<table>
<thead>
<tr>
<th>Course number</th>
<th>Course name</th>
<th>Code</th>
<th>Semester</th>
<th>Number of WSH</th>
<th>Module offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2b)</td>
<td>Material Flow and Factory Planning (Materialfluss- und Fabrikplanung)</td>
<td>MFP</td>
<td>2</td>
<td>4</td>
<td>every academic year (summer semester)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Tuition type</th>
<th>Compulsory/Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Galka</td>
<td>Seminar tuition</td>
<td>Elective module: Major Management and Logistics</td>
</tr>
</tbody>
</table>

Learning outcomes

On completing the module the students will have achieved the following learning outcomes on the basis of scientific methods:

Subject skills

Students have a knowledge of the major systems technologies used in material flow and factory planning. They are capable of methodically developing their own keys plans and an overall business schematic as well as outline layout plans for a company or department. Students have the skills needed for a methodical evaluation of planning alternatives and for a (rough) costing of the design scopes and calculating the budget and investment costs. They are able to calculate delay system models and to undertake the design of transport, handling and material flow systems. Students can carry out a dynamic investment calculation (net present value method, amortisation accounting).

Social skills

Students will be able to contribute appropriate positions to planning and decision processes on the basis of the knowledge and skills which they have acquired. They are able to present arguments appropriate to different target groups involved in the planning of material flow.

Method skills

Students are familiar with the planning content of the different levels and phases of factory planning. They are able to create a value stream map and to image material flow systems.

Personal skills

Students will be able to adopt positions which have a company's business objectives and the interests of its stakeholders as their focus. They are aware of the impact of the business decisions taken within the scope of material flow planning.

Content

- Basic design engineering (planning domains, system technologies)
- Planning systems (planning principles, planning sequence, planning phases, planning content, planning instruments, planning methods, planning aids)
- Evaluation methods (static/dynamic investment costing, cost/benefit analysis)
- Tendering and implementation (content of bid invitations, performance tests, technical availability, acceptance)
- Selected case studies: planning commercial premises, warehouse and picking planning, outer packaging line with palletisation)
- Special principles of structure planning (segmentation, the fractal factory)
- Value stream analysis, value stