzung in Verdichter- und Turbinenstufen
 - Definition der Repetierbedingung für Verdichter- und Turbinenrepetierstufen
 - Stufenkenngrößen und übliche Auslegungsbereiche

Definition innerer Wirkungsgrade (polytrop und isentrop) und äußerer Wirkungsgrade

Ähnlichkeitsbeziehungen und Kennzahlen
 - Modellgesetze, spezifische Drehzahl, Maschinenkenngrößen, Cordier-Diagramm

Betriebsverhalten von Strömungsarbeitsmaschinen
 - Die Maschinen- und Anlagenkennlinie, Lage des Betriebspunktes
 - Anwendung des Affinitätsgesetzes zur Berechnung einer neuen Maschinenkennlinie
 - Ermittlung der Kennlinie bei Parallelbetrieb mehrerer Kreiselpumpen oder Ventilatoren
 - Das rotierende Abreißen der Strömung in Verdichtergittern (Rotating Stall)
 - Bedeutung der Verdichterstabilitätsgrenze (Pumpgrenze) in Verdichterkennfeldern
 - Diskussion von Kennfeldern ausgeführter Maschinen
 - Regelungsmöglichkeiten für Kreiselpumpen, Ventilatoren und Turboverdichtern

Kreiselpumpenanlagen
 - Zusammenwirken von Kreiselpumpe und Anlage,
 - Berechnung der spezifischen Förderarbeit der Kreiselpumpe aus den Daten der Anlage
 - Saugverhalten der Kreiselpumpen
 - Kavitationsproblematik in Kreiselpumpen und Wasserturbinen, Kavitationskenngrößen
 - Bedingung für kavitationsfreien Betrieb (Halteenergie, Haltedruckhöhe, NPSH-Wert)
 - Ermittlung der maximalen geodätischen Saughöhe

Gasturbinen
 - Der einfache offene Gasturbinenprozess
- Leistungsbilanz und Thermischer Wirkungsgrad
- Bedeutung des Verdichterdruckverhältnisses

- Der offene Gasturbinenprozess mit Luftvorwärzung (Rekuperator-Gasturbine)

- Eingrenzung sinnvoller Einsatzgebiete anhand eines Grenzdruckverhältnisses
- Thermischer Wirkungsgrad für den idealen Prozess

- Kombinierte Gas- und Dampfturbinenprozesse (GuD-Prozesse)

- Einfluss der Zusatzfeuerung auf Wirkungsgrad und Leistung der GuD-Anlage
- Grundschalungen (Ein-Druck- und Mehr-Druck-Prozesse)

- Diskussion der Thermischen Wirkungsgrade unterschiedlicher Kraftwerkstypen

Jedem Kapitel sind zahlreiche Übungsaufgaben mit praxisnahen Aufgabenstellungen, die durchweg ausgeführten Maschinen oder Anlagen entlehnt sind, zugeordnet.

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnis des grundlegenden konstruktiven Aufbaus von Strömungsmaschinen
- Verständnis der Energieumwandlungsprozesse und der damit verbundenen Anordnung der Lauf- und Leiträder in Strömungsarbeits- und Strömungskraftmaschinen
- Verständnis der Strömungsprozesse im Absolut- und Relativsystem in Verzögerungs- und Beschleunigungsgittern von Strömungsarbeits- und Strömungskraftmaschinen
- Kenntnis der Gefahr der Strömungsablösung, insbesondere in verzögerten Strömungen und der daraus resultierenden Limitierung der Strömungsumlenkung in Verdichterstufen
- Kenntnis der grundlegenden Gesetzmäßigkeiten und Methoden
- Einfluss der Anlagenparameter auf den Betriebspunkt der Strömungsarbeitsmaschine
- Verständnis der Kavitationsproblematik in Kreiselpumpen und Wasserturbinen
- Kenntnis kavitationsgefährdeter Anlagenkonstellationen und Betriebszustände
- Kenntnis der Materialeigenschaften, die eine höhere Widerstandsfähigkeit gegenüber den Belastungen durch Kavitation aufweisen
- Verständnis des Einflusses des Verdichterdruckverhältnisses und der Turbineneintrittstemperatur auf Leistung und Wirkungsgrad von Gasturbinen
- Kenntnis der Möglichkeiten zur Steigerung des Thermischen Wirkungsgrades von Gasturbinen

Fertigkeiten

- Fertigkeit zur selbstständigen Berechnung von Kreiselpumpen- und Wasserkraftanlagen auf Grundlage der behandelten Gesetzmäßigkeiten und Methoden
- Fertigkeit zur eindimensionalen Berechnung von Strömungsmaschinen
- Fertigkeit zur Auswahl der am besten geeigneten Maschinenbauart, gemessen an den Gegebenheiten und Anforderungen der Anlage
- Fertigkeit zur eindimensionalen Berechnung integraler Eckdaten (Nutzleistung, thermischer Wirkungsgrad etc.) von Gasturbinen ohne und mit Prozessverbesserungen

Kompetenzen

- Beurteilung der Kavitationsgefahr in Kreiselpumpen und Ermittlung der maximalen geodätischen Saughöhe für kavitationsfreien Betrieb
- Bestimmung des Betriebspunktes und Ermittlung der Anlagenkennlinie für hydraulische und lufttechnische Anlagen
- Fundiertes, praxisbezogenes Arbeiten mit den Kennlinienblättern und Kennfeldern der Hersteller von Kreiselpumpen, Ventilatoren und Turboverdichtern
- Beurteilung der zu erwartenden Fördermengenänderungen der Arbeitsmaschine infolge von Betriebspunktverschiebungen in Anlagen ohne und mit statischen Anteilen

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>» Skript, Übungsaufgaben (auch zum Selbststudium), Formelsammlung, alte Prüfungsaufgaben</td>
</tr>
<tr>
<td>» Videoclips und Exponate</td>
</tr>
<tr>
<td>» Literaturliste mit vorlesungsbegleitender und weiterführender Literatur (Standardwerke)</td>
</tr>
<tr>
<td>» Liste mit Angaben zu Herstellern, Betreibern und Planern von Strömungsmaschinen</td>
</tr>
<tr>
<td>» Anschauungsmaterial und Demonstrationsversuche im Labor Strömungsmaschinen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Overheadprojektor, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auszug aus der umfangreichen Literaturliste mit mehr als 40 Einzeltiteln:</td>
</tr>
<tr>
<td>» Pfleiderer; Petermann: Strömungsmaschinen, 7. Auflage, Springer 2005</td>
</tr>
<tr>
<td>» Sigloch, Herbert: Strömungsmaschinen, 4. Auflage, Hanser, 2009</td>
</tr>
<tr>
<td>» Bohl/Elmendorf: Strömungsmaschinen (Bd. 1+2), 10. + 7. Auflage,), Vogel, 2008 + 2005</td>
</tr>
<tr>
<td>» Kalide: Energieumwandlung in Kraft- und Arbeitsmaschinen, 10. Auflage, Hanser, 2010</td>
</tr>
<tr>
<td>Modulbezeichnung (ggf. englische Bezeichnung)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Strömungsmechanik (Fluid Mechanics)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stephan Lämmlein</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Mathematik 1, Mathematik 2, Technische Mechanik

Inhalte

Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Strömungsmechanik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Strömungsmechanik (Fluid Mechanics)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strömungsmechanik</td>
<td>SM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Stephan Lämmlein</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Gerhard Goldmann</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Stephan Lämmlein</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Oliver Webel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht, 15% Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4 SWS</td>
<td>Deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td></td>
</tr>
<tr>
<td>Vor- und Nachbereitung: 62 h</td>
<td>Prüfungsvorbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte

- Überblick und Anwendung der Strömungsmechanik im Maschinenbau
- Physikalische Eigenschaften von Fluiden
- Hydrostatik, Kräfte auf ebene und gekrümme Wände, Atmosphäre
- Hydrodynamik (reibungsfrei), Strömungssichtbarmachung
- Kontinuitätsgleichung
- Bernoullische Gleichung, stationär, instationär
- Impulssatz, integrale Kräfte umströmter Bauteile
- Laminare und turbulente Strömung, Ähnlichkeitsgesetze
- Rohrleitungsverluste
- Einführung in Überschallströmungen

Lernziele/Lernergebnisse/Kompetenzen

Fertigkeiten

- Skizzieren von Druck- und Belastungsverteilungen
- Berechnung hydrostatischer Drücke und Kräfte
- Berechnung von Drücken in beschleunigten oder rotierenden Behältern
- Berechnung von Drücken in strömenden Medien (reibungsfrei)
- Berechnung des Durchsatz von stationären und drehenden Anlagen
- Berechnung von Rohrleitungsverlusten laminar / turbulent

Kompetenzen
- Anwendung des Impulssatzes, Berechnung von Gesamtkräften
- Anwendung strömungsmechanischer Ähnlichkeitskenngrößen

Angebotene Lehrunterlagen
Übungsaufgaben, Formesammlung, Videos

Lehrmedien
Tafel, Rechner / Beamer, Videos

Literatur
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamik (Thermodynamics)</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Elsner</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Thermodynamik</td>
<td>5 SWS</td>
<td>6</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamik</td>
<td>TD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Elsner</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Michael Elsner</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christian Rechenauer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht, Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 h</td>
<td>110 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Thermodynamische Grundbegriffe
- Hauptsätze der Thermodynamik
- Zustandsgleichungen von idealen Gasen und Gasmischungen
- Zustandsänderungen idealer Gase
- Zustandsgleichungen von realen Gasen und Dämpfen
- Kreisprozesse mit Gasen und Dämpfen
- Mischungen von Gasen und Dämpfen (feuchte Luft)
- Grundlagen der Verbrennungsrechnung

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnis der Gesetzmäßigkeiten der Energieumwandlung
- Kenntnis der Eigenschaften und des Verhaltens von Gasen und Dämpfen
- Kenntnis der praxisrelevanten Kreisprozesse

Fertigkeiten

- Fertigkeit zur Berechnung von Energieumwandlungen und Kreisprozessen
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Thermodynamik (Thermodynamics)

- Fertigkeit zur Berechnung der Eigenschaften von Gasen und Dämpfen
- Fertigkeit zur Berechnung der Zustandsänderungen von Gasen und Dämpfen

<table>
<thead>
<tr>
<th>Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kompetenz zur Beurteilung von Verfahren der Energieumwandlung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Overheadprojektor, Rechner / Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeübertragung (Heat Transfer)</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wärmeübertragung</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Stand: 17.10.2016
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeübertragung</td>
<td>WUE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Belal Dawoud</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Lex</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht, Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>62 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Grundlagen der Wärmeübertragung
- Differentialgleichung der Wärmeleitung mit Randbedingungen
- Stationäre, eindimensionale Wärmeleitung
- Wärmiedurchgang durch ebene und gekrümmte Geometrien
- Instationärer Wärmetransport
 - Modell des ideal gerührten Behälters
 - Modell des halbunendlichen Körpers

- Konvektiver Wärmetransport
 - Erzwungene Konvektion
 - Freie Konvektion

- Wärmeübertrager (Bauarten/Stromführungen/Bilanzierung/Auslegung)
- Wärmestrahlung (Grundlagen, Netto-Wärmetransport)
- Auswahlkapitel der Wärmeübertragung
 - Rippen zur Verbesserung des Wärmeübergangs
 - Wärmetransport bei Kondensation und Verdampfung
Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnis der Herleitung dimensionsloser Kennzahlen
- Kenntnis der Temperatur- und Geschwindigkeitsprofile bei freier und erzwungener Konvektion

Fertigkeiten
- Fertigkeit zur Differenzierung der jeweiligen Wärmetransportphänomene (Wärmeleitung/ Konvektion/Strahlung)
- Fertigkeit zur Bilanzierung von Wärme- und Enthalpiestromen
- Fertigkeit zur Dimensionierung von Wärmédämmsschichten
- Fertigkeit zur Berechnung von Temperaturen (stationäre/transient), thermischen Widerständen, Wärmeübergangskoeffizienten und Strahlungsgrößen
- Fertigkeit zur Bilanzierung von Wärmeübertragern und zur Bestimmung der notwendigen Fläche
- Fertigkeit im Umgang mit eindimensionalen Differentialgleichungen und Randbedingungen zur Ermittlung des Temperaturverlaufs
- Fertigkeit im Umgang mit Stoffwerttabellen

Angebotene Lehrunterlagen

Arbeitsunterlagen, Aufgabensammlung, Folien-Handout

Lehrmedien

Rechner/Beamer, Overheadprojektor, Tafel

Literatur

Baehr/Stephan: Wärme- und Stoffübertragung, 2010, Springer Verlag

Wagner: Wärmeübertragung, 1998, Vogel Verlag
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab für Regelungstechnik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Birgit Rösel</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>4</td>
</tr>
</tbody>
</table>

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Matlab für Regelungstechnik</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

Matlab für Regelungstechnik

LV-Kurzbezeichnung: MRT

Verantwortliche/r
Prof. Dr. Birgit Rösel

Fakultät
Elektro- und Informationstechnik

Lehrende/Dozierende
Prof. Dr. Birgit Rösel

Angebotsfrequenz
nur im Sommersemester

Lehrform
Seminaristischer Unterricht mit 50% Übungen

Studiensemester gemäß Studienplan

Lehrumfang
4 SWS

Lehrsprache
deutsch

Arbeitsaufwand
4 [ECTS-Credits]

Zeitaufwand:

Präsenzstudium
56 h

Eigenstudium
Vor- und Nachbereitung: 56 h
Prüfungsvorbereitung: 8 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte

Einführung in Matlab und Simulink

Lernziele/Lernergebnisse/Kompetenzen

- Grundkenntnisse der Programmierung in Matlab und Simulink
- Erlernen der wichtigsten Befehle und Routinen von Matlab-Simulink
- Festigung der Kenntnisse regelungstechnischer Grundprinzipien
- Fähigkeit, mit Matlab/Simulink Programme zur Lösung technischer Probleme zu erstellen
- Kompetenz zur selbständigen Einarbeitung in weitergehende Programmiertechniken
- Kompetenz zum selbständigen Erlernen der Nutzung von Matlab Toolboxen

Angebotene Lehrunterlagen

Beispielprogramme

Lehrmedien

Rechner/Beamer, Tafel

Literatur

Pieruszka, Wolf-Dieter: Matlab und Simulink in der Ingenieurpraxis. Springer 2014
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefung Mess- und Sensortechnik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mikhail Chamonine</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

| Schwerpunkt Wahlpflichtmodul | 4 |

Inhalte

Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vertiefung Mess- und Sensortechnik</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Stand: 17. 10. 2016

Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefung Mess- und Sensortechnik</td>
<td>VMS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mikhail Chamonine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mikhail Chamonine</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Anton Horn</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Roland Mandl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Laborarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>28 h</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ausgewählte Sensorprinzipien und Bauelemente</td>
</tr>
<tr>
<td>• Ausgewählte Mess- und Sensorkonzepte (Sensornetzwerke, Sensorcluster)</td>
</tr>
<tr>
<td>• Ausgewählte aktuelle Forschungs- und Entwicklungsthemen im Bereich Messtechnik und Sensorik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fähigkeit, aktuelle Fachliteratur zu verstehen und auszuwerten</td>
</tr>
<tr>
<td>• Fähigkeit, aktuelle Forschungsthemen im Bereich Mess- und Sensortechnik zu verstehen</td>
</tr>
<tr>
<td>• Fähigkeit, komplexe Aufgabenstellungen zu definieren und eigenständig zu bearbeiten</td>
</tr>
<tr>
<td>• Fähigkeit, komplexe Untersuchungen zu aktuellen Themen durchzuführen</td>
</tr>
<tr>
<td>• Fähigkeit, eigene Ergebnisse professionell aufzubereiten und zu präsentieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsblätter, aktuelle Fachliteratur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Projektor, Laborversuche</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse: GE1, GE2, MT</td>
</tr>
</tbody>
</table>
Modulbezeichnung (ggf. englische Bezeichnung)

Antriebstechnik (Electrical Drives)

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Anton Haumer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

Elektro- und Informationstechnik
Mechatronik

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Grundlagen der Elektrotechnik 1-3, Elektrische Maschinen

Inhalte

- Aufbau, Wirkungsweise und Betriebsverhalten von elektrischen Antrieben
- Drehzahlverstellung von Gleichstrom- und Drehstrommaschinen mit leistungselektronischen Stromrichtern/Frequenzumrichtern

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Fundiertes Wissen über das Zusammenwirken von mechanischen Arbeitsmaschinen und elektrischen Antriebsmaschinen
- Kenntnisse der Funktionsweise von Frequenzumrichtern

Kompetenzen

- Kompetenz elektromechanische Antriebe aus mechanischen Arbeitsmaschinen, elektrischen Maschinen und leistungselektronischen Stromrichtern sicher zu projektieren

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Antriebstechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Antriebstechnik (Electrical Drives)

Lehrveranstaltung	LV-Kurzbezeichnung
Antriebstechnik | AT

Verantwortliche/r	Fakultät
Prof. Anton Haumer

Lehrende/Dozierende	Angebotsfrequenz
Prof. Anton Haumer
Prof. Dr. Bernhard Hopfensperger

in jedem Semester

Lehrform
Seminaristischer Unterricht, 10-15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
56 h

Eigenstudium
Vor- und Nachbereitung: 62 h
Prüfungsvorbereitung: 32 h

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th>siehe Studienplantabelle</th>
</tr>
</thead>
</table>

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
Die Vorlesung „Antriebstechnik“ befasst sich mit dem Aufbau, der Wirkungsweise und dem Betriebsverhalten von elektrischen Antrieben.
- Prinzip eines elektrischen Antriebs mit elektrischer Antriebsmaschine, Getriebe, Arbeitsmaschine, Stromrichter, Energieversorgung, Steuerung
- Untersuchung der Mechanik des Antriebes mit Bestimmung des stationären Arbeitspunktes, Drehmoment-Drehzahl-Kennlinien, Einfluss eines Getriebes sowie Berechnung von Hochlauf- und Bremsvorgängen
- Drehzahlverstellung von Gleichstrom- und Drehstrommaschinen mit leistungselektronischen Stromrichtern/Frequenzumrichtern

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Fundiertes Wissen über das Zusammenwirken von mechanischen Arbeitsmaschinen und elektrischen Antriebsmaschinen
- Kenntnisse der Funktionsweise von Frequenzumrichtern

Fertigkeiten
- Fertigkeit, Arbeitspunkte und Drehzahlverläufe von Antrieben zu berechnen
• Fertigkeit, Wärmemengen und Temperaturen Elektrischer Maschinen im stationären und dynamischen Betrieb zu berechnen

Kompetenzen
• Kompetenz elektromechanische Antriebe aus mechanischen Arbeitsmaschinen, elektrischen Maschinen und leistungselektronischen Stromrichtern sicher zu projektieren

Angebotene Lehrunterlagen
Präsentation, Beiblätter, Tafelbild, Übungen, Formelsammlung

Lehrmedien
Rechner/Beamer, Tafel

Literatur
Modulbezeichnung (ggf. englische Bezeichnung)

Apparate- und Rohrleitungsbau (Vessel and Pipe Engineering)

<table>
<thead>
<tr>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gerhard Goldmann</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Werkstofftechnik, Technische Mechanik

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Apparate- und Rohrleitungsbau</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparate- und Rohrleitungsbau</td>
<td>ARB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gerhard Goldmann</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gerhard Goldmann</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht: 30% Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>56 h</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gesetzliche Grundlagen und Regelwerke</td>
</tr>
<tr>
<td>• Festigkeitslehre im Apparate- und Rohrleitungsbau</td>
</tr>
<tr>
<td>• Werkstoffe in Apparate- und Rohrleitungsbau</td>
</tr>
<tr>
<td>• Auslegung von Apparaten und Rohrleitungen nach Regelwerk</td>
</tr>
<tr>
<td>• Sicherheit in Apparate- und Rohrleitungsbau</td>
</tr>
<tr>
<td>• Einführung in den Anlagenbau</td>
</tr>
<tr>
<td>• selbstständige Berechnung von Druckbehältern mittels Software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse</td>
</tr>
<tr>
<td>• Kenntnis grundlegender Regelwerke</td>
</tr>
<tr>
<td>• Grundlagen der Festigkeitslehre im Apparatebau</td>
</tr>
<tr>
<td>• Komponenten im Apparate- und Rohrleitungsbau</td>
</tr>
<tr>
<td>• Verständnis der Apparatekomponenten im Anlagenbau</td>
</tr>
<tr>
<td>• Sicherheit im Anlagenbau</td>
</tr>
<tr>
<td>• Darstellung von Prozessen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertigkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Berechnung von Apparaten und Rohrleitungen nach Gesichtspunkten der Festigkeitslehre und eines relevanten Regelwerkes</td>
</tr>
</tbody>
</table>

Stand: 17. 10. 2016
Ostbayerische Technische Hochschule Regensburg Seite 134
- Anwendung von Software zur Apparatedimensionierung
- Berechnung von Druckbehältern mittels Software

Kompetenzen
- Beurteilung von Apparaten und Rohrleitungen im Anlagenverbund

Angebotene Lehrunterlagen
Skript, Übungsaufgaben, Software, PCs im CIP-Pool

Lehrmedien
Tafel, Rechner, Beamer

Literatur
Richtlinie über Druckgeräte 97/23/EG des Europäischen Parlaments
AD-2000 Berechnungsblätter
Thier, Bernd: Apparate, Technik-Bau-Anwendung, Vulkan-Verlag Essen 1997
Stahlschlüssel-Taschenbuch Verlag Stahlschlüssel Wegst, 2004
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Ausgewählte Kapitel der Regelungstechnik (Selected Topics in Control Engineering) |

### Modulverantwortliche/r	Fakultät
Prof. Dr. Claus Brüdigam | Elektro- und Informationstechnik

### Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2 | Schwerpunkt Wahlpflichtmodul | 5 |

Empfohlene Vorkenntnisse
Regelungstechnik

Inhalte
siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ausgewählte Kapitel der Regelungstechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

| Ausgewählte Kapitel der Regelungstechnik | AKR |

Verantwortliche/r

| Prof. Dr. Claus Brüdigam | Elektro- und Informationstechnik |
| Prof. Dr. Claus Brüdigam | nur im Wintersemester |

Fakultät

| Elektro- und Informationstechnik |

Lehrform

Seminaristischer Unterricht und Laborpraktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Modellbildung (z.B. eines autonomen Fahrzeugs)
- Reglerentwurf (Wurzelortskurvenverfahren) und zeitdiskrete Realisierung auf einem Mikrocontroller (z.B. für ein autonomes Fahrzeug)
- Systembeschreibung im Zustandsraum
- Steuerbarkeit/Beobachtbarkeit
- Reglerentwurf mit Polvorgabe und vollständiger Zustandsrückführung
- Beobachterentwurf
- Zeitdiskrete Systembeschreibung
- Realisierung von zeitdiskreten Beobachterreglern auf Mikrocontrollern

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnis der grundlegenden Ideen der Zustandsraumdarstellung, der Zustandsregelung und der zeitdiskreten Systembeschreibung

Fertigkeiten

- Berechnung eines Reglers aufgrund einer vorgegebenen Problemstellung
Kompetenzen

- Anwendung der erworbenen Kenntnisse um passende Regelalgorithmen auszulegen und auf Mikrocontrollern zu implementieren, zu bewerten und zu optimieren

Angebotene Lehrunterlagen

Hilfsblätter, Mikrocontroller Entwicklungsumgebung, Beispielprogramme

Lehrmedien

Tafel, Overhead-Projektor, Beamer, Matlab/Simulink, Laboraufbauten

Literatur

G. Schulz: Regelungstechnik 2 (Mehrgrößenregelung, Digitale Regelungstechnik, Fuzzy-Regelung). Oldenbourg Verlag München

O. Föllinger: Lineare Abtastsysteme. Oldenbourg Verlag, München

H. Unbehauen: Regelungstechnik II - Zustandsregelungen, digitale und nicht-lineare Regelsysteme. Vieweg Verlag, Braunschweig

J. Lunze: Regelungstechnik 2 - Mehrgrößensysteme, Digitale Regelung: Springer Verlag, Berlin

E.-G. Feindt: Regeln mit dem Rechner, Abtastregelungen mit besonderer Berück-sichtigung der digitalen Regelungen. Oldenbourg Verlag

Angermann, Beuschel, Rau, Wohlfarth: Matlab - Simulink - Stateflow. Oldenbourg Verlag München

Weitere Informationen zur Lehrveranstaltung

Maximal 18 Teilnehmer
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Biomasse (Biomass)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Inhalte
Siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen
Siehe Veranstaltung

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Biomasse</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 17. 10. 2016

Ostbayerische Technische Hochschule Regensburg
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kürzel/Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse</td>
<td>BIM</td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Robert Leinfelder (Maschinenbau)

Lehrende/Dozierende
- Prof. Dr. Robert Leinfelder

Lehrform
- Seminaristischer Unterricht: 20-30 % Übungsanteil

Studiensemester
- gemäß Studienplan

Lehrumfang
- [SWS oder UE]

Lehrsprache
- deutsch

Arbeitsaufwand
- [ECTS-Credits]

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:*

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
- siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
- siehe Studienplantabelle

Inhalte
- Einordnung der Biomasse als Energiewandlungssystem in den Energiesektor
- Grundlagen zur Biomasse (Entstehung, Aufbau, Stoffkreislauf, Potential)
- Thermochemische Umwandlung von Biomasse (Pyrolyse, Vergasung, Verkohlung, Verflüssigung, vollständige Oxidation)
- Verbrennungsrechnung
- Feuerungsanlagen
- Biogasanlagen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnis der Grundlagen zu Biomasse (Entstehung, Aufbau, derzeitige Nutzung, Potentiale)
- Kenntnis von Biomasse-Konversionsverfahren (thermo-chemisch, bio-chemisch)
- Kenntnis von Biomasse-Konversionsanlagen

Fertigkeiten
- Fertigkeit der energetischen und technischen Bewertung einer Auswahl von Biomasse-Energiewandlungsanlagen auf Basis von Biomasse
- Fertigkeit zur technischen Bewertung von Biomasse-Konversionsanlagen
<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Übungen, Fachbücher</td>
</tr>
<tr>
<td>Lehrmedien</td>
</tr>
<tr>
<td>Overheadprojektor, Rechner/Beamer, Tafel</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>Kaltschmitt, Hartmann: Energie aus Biomasse, Springer Verlag, 2009</td>
</tr>
<tr>
<td>Biotechnologische Energieumwandlung, T. Bley, Springer Verlag, 2009</td>
</tr>
<tr>
<td>Modulbezeichnung (ggf. englische Bezeichnung)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Elektrische Netztechnik (Electrical Power Systems)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Grundlagen elektrischer Maschinen, Elektrische Anlagentechnik

Inhalte
siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen
siehe Veranstaltung

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elektrische Netztechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Elektrische Netztechnik</th>
</tr>
</thead>
</table>

LV-Kurzbezeichnung

ENT

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Oliver Brückl</th>
</tr>
</thead>
</table>

Fakultät

Elektro- und Informationstechnik

Lehrende/Dozierende

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit 10-15 % Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Historie der Stromversorgung
- Aufbau von Stromversorgungsnetzen
- Aufbau und Ersatzschaltbilder der Netzbetriebsmittel
- Auslegung und Betrieb von Netzen
- Kurzschluss und Erdschluss in Netzen
- Sternpunktbehandlung von elektrischen Netzen
- Innovative Bausteine und Konzepte zur Umsetzung der Energiewende

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnisse über den Aufbau, Auslegung und Betrieb von Stromversorgungsnetzen
- Kenntnisse über die Berechnung von Lastflüssen und Fehlerfällen
- Verstehen der „konservativen“ Haltung der Netzbetreiber

Fertigkeiten

- Berechnung von Lastflüssen und Kurzschlüssen
- Auswahl der Netztopologie und Netzbetriebsmittel zur Erfüllung einer Versorgungs- oder Entsorgungsaufgabe

Kompetenzen
- Projektierung von elektrischen Stromversorgungsnetzen in Grundzügen
- Auslegung der Netzbetriebsmittel
- Richte Einschätzung der Möglichkeiten der Smart-Grid-Technologien

Angebote Lehrunterlagen

- Skript, Präsentationsunterlagen und Übungen

Lehrmedien

- Tafel, Rechner/Beamer

Literatur

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiespeicher (Energy Storage)</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche/r	Fakultät
Prof. Dr. Michael Sterner | Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Physik, Mathematik 1 und 2, Grundlagen der Elektrotechnik 1 und 2, Technische Mechanik, Werkstofftechnik

Inhalte

siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen

siehe Veranstaltung

<table>
<thead>
<tr>
<th>Zugeordnete Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Energiespeicher (Energy Storage)

Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENS</td>
</tr>
</tbody>
</table>

Verantwortliche/r	Fakultät
Prof. Dr. Michael Sterner | Elektro- und Informationstechnik
Lehrende/Dozierende | Angebotsfrequenz
---|---
Prof. Dr. Michael Sterner | jährlich

Lehrform
Seminaristischer Unterricht, Übungen, ca. 10-15%

Studiensemester
gemäß Studienplan
Lehrumfang [SWS oder UE]
Lehrsprache	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
4 SWS | deutsch | 5

Zeitaufwand:
Präsenzstudium
56 h | Vor- und Nachbereitung: 70 h

Eigenstudium
Prüfungsvorbereitung: 24 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
• Energiespeicher im Wandel der Zeit
• Definition und Klassifizierung von Energiespeichern
• Speicherbedarf in der Stromversorgung
• Speicherbedarf in der Wärmeversorgung
• Speicherbedarf im Verkehrssektor
• Elektrische Energiespeicher
• Elektrochemische Energiespeicher
• Chemische Energiespeicher
• Mechanische Energiespeicher
• Thermische Energiespeicher
• Lastmanagement als Energiespeicher
• Vergleich der Speichersysteme
• Speicherintegration in einzelnen Energiesektoren
• Speicherintegration zur Kopplung unterschiedlicher Energiesektoren

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
• Verständnis für die Eigenschaften der wichtigsten Energiespeicher und deren Einbindung in Energiesysteme
• Verständnis der Definition von Energiespeichern

Stand: 17. 10. 2016
Ostbayrische Technische Hochschule Regensburg
• Kenntnis des Diskussionsstandes um den Bedarf an Speichern
• Kenntnis der Integrationsmöglichkeiten für Energiespeicher

Fertigkeiten
• Berechnung der wichtigsten technischen und wirtschaftlichen Speichergrößen
• Fertigkeit zur Auslegung von Energiespeichern
• Abschätzung von Potenzialen, Größen und Einordnungen von Energiespeicher untereinander

Angebotene Lehrunterlagen
Extra angefertigtes Buch zur Vorlesung, Skript, Übungen mit Lösungen, Datenblätter, Literaturliste

Lehrmedien
Tafel, Rechner/Beamer, Umfragen, Buchkapitel

Literatur
• Jossen, Weydanz: Moderne Akkumulatoren richtig einsetzen, 2006
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochtemperaturwerkstoffe (High Temperature Materials)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Hammer</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hochtemperaturwerkstoffe</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Verformungsverhalten unter erhöhten Betriebstemperaturen
- Verfestigende / entfestigende Mechanismen
- Kriechbelastung und Zeitstandextrapolation
- Isotherme Hochtemperaturermüdung: low cycle fatigue, high cycle fatigue
- Thermomechanische Ermüdung
- Bruchverhalten und Lebendauervorhersage
- Hochtemperaturwerkstoffe (Nickelbasislegierungen, Titanaluminide, pulvermetallurgische Werkstoffe, Keramiken)
- Erholung, Relaxation
- Mechanismen zur Festigkeitssteigerung unter Temperaturbelastung
- Wirkung von Schutzschichten

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Werkstoffauswahl bei Temperaturbeanspruchung
- Einflüsse auf die mechanischen Eigenschaften
- Bruchverhalten
- Lebendauervorhersage

Fertigkeiten
• Berücksichtigung verschiedenster Betriebseinflüsse unter hohen Temperaturen bei der Bauteilauslegung
• Anwendung bruchmechanischer Modelle
• Anwendungsgerechte Konstruktion und Berechnung von Bauteilen

Kompetenzen
• Selbständige Bewertung der Einflussfaktoren auf das Bauteilverhalten
• Übertragung experimenteller Zusammenhänge auf das Bauteilverhalten

Angebotene Lehrunterlagen
Skript, Fachbücher, Publikationen

Lehrmedien
Tafel, Overheadprojektor, Rechner/Projektor

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Java |

Modulverantwortliche/r	Fakultät
Prof. Dr. Jürgen Mottok | Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Inhalte
siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Java</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Java

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java</td>
<td>Java</td>
</tr>
</tbody>
</table>

Verantwortliche/r Fakultät
Prof. Dr. Jürgen Mottok Elektro- und Informationstechnik
Lehrende/Dozierende Angebotsfrequenz
Prof. Dr. Jürgen Mottok jährlich

Lehrform
Vorlesung; Übungsanteil 10%

Studiensemester
gemäß Studienplan

Lehrumfang [SWS oder UE] Lehrsprache Arbeitsaufwand [ECTS-Credits]
4 SWS deutsch 5

Zeitaufwand:
Präsenzstudium
56 h
Vor- und Nachbereitung: 70 h
Prüfungsvorbereitung: 24 h

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Studien- und Prüfungsleistung
siehe Studienplantabelle

Inhalte
- Java als Programmiersprache I
 - Abstraktions- und Ausführungskonzepte der objekt-orientierten Programmierung
 - Aufbau und Struktur von Java-Programmen
- Internet-Grundlagen
- Java im Internet
- Java als Programmiersprache II
 - Klassendefinitionen, Instanzen
 - Java-Methoden und –Daten
 - Referenzsemantik und Auswirkungen
 - Referenzsemantik und Auswirkungen
 - Idiomatik der objekt-orientierten Programmierung in Java
- Verwendung des API
 - GUI-Anwendungen, Grafik, Visual Editor
 - Threads und Synchronisation
 - Client-Server Kommunikation über Sockets
<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse</td>
</tr>
<tr>
<td>• Kenntnisse von Syntax und Semantik von Java Programmen</td>
</tr>
<tr>
<td>Fertigkeiten</td>
</tr>
<tr>
<td>• Objektorientierter Entwurf eines Java – Programmes (Klassendiagramme, …)</td>
</tr>
<tr>
<td>• Lesen und Verstehen fremder Java - Programme</td>
</tr>
<tr>
<td>• Erstellen einfacher Algorithmen bzw. Anwendung geeigneter Algorithmen Java</td>
</tr>
<tr>
<td>• Fertigkeit, Java Programme mit grafischen Oberflächen zu schreiben</td>
</tr>
<tr>
<td>• Fertigkeit, fortgeschrittene Eigenschaften von Java anzuwenden</td>
</tr>
<tr>
<td>• Fertigkeit, Programme zu schreiben, die über Internet kommunizieren</td>
</tr>
<tr>
<td>Kompetenzen</td>
</tr>
<tr>
<td>• Eigenständiger Entwurf leistungsfähiger, fehlerfreier und robuste Java-Programme</td>
</tr>
<tr>
<td>• Gemeinsames Vorbereiten im Team, Kommentierung der Programme, gemeinsames Vorbereiten im Team, Kommentierung der Programme, Ergebnisse, Diskussion kontroverser Lösungsansätze</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Programme aus der Vorlesung, Links, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Tafel, Class room response system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Kraftwerksanlagen (Power Plant Technology)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraftwerksanlagen (Power Plant Technology)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Thermodynamik

Inhalte

siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen

siehe Veranstaltung

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kraftwerksanlagen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Kraftwerksanlagen (Power Plant Technology)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraftwerksanlagen</td>
<td>KRA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Leinfelder</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrtyp
Seminaristischer Unterricht, Übungsanteil 50%

Studiensemester gemäß Studienplan
Lehrumfang
[SWS oder UE]
Lehrsprache
deutsch
Arbeitsaufwand
[ECTS-Credits]

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
56 h

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Dampfkraftwerke, Gaskraftwerke, Gas- und Dampf-Kombikraftwerke, Kernkraftwerke
- Energiebereitstellung in Deutschland durch Kraftwerke
- Thermodynamische Grundlagen zur Energiewandlung in Kraftwerken
- Aufbau von Kraftwerken
- Thermodynamische Berechnungen zu Kraftwerken

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnis der Funktionsweise von Kraftwerken zur Stromgewinnung
- Kenntnis des Aufbaus und der Funktionen einzelner Kraftwerkskomponenten
- Kenntnis moderner Kraftwerksprozesse

Fertigkeiten
- Fertigkeit der energetischen Berechnung von Kraftwerken

Angebotene Lehrunterlagen
Skript, Übungen, Literaturliste

Lehrmedien
Rechner/Beamer, Tafel, Exponate
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>
Modulbezeichnung (ggf. englische Bezeichnung) | Modul-KzBez. oder Nr.
--- | ---
LabVIEW |

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>LabVIEW</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LabVIEW</td>
<td>LBV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Alois Schönberger (LB)</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht: 15-20 % Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
56 h

Eigenstudium
Vor- und Nachbereitung: 60 h
Prüfungsvorbereitung: 34 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Überblick über die grafischen Bedien- und Anzeigeelemente
- Grundlagen der Datenflusstechnik
- Überblick über Datentypen und Datenstrukturen
- Anwendung der grafischen Kontrollstrukturen
- Entwurf von State Machines
- Gestaltung von Bedienoberflächen
- Erstellen von Programmmodulen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kennenlernen und Anwenden der grafischen Kontrollstrukturen

Fertigkeiten
- Fertigkeit, grafische Programme selbstständig zu erstellen
- Fertigkeit, grafische Bedienoberflächen zu entwerfen
- Fertigkeit, komplexe grafische Designstrukturen zu entwerfen

Kompetenzen
- Analyse von technischen Aufgabenstellungen im Hinblick auf eine Umsetzung mit LABVIEW

Stand: 17. 10. 2016
Ostbayerische Technische Hochschule Regensburg
Seite 158
• Umsetzung gegebener technischer Aufgabenstellungen mit LABVIEW unter Beachtung von technischen und wirtschaftlichen Randbedingungen

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übungen, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechner/Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernward Mütterlein: Handbuch für die Programmierung mit Labview, Spektrum Akademischer Verlag, Juli 2008</td>
</tr>
<tr>
<td>R. Jamal / A. Hagestedt: Labview - Das Grundlagenbuch, Addison-Wesley, August 2004</td>
</tr>
<tr>
<td>Peter A. Blume: The Labview Style Book, Prentice Hall, 2004</td>
</tr>
</tbody>
</table>
Modulbezeichnung (ggf. englische Bezeichnung) | **Modul-KzBez. oder Nr.**
---|---
Mathematik 3 (Mathematics 3) | |

Modulverantwortliche/r	**Fakultät**
Prof. Dr. Wolfgang Lauf | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Mathematik 1 und 2

Inhalte
- Fourier-Reihen
- Fourier-Transformation
- Laplace-Transformation
- Grundlagen der Vektoranalysis

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnis grundlegender Begriffe, Festlegungen und Beispiele der Fourier-Reihe, Fourier-Transformation, Laplace-Transformation und Vektoranalysis

Fertigkeiten
- Korrekte Bestimmung von Fourier-Reihe, Fourier-Integral und diskreter Fourier-Transformierten
- Sichere Beherrschung der Transformationsregeln für die Laplace-Transformation
- Korrekte Berechnung von grundlegenden Größen der Vektoranalysis

Kompetenzen
- Einsatz von Fourier- und Laplace-Transformation zur Problemverpflanzung vom Zeit- in den Spektralbereich
- Sichere Anwendung der Laplace-Transformation auf lineare Differentialgleichungen
- Analyse von einfachen Netzwerken mittels Laplace-Transformation
- Überblick über grundlegende Größen der Vektoranalysis und ihre Bedeutung
Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>Mathematik 3</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA3</td>
<td>Mathematik 3</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Name</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Lehrende/Dozierende

<table>
<thead>
<tr>
<th>Namensangabe</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gerhard Dietel (LB)</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Michael Fröhlich</td>
<td></td>
</tr>
<tr>
<td>Dr. Detlef Gröger (LB)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Georg Illies</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Lauf</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Dietwald Schuster</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminartistischer Unterricht: ca. 20 % Übungsanteil

Studiensemester

<table>
<thead>
<tr>
<th>Gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>Deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>

Vor- und Nachbereitung: 66 h
Prüfungsvorbereitung: 28 h

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

- Fourier-Reihen
 - Schwingungen und periodische Funktionen
 - Fourier-Analyse

- Fourier-Transformation
 - Fourier-Integral
 - Fourier-Transformierte
 - Diskrete Fourier-Transformation

- Laplace-Transformation
 - Laplace-Transformierte
 - Inverse Laplace-Transformierte
 - Transformationsregeln
 - Anwendung auf Differentialgleichungen

- Grundlagen der Vektoranalysis
 - Skalar- und Vektorfelder
 - Gradient, Divergenz und Rotation
 - Kurvenintegrale
 - Oberflächenintegrale

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnis grundlegender Begriffe, Festlegungen und Beispiele der
 - Fourier-Reihe und -Transformation: z.B. Fourier-Koeffizienten, Darstellungsformen für Fourier-Transformierte
 - Laplace-Transformation: z.B. Transformationsregeln, Anwendungsbeispiele (u.a. RCL-Netzwerke)
 - Vektoranalysis: z.B. Differentialoperatoren (Gradient, Divergenz, Rotation), Integraltypen

Fertigkeiten
- Korrekte Bestimmung von Fourier-Reihe, -Integral und diskreter -Transformierten
- Sichere Beherrschung der Transformationsregeln für die Laplace-Transformation
- Korrekte Berechnung von grundlegenden Größen der Vektoranalysis

Kompetenzen
- Einsatz von Fourier- und Laplace-Transformation zur Problemverpflanzung vom Zeit- in den Spektralbereich
- Sichere Anwendung der Laplace-Transformation auf lineare Differentialgleichungen
- Analyse von einfachen Netzwerken mittels Laplace-Transformation
- Überblick über grundlegende Größen der Vektoranalysis und ihre Bedeutung

Angebotene Lehrunterlagen

- Übungen, Literaturliste
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheadprojektor, Tafel, Rechner, Beamer, Mathematische Software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meyberg, Vachenauer: Höhere Mathematik 2, 2005</td>
</tr>
<tr>
<td>Modulbezeichnung (ggf. englische Bezeichnung)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Netzplanung und Netzregelung (Networkplaning and grid control)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Grundlagen der Elektrotechnik, Energieverteilung

Inhalte
siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen
siehe Veranstaltung

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Netzplanung und Netzregelung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Netzplanung und Netzregelung (Networkplaning and grid control)

Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
<th>Netzplanung und Netzregelung</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
<th>Prof. Dr. Oliver Brückl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektro- und Informationstechnik</td>
<td>Angebotsfrequenz</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht: 10-15 % Übungsanteil

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>SWS oder UE</th>
<th>4 SWS</th>
</tr>
</thead>
</table>

Lehrumfang

<table>
<thead>
<tr>
<th>Lehrenfassung</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>作弊</td>
</tr>
</tbody>
</table>

Lehrsprache

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

Frequenz-Wirkleistungsregelung
- Leistungsregelung von konventionellen Dampfkraftwerken
- Netzkennlinienverfahren und dynamisches Verhalten der Primärregelung
- Regel- und Reserveleistungsarten und deren Bedarf

Spannungs-Blindleistungsregelung
- Grundlagen der Spannungsbeeinflussung durch Blindleistung
- Bereitstellung der Blindleistung
- Blindleistungsmangement

Netzplanung
- Spannungsbandproblem im Verteilungsnetz und Lösungsmöglichkeiten
- Praxisbeispiel: Netzanschluss einer 8-MW-PV-Anlage am MS-Netz

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- theoretische Kenntnisse über die Netzregelung
- Kenntnisse über die Stochastik der Prognosefehler und Kraftwerksausfälle
- theoretische und praxisnahe Kenntnisse über die Netzplanung
Kenntnisse über die Anforderungen, Probleme und Lösungsmaßnahmen beim Anschluss dezentraler Erzeugungsanlagen am Verteilungsnetz

Fertigkeiten
- Fertigkeit der wahrscheinlichkeitstheoretischen Ermittlung des Regelleistungsbedarfs

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folien, Skript inkl. Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Rechner/Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>IfE-Schriftenreihe Heft 23 - "Frequenz-Wirkleistungs- und Spannungs-Blindleistungs-Regelung", E & M Verlag, Herrsching</td>
</tr>
</tbody>
</table>
Modulbezeichnung (ggf. englische Bezeichnung) | Modul-KzBez. oder Nr.
--- | ---
Optoelektronik, LED- und Lasertechnik (Optoelectronics, LED- & Laser-Technology) |

### Modulverantwortliche/r	Fakultät
Prof. Dr. Heiko Unold | Elektro- und Informationstechnik

### Studiensemester gemäß Studienplan	Modulabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2 | Schwerpunkt Wahlpflichtmodul | 5

Empfohlene Vorkenntnisse
1. Studienabschnitt, Physik, Bauelemente und Elektronik

Inhalte
siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

Nr.	Bezeichnung der Veranstaltung	Lehrumfang [SWS o. UE]	Arbeitsaufwand [ECTS-Credits]
1. | Optoelektronik, LED- & Lasertechnik | 4 SWS | 5
Lehrveranstaltung

Optoelektronik, LED- & Lasertechnik

LV-Kurzbezeichnung
OLL

Verantwortliche/r

Prof. Dr. Heiko Unold

Fakultät

Lehrende/Dozierende

Angebotsfrequenz

Prof. Dr. Heiko Unold

jährlich

Lehrform

Seminaristischer Unterricht mit etwa 40 % Übungsanteil & Versuchen

Studiensemester

gemäß Studienplan

Lehrumfang

[SWS oder UE]

4 SWS

Lehrsprache

deutsch

Arbeitsaufwand

[ECTS-Credits]

5

Zeitaufwand:

Präsenzstudium

56 h

Eigenstudium

Vor- und Nachbereitung: 60 h

Prüfungsvorbereitung: 34 h

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

• Grundlagen der Optik (Strahlenoptik, Wellenmodell, Gauß-Strahlen)
• Detektion und Erzeugung von Licht
• Design & Herstellung optoelektronischer Bauelemente
• Bauformen, Eigenschaften und Anwendungen verschiedener Lasertypen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

• Kenntnis der grundlegenden Eigenschaften verschiedener Lasertypen
• Kenntnisse unterschiedlicher optischer Bauelemente, wie Photodioden und Linsen
• Grundverständnis der Funktionsweise und Herstellungsverfahren optoelektronischer Bauelemente

Fertigkeiten

• Fertigkeit, Schaltungen mit optoelektronischen Bauelementen zu analysieren, zu berechnen und zu entwerfen

Kompetenzen

• Kompetenz zur Auswahl geeigneter Laser für konkrete Anwendungen
• Kompetenz zur Entwicklung einfacher optischer Schaltungen anhand einer vorgegebenen Aufgabenstellung
Angebotene Lehrunterlagen

- Präsentationsfolien, Übungen, Simulationsdateien

Lehrmedien

- Rechner/Beamer, Tafel

Literatur

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaik (Photovoltaics)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Physik, Mathematik 1 und 2, Grundlagen der Elektrotechnik 1 und 2, Technische Mechanik, Werkstoffkunde

Inhalte
Siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen
Siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Photovoltaik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | PV
--- | ---
Modulname: Photovoltaik (Photovoltaics)

Verantwortliche/r	Fakultät
Prof. Dr. Michael Sterner | Elektro- und Informationstechnik
Lehrende/Dozierende | Angebotsfrequenz
--- | ---
Prof. Dr. Michael Sterner | jährlich

Lehrform
Seminaristischer Unterricht mit 10-15% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SWS oder UE</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Die Sonne als Energiequelle - Physikalische Grundlagen, Strahlungsgesetze
- Solarmeteorologie – Strahlungsarten, Einfluss der Atmosphäre auf die Solarstrahlung
- Solargeometrie – Berechnung von Sonnenposition und Einfallswinkel, Einstrahlungsarten auf horizontaler und geneigter Ebene, optimale Ausrichtung, Nachführung, Verschattung
- Messtechnik für Solarstrahlung
- Solarzellen: Funktionsprinzip, Photoeffekt, Aufbau, Elektrische Eigenschaften, Ersatzschaltbilder, Technologien, Herstellungsverfahren, Marktanteile
- Solargeneratoren: Aufbau, Funktionsweise, Verkabelung, Abschattung, Komponenten, Wechselrichter
- Wirtschaftlichkeit und Ökologie von PV-Anlagen: Investitionsrechnungen, Ökobilanzen (CO2, Umweltgifte), Emissionen (Elektrosmog, Lärm), Recycling, energetische Amortisation

Stand: 17. 10. 2016
Ostbayerische Technische Hochschule Regensburg Seite 172
Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnisse der Eigenschaften der Solarstrahlung und deren energetischen Nutzung für Photovoltaik, Solarthermische Kraftwerke und Anlagen
- Kenntnisse der Grundlagen der Photovoltaik, der Funktionsweise von PV-Zellen und PV-Modulen, der notwendigen Komponenten

Fertigkeiten
- Fertigkeit zur Berechnung von Einfallswinkel, Sonnenstand und Solarbahnen, Verschattungen
- Fertigkeit zur Auslegung von netzgekoppelten und autarken PV-Anlagen, inklusive Bewertung der Einsatzmöglichkeiten auf verschiedenen Gebäuden und Freiflächen
- Fertigkeiten zur Berechnung des Energieertrages, der Wirtschaftlichkeit und Abschätzung der Ökobilanzen
- Fertigkeit zur Beratung über PV-Anlagen und Diskussion im Kontext der Energiewende

Kompetenzen
- Kompetenzen durch Übungen für die Einsatzfelder der verschiedenen Anlagenkonzepte

Angebotene Lehrunterlagen
- Skript, Übungen mit Lösungen, Datenblätter, Literaturliste

Lehrmedien
- Tafel, Rechner/Beamer, Umfragen, Buchkapitel

Literatur
- Quaschning, V.: Regenerative Energiesysteme, Hanser Verlag, München, 2013
- Häberlin, H.: Photovoltaik, AZ Verlag, Aarau, 2010
- DGS: Leitfaden Photovoltaische Anlagen, DGS Berlin, (Deutsche Gesellschaft für Sonnenenergie), 2013
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulationstechniken mit Matlab (Simulation Techniques with MATLAB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

Elektro- und Informationstechnik

Mechatronik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Simulationstechniken mit Matlab</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Simulationstechniken mit Matlab (Simulation Techniques with MATLAB)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulationstechniken mit Matlab</td>
<td>SIM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Robert Sattler</td>
<td>jährlich</td>
</tr>
<tr>
<td>Prof. Dr. Roland Schiek</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seminaristischer Unterricht, Praktikum am Rechner mit 50% Übungen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>56 h</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in Matlab und Simulink</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundkenntnisse der Programmierung in Matlab und Simulink</td>
</tr>
<tr>
<td>Erlernen der wichtigsten Befehle und Routinen von Matlab-Simulink</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertigkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertigkeit, Matlab-Simulink Programme zur Lösung ingenieurtechnischer Probleme zu erstellen unter Nutzung der Matlab Hilfe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompetenz zur selbständigen Einarbeitung in weitergehende Programmiertechniken</td>
</tr>
<tr>
<td>Kompetenz zum selbständigen Erlernen der Nutzung von Matlab Toolboxen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beispielprogramme</td>
</tr>
</tbody>
</table>

Stand: 17. 10. 2016
Ostbayerische Technische Hochschule Regensburg
Seite 175
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechner/Beamer, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweizer, Wolfgang: Matlab kompakt. Oldenbourg V., München 2013</td>
</tr>
<tr>
<td>Angermann, Anne / Beuschel, Michael / Rau, Martin / Wohlfahrt, Ulrich: Matlab-Simulink-Stateflow. Oldenbourg Verlag, München 2009</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)
Modulname: Software Engineering

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Programmieren in C und C++ (Informatik 1, Praktikum Informatik 1, Informatik 2, Praktikum Informatik 2)

Inhalte
- Vorgehensmodellen und Phasen der Software Entwicklung
- Methodiken des Software-Tests und Software Qualitätssicherung
- Fortgeschrittene, objektorientierte Programmiertechniken
- Datenbanken
- Design Pattern
- Darlegung/Aufgabenstellung des durchzuführenden Software Projektes

Lernziele/Lernergebnisse/Kompetenzen
Kenntnisse
- Kenntnisse von Vorgehensmodellen der Softwareentwicklung
- Kenntnis verschiedener Phasenmodelle der Software-Entwicklung
- Kenntnis wichtiger Dokumentenschablonen im Software-Entwicklungsprozess

Fertigkeiten
- Pattern in den verschiedenen Phasen der Softwareentwicklung zu verwenden
- Fertigkeit, Pattern hinsichtlich non-funktionaler Anforderungen zu vergleichen
- Requirements formulieren
- Software-Design in UML durchführen
- Korrekte Implementierung in C/C++
- Techniken des Software Testens verwenden

Kompetenzen
- Eigenständig einen Software-Entwicklungsprozess anwenden
- Eigenständige Erfassung der Requirements
- Selbständige UML-Modellierung
- Selbständig Design Pattern für Problemlösungen identifizieren
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Software Engineering

- Robuste und korrekte Implementierung in C/C++

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Praktikum Software Engineering</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Software Engineering</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Praktikum Software Engineering</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Blockveranstaltung zur Durchführung eines Software Engineering Projektes

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 h</td>
<td>Vor- udn Nachbereitung: 32 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte
- Vorgehensmodellen und Phasen der Software Entwicklung
 - Wasserfall-Modell
 - V-Modell
 - W-Modell
 - Inkrementelle Modelle
 - eXTREME Programming
 - SCRUM

- Phasen der Software Entwicklung
 - Requirements Engineering
 - Analyse
 - Design
 - Implementierung
 - Modul-Test
 - Integrations-Test
 - System-Test
 - Abnahme-Test
 - Wartung

- Modellierungstechniken in der UML
 - Statisch (Klassendiagramm, ...)
 - Dynamisch (Sequenz-, Aktivitäts-, Kollaborations- und Zustand-Diagramm, ...)

- Methodiken des Software-Tests und Software Qualitätssicherung
- Review-Techniken
- Fortgeschrittene, objektorientierte Programmiertechniken
- Datenbanken
- Design Pattern
- Darlegung Aufgabenstellung des durchzuführenden Software Projektes

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Grundlegende Kenntnisse verschiedener Software Entwicklungsprozesse, insbesondere dem V-Modell
- Kenntnisse der Phasen im Software Entwicklungsprozess
- Methoden und Praktiken im Software Entwicklungsprozess
- Grundlegende Kenntnisse von Entwicklungswerkzeugen (beispielsweise UML-Tool)
- Dokumentation der Software Entwicklung

Fertigkeiten
- Korrekte Erfassung von Requirements
- Korrekt Klassenentwurf mit der UML, auch dynamische Sichten der UML
- Korrekte Programmierung mit Hilfe eines Coding-Standards
- Korrekte Durchführung Erstellung von Testfällen und Testdurchführung auf verschiedenen Testebenen

Kompetenzen
- Eigenständige Requirement-Elicitation
• Diskussion und Bewertung verschiedener UML-Entwürfe in Analyse und Design-Phase
 den Software-Entwurf betreffend
• Eigenständige Implementierung robusten C/C++-Quellcodes
• Kreatives Entwickeln von Testfällen und Verteidigung im Software Team
• Software Entwicklung im Team durchführen und Konflikte dabei lösen können

Angebotene Lehrunterlagen

Aufgabenstellungen, Hilfsprogramme für Grafikausgabe

Lehrmedien

PCs im CIP-Pool, Entwicklungsumgebungen, Tafel, Beamer

Literatur

- I. Sommerville, Software Engineering, Addison Wesley, 2009
- H. Balzert, Software-Technik, Band 1 und 2, Spektrum, 2000
- R. Isernhagen, Software-Technik in C und C++, Hanser, 2004
- http://de.selfhtml.org/
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering</td>
<td>SE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform

Vorlesung; Übungsanteil 10%

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium

<table>
<thead>
<tr>
<th>28 h</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor- und Nachbereitung: 46 h</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorbereitung: 16 h</td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle
Inhalte

- Vorgehensmodellen und Phasen der Software Entwicklung
 - Wasserfall-Modell
 - V-Modell
 - W-Modell
 - Inkrementelle Modelle
 - eXTREME Programming
 - SCRUM

- Phasen der Software Entwicklung
 - Requirements Engineering
 - Analyse
 - Design
 - Implementierung
 - Modul-Test
 - Integrations-Test
 - System-Test
 - Abnahme-Test
 - Wartung

- Modellierungstechniken in der UML
 - Statisch (Klassendiagramm, ...)
 - Dynamisch (Sequenz-, Aktivitäts-, Kollaborations- und Zustand-Diagramm, ...)

- Methodiken des Software-Tests und Software Qualitätssicherung
- Review-Techniken
- Fortgeschrittene, objektorientierte Programmiermethoden
- Datenbanken
- Design Pattern
- Darlegung Aufgabenstellung des durchzuführenden Software Projektes

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
 - Grundlegende Kenntnisse verschiedener Software Entwicklungsprozesse, insbesondere dem V-Modell
 - Kenntnisse der Phasen im Software Entwicklungsprozess
 - Methoden und Praktiken im Software Entwicklungsprozess
 - Grundlegende Kenntnisse von Entwicklungswerkzeugen (beispielsweise UML-Tool)
 - Dokumentation der Software Entwicklung

Fertigkeiten
 - Korrekte Erfassung von Requirements
 - Korrektter Klassenentwurf mit der UML, auch dynamische Sichten der UML
 - Korrekte Programmierung mit Hilfe eines Coding-Standards
 - Korrekte Durchführung Erstellung von Testfällen und Testdurchführung auf verschiedenen Testebenen

Kompetenzen
 - Eigenständige Requirement-Elicitation
Diskussion und Bewertung verschiedener UML-Entwürfe in Analyse und Design-Phase den Software-Entwurf betreffend
• Eigenständige Implementierung robusten C/C++-Quellcodes
• Kreatives Entwickeln von Testfällen und Verteidigung im Software Team
• Software Entwicklung im Team durchführen und Konflikte dabei lösen können

Angebotene Lehrunterlagen

• Vorgehensmodellen und Phasen der Software Entwicklung
• Wasserfall-Modell

Lehrmedien

Beamer, Tafel, Class room response system

Literatur

• I. Sommerville, Software Engineering, Addison Wesley, 2009
• H. Balzert, Software-Technik, Band 1 und 2, Spektrum, 2000
• R. Isernhagen, Software-Technik in C und C++, Hanser, 2004
• http://de.selfhtml.org/
• S.R.G. Fraser, Visual C++/CLI, Apress, 2006
Modulbezeichnung (ggf. englische Bezeichnung)
| Modulname: Solarthermie (Solar Thermal Energy) |

Modulverantwortliche/r
<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christian Rechenauer</td>
</tr>
</tbody>
</table>

Studiensemester

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Dr. Christian Rechenauer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modultyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Thermodynamik, Wärmeübertragung

Inhalte

siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen

siehe Veranstaltung

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solarthermie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS o. UE]</td>
</tr>
<tr>
<td>4 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 17. 10. 2016
Inhalte

Solarthermie für die WärmeverSORGUNG

- Solarkollektoren: Flachkollektor, Vakuumkollektoren, CPC-Kollektoren
- Komponenten einer thermischen Solaranlage: Speichertypen, Rohnetz, Ausdehnungsgefäß
- Anlagentechnik, hydraulische Verschaltung
- Solare Kühlung

SolarKRAFTWERKE

- Parabolspiegelkraftwerke
- Fresnel-Kraftwerke
- Solarturmkraftwerke
- Dish-Stirling-System
- Aufwindkraftwerke

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Kenntnisse der Eigenschaften solarthermischer Anlagen, Bewertung und Einsatzmöglichkeiten
Fertigkeiten

- Fertigkeiten zur Berechnung des Energieertrags, Wirtschaftlichkeit

Kompetenzen

- Kompetenzen zur Auswahl der Einsatzfelder der verschiedenen Anlagenkonzepte

Angebotene Lehrunterlagen

Skript

Lehrmedien

Overheadprojektor, Tafel, Rechner / Beamer

Literatur

Quaschning, V.: Regenerative Energiesysteme, Hanser Verlag, München, 2007
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemsimulation (Systems Simulation)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Voigt</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Empfohlene Vorkenntnisse

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Systemsimulation</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
<th>Systemsimulation</th>
</tr>
</thead>
</table>

Verantwortliche/r
- **Fakultät**
- Prof. Dr. Andreas Voigt

Lehrende/Dozierende
- Prof. Dr. Andreas Voigt

Angebotsfrequenz
- jährlich

Lehrform

Seminaristischer Unterricht und Praktikum (ca 60% Praktikumanteil)

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS oder UE</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

- siehe Studienplantabelle

Inhalte

- Numerische Simulation als relevanter Teil des Entwicklungsprozesses (Auffinden der Prinziplösung, Optimierung)
- Vermittlung der Grundlagen eines modernen und leistungsfähigen Simulationswerkzeugs: Strukturen, verallgemein. mathematische Beschreibung (Netzwerktheorie), numerische Lösung des adäquaten Gleichungssystems
- Arbeitweise von SIMULATION X anhand von Beispielen, eigenständiger Aufbau und Teilprogrammierung von geeigneten Modellen in unterschiedlichen physikalischen Domänen
- Summation der Erkenntnisse und Erfahrungen bei der schrittweisen Annäherung an ein komplexes System

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnisse der Funktion und der Kopplungsmöglichkeiten von Simulationskomponenten sowie der Lösungsalgorithmen für die gekoppelten Systeme

Fertigkeiten

- Fachübergreifende Denk- und Arbeitsweise durch Verhaltenssimulation von komplexen und zeitabhängigen technischen Systemen
Kompetenzen
- Kompetenz der Anwendung einer fachübergreifenden Software zur Simulation komplexer Funktionsbaugruppen und Systeme

Angebotene Lehrunterlagen

Vorlesungsbegleiter

Lehrmedien
- PC, Tafel, Overhead, Beamer

Literatur
- SimulationX: Manual und Element-Library
Modulname: Transformation der Energiesysteme (Transformation of power systems)

Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformation der Energiesysteme (Transformation of power systems)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Physik, Mathematik 1 und 2, Grundlagen der Elektrotechnik 1 und 2, Technische Mechanik, Werkstofftechnik, Anlagentechnik, Grundlagen Elektrischer Maschinen, Energiespeicher, Energiewirtschaft & Energieeffizienz

Inhalte
siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen
siehe Veranstaltung

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Transformation der Energiesysteme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Transformation der Energiesysteme</th>
<th>TES</th>
</tr>
</thead>
</table>

Lehrveranstaltungsdaten

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/Dozierende</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Michael Sterner</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, Übungen, Ausarbeitungen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Herausforderung in der Integration erneuerbarer Energien
- Flexibilitätsoptionen und Flexibilitätsmärkte
- Neues Strommarktdesign
- Integration von Photovoltaik-Anlagen – Prognosen, Regelleistung, Netzentegration
- Integration von Windenergieanlagen – Prognosen, Regelleistung, Netzentegration
- Speicherintegration im Stromsektor, Wärmesector und Verkehrssektor
- Speicherintegration zur Kopplung von Strom- und Wärmesector
- Speicherintegration zur Kopplung von Strom- und Verkehrssektor
- Aktuelle Themen der Netzentegration und des Speichereinsatzes
- Szenarien der Transformation von Energiesystemen auf regionaler, nationaler, EU und globaler Ebene – Energiebilanzen, Treibhausgasemissionen, Gesamtkosten

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Verständnis für die Herausforderung der Integration erneuerbarer Energien
- Kenntnis des Diskussionsstandes um die Weiterentwicklung der Strommärkte
- Abschätzung von Potenzialen der verschiedenen Flexibilitätsoptionen
- Verständnis der globalen Zusammenhänge der Energiewende und der Transformation

Fertigkeiten

Stand: 17. 10. 2016
Ostbayerische Technische Hochschule Regensburg
Seite 192
Fertigkeit zur Bewertung von Maßnahmen zur Integration erneuerbarer Energien in verschiedene Energiesysteme
Fertigkeit zur Anwendung von Wissen in der fachlichen Diskussion zur Energiewende
Fertigkeit zum prägnanten Zusammenfassen und Darstellen von wissenschaftlichen Texten

Angebotene Lehrunterlagen
Buch zu Energiespeichern, Skript, aktuelle Dokumente zum Thema, Literaturliste

Lehrmedien
Tafel, Rechner/Beamer, Umfragen, Ausarbeitungen der Gruppen, Buchkapitel

Literatur
- Aktuelle Studien und Szenarien von VDE, VDI, ZVEI, BMWi, BMUB, EU-Organisationen und globalen Organisationen (UN, IPCC)
Modulbezeichnung (ggf. englische Bezeichnung) | Modul-KzBez. oder Nr.
--- | ---
Verbrennungsmotoren (Internal Combustion Engines) |

Modulverantwortliche/r	Fakultät
Prof. Dr. Hans-Peter Rabl | Maschinenbau

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Verbrennungsmotoren</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
<th>Verbrennungsmotoren</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Hans-Peter Rabl</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Hans-Peter Rabl</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht, 15-20 % Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Prüfungsvorbereitung: 24 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Stand: 17. 10. 2016

Ostbayerische Technische Hochschule Regensburg

Seite 195
Inhalte

Einführung in die Funktionsweise von Verbrennungsmotoren

Thermodynamik des Verbrennungsmotors
- Thermodynamische Grundlagen und Vergleichsprozesse
- Motorische Verbrennung und Verbrennungsablauf
- Ladungswechsel
- Aufladung
- Druckverlaufsanalyse

Entstehung und Minderung von Abgasemissionen
- Schadstoffbildung
- Schadstoffreduzierung innermotorisch
- Schadstoffreduzierung durch Abgasnachbehandlung

Gemischbildungsverfahren
- Direkte Einspritzung
- Indirekte Einspritzung

Elektronische Motorsteuerung
- Funktionsstruktur und Motor-Betriebszustände
- Sensorik und Aktorik
- Ausgewählte Kapitel der Motorsteuerung (Drehmomentenmodell, Saugrohrmodell, Wandfilmmodell, Lambda-Regelung, ...)

Kraftstoffe, auch regenerativ

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- thermodynamische Arbeitsweise von Verbrennungsmotoren
- Verfahren der Gemischbildung
- Verbrennungsablauf und Schadstoffbildung
- Verfahren der Schadstoffreduzierung
- Motorsensorik und -aktorik
- Ausgewählte Kapitel der Motorsteuerung
- Kraftstoffe

Fertigkeiten
- Analyse von Verbrennungsmotoren durch thermodynamische Vergleichsprozesse
- Bewertung der Arbeitsverfahren bezüglich Leistung, Wirkungsgrad
- Analyse des Brennverlaufs und die Auswirkung auf motorischen Betrieb
- Bewertung von Verfahren der Abgasnachbehandlung
- Bewertung von Kraftstoffen auf ihre Verwendung in Verbrennungsmotoren

Kompetenzen
- Selbständige Beurteilung der aufgezeigten Bauteile, Methoden und Verfahren in Bezug auf die Erfüllung von Leistungs-, Wirkungsgrad-, Verbrennungsgeräusch- und Umweltaspektanforderungen
Selbständige Auswahl entsprechender Bauteile, Methoden und Verfahren zu einem verbrennungsmotorischen System, um Leistungs-, Wirkungsgrad-, Verbrennungsgeräusch- und Umweltanforderungen zu erfüllen

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Übungen, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponate, Overheadprojektor, Rechner/Beamer, Tafel, Videos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung (ggf. englische Bezeichnung)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Vertiefung Mikrocontrollertechnik (Advanced Microcontrol Technique)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Hans Meier</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

- Elektro- und Informationstechnik
- Mechatronik

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Folgeseite</td>
</tr>
</tbody>
</table>

Lernziele/Lernergebnisse/Kompetenzen

| siehe Folgeseite |

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vertiefung Mikrocontrollertechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname: Vertiefung Mikrocontrollertechnik (Advanced Microcontrol Technique)

Lehrveranstaltung	LV-Kurzbezeichnung
Vertiefung Mikrocontrollertechnik | VMC-B

Verantwortliche/r	Fakultät
Prof. Dr. Hans Meier

Lehrende/Dozierende	Angebotsfrequenz
Prof. Dr. Hans Meier | in jedem Semester

Lehrform
Seminar / Projektarbeit (100 % Übungsanteil)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

Preisenzstudium	Eigenstudium
56 h | Vor- und Nachbereitung: 70 h Prüfungsvorbereitung: 24 h

Studien- und Prüfungsleistung
siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplantabelle

Inhalte
- Bearbeitung eines Projekts mit µC (Hardware + Software)
- Erstellen von Programmen in C / Assembler, ggf. realtime BS
- Einarbeiten in neue µC-Familien, Evaluationsboards, Peripherie-Anbindung
- Bearbeiten überschaubarer Aufgaben (allein oder Teamarbeit bei größeren Aufgaben, Schnittstellenabsprache)
- fächerübergreifend: Schaltungsentwurf (analog/digital) /Leiterplatten-Design /
 mechanischer Aufbau (löten auch kleinere SMD-Bauteile) - Prototypenaufbau / Software-
 Erstellung (Assembler / C / RTX-Keil)
- EI-WIKI-Eintrag

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- Vertiefte Kenntnisse von Microcontrollern
- Kenntnisse der Peripheriekomponenten von Mikrocontrollern

Fertigkeiten
- Strukturierung eines Entwicklungsprojektes
- Zeitplanung und Aufwandsabschätzung
- Entwicklung von Teilaufgaben innerhalb des Entwicklungsprojektes
- Zusammenführung der Teilaufgaben zu einem Gesamtprojekt
- Fehlersuche, Fehleranalyse und Fehlerbehebung
- Dokumentation der Ergebnisse
- Präsentation der Ergebnisse

Kompetenzen

- Entwicklung eines mikrocontrollerbasierten Projektes anhand eines Lastenheftes
- Systematische Entwicklungsarbeit
- Selbstkritische Kontrolle und Diskussion der Ergebnisse
- Teamarbeit

Lehrmedien

Rechner/Beamer, Tafel, Overheadprojektor, Flipchart / Evaluationboards / Logikanalyzer / Mikroskop

Literatur

G. Schmitt, Mikrocomputertechnik mit dem µC C167 ..., Oldenbourg, Wisenschaftsverlag GmbH, 2000
Datenblätter (englisch) des benutzten Prozessors
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Wasserkraftwerke (Hydropower Plants) |

### Modulverantwortliche/r	Fakultät
Prof. Dr. Thomas Lex | Maschinenbau

### Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
2	Schwerpunkt Wahlpflichtmodul	5	

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wasserkraftwerke</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | Wasserkraftwerke | LV-Kurzbezeichnung | WKW
---|---|---|---
Verantwortliche/r | Fakultät | |
Prof. Dr. Thomas Lex | Maschinenbau | |
Lehrende/Dozierende | Angebotsfrequenz | |
Prof. Dr. Thomas Lex | jährlich | |
Lehrform | Seminaristischer Unterricht | |

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehramtgang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte

- Energie des Wassers
- Wasserkraftpotential
- Niederdruckanlagen
- Hochdruckanlagen inkl. Pumpspeicherkraftwerke
- Maschinen zur Energieerzeugung
- Planung und Projektierung von Wasserkraftanlagen
- Wasserkraft und Umwelt
- Gesetze und Verordnungen
- Alternative Wasserkraftkonzepte (z.B. Nutzung der Wellenenergie Gezeitenkraftwerke, etc)

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse

- Kenntnis der Situation der Wasserkraftpotentialsituation in Deutschland
- Kenntnis der wesentlichen Komponenten von Hoch- und Niederdruckanlagen sowie Pumpspeicherkraftwerken
- Kenntnisse über die jeweiligen Schritte in der Planung und Projektierung von Wasserkraftanlagen unter Berücksichtigung der Umweltauflagen sowie unter Berücksichtigung der Verordnungen und Gesetze
- Kenntnis über alternative Wasserkraftkonzepte
Fertigkeiten

- Fertigkeit zur energietechnischen Bilanzierung von Wasserkraftwerken
- Fertigkeit zur Ermittlung von standortbezogenen Wasserkraftpotentialen
- Fertigkeit zur Bemessung der wesentlichen Kraftwerkskomponenten
- Fertigkeit zur Auswahl und Bewertung geeigneter auf den Standort angepasster Maschinen zur Energieerzeugung

Angebotene Lehrunterlagen

Lehrmedien

Literatur

- Bohl W., Elmendorf W.: Strömungsmaschinen 1, Vogel Fachbuch, 2008
Name des Studiengangs:
Bachelor Regenerative Energietechnik u. Energieeffizienz (PO: 20152)

Modulname:
Windenergie (Wind energy)

Modulverantwortliche/r
Prof. Dr. Oliver Brückl

Fakultät
Elektro- und Informationstechnik

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Strömungsmaschinen, Grundlagen elektrischer Maschinen

Inhalte
siehe Veranstaltung

Lernziele/Lernergebnisse/Kompetenzen
siehe Veranstaltung

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Windenergie</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 17. 10. 2016
Ostbayerische Technische Hochschule Regensburg
Seite 204
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie</td>
<td>WMT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/Dozierende</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit 10-15 % Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Prüfungsvorbereitung: 24 h</th>
<th>Vor- und Nachbereitung: 70 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>56 h</td>
<td>24 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Historie der Windenergienutzung</td>
</tr>
<tr>
<td>• Meteorologische Grundlagen</td>
</tr>
<tr>
<td>• Zirkulations- und Strömungssysteme</td>
</tr>
<tr>
<td>• Grundlagen der atmosphärischen Dynamik</td>
</tr>
<tr>
<td>• Statistische Beschreibung der Windverhältnisse</td>
</tr>
<tr>
<td>• Wirkungsweise, Aerodynamik und Regelung von Windenergieanlagen</td>
</tr>
<tr>
<td>• Aufbau, Komponenten und Netzanbindung von Windenergieanlagen</td>
</tr>
<tr>
<td>• Projektierung von Windparks</td>
</tr>
<tr>
<td>• Offshore-Windenergienutzung</td>
</tr>
<tr>
<td>• Potential und Kosten der Windenergie</td>
</tr>
</tbody>
</table>

Lernziele/Lernergebnisse/Kompetenzen

<table>
<thead>
<tr>
<th>Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kenntnisse über die meteorologischen, physikalischen, technischen und wirtschaftlichen Aspekte der Windenergienutzung</td>
</tr>
<tr>
<td>• Verstehen der atmosphärischen Dynamik und ihrer Einflussfaktoren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertigkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Berechnung von Windverhältnissen und der Leistungsabgabe von Windenergieanlagen</td>
</tr>
<tr>
<td>• Ermittlung des Windpotenzials</td>
</tr>
</tbody>
</table>
• Erklärung der Eigenschaften und Anwendungsfälle der verschiedenen Windenergieanlagenkonzepte

Kompetenzen
• Durchführung von Windfeldmodellierungen
• Erstellung von Standortanalysen mit Ertragsabschätzung und Wirtschaftlichkeitseinschätzung
• Projektierung von Windenergieanlagen

Angebotene Lehrunterlagen
- Skript, Präsentationsunterlagen und Übungen

Lehrmedien
- Tafel, Rechner/Beamer

Literatur
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Sensor Networks</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Schubert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

Zuordnung zu weiteren Studiengängen

- Mechatronik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Schwerpunkt Wahlpflichtmodul</td>
<td></td>
<td></td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Inhalte

siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen

siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wireless Sensor Networks</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
--- | ---
Wireless Sensor Networks | WSN

Verantwortliche/r	Fakultät
Prof. Dr. Martin Schubert | Elektro- und Informationstechnik |
Lehrende/Dozierende | Angebotsfrequenz |
Prof. Dr. Martin Schubert | in jedem Semester |

Lehrform
1/3 Unterricht, 1/3 Laborpraktika, 1/3 Projekt

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
6. oder 7 | 4 SWS | englisch | 5 |

Zeitaufwand:

Präsenzstudium	Eigenstudium
54 h | Vor- und Nachbereitung: 76 h, Prüfungsvorbereitung: 20 h |

Studien- und Prüfungsleistung

siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplantabelle

Inhalte
- Funknetzwerke, Netzwerk-Topologien, LowPower Systeme
- Wireless Sensor Networks sowie Internet of Things
- µController-Programmierung in C
- Protokolle der Datenübertragung, Schwerpunkt MRFI
- Verschlüsselung, FehlererkennungEinsatz von Sensoren in Funksystemen

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse
- C Programmierung auf Ultra Low Power Mikrocontrollern
- Aufbau von Protokollen in Funknetzwerken im sub-1GHz Bereich, Beispiel MRFI
- Grundlagen digitaler Funkübertragung

Fertigkeiten
- Anwendung des MRFI Protokolls für ein Netzwerk mit mehreren Teilnehmern
- Einsatz von Sensoren in einem Funknetzwerk

Kompetenzen
- Funknetze analysieren, verstehen, beurteilen, modifizieren und selbst entwerfen.
<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Folien, Praktikumsanleitungen, Versuchsaufbauten, Beispielcode, Literaturliste</td>
</tr>
<tr>
<td>Lehrmedien</td>
</tr>
<tr>
<td>Tafel, Rechner + Beamer, Labormessplätze im Elektroniklabor der OTH Regensburg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>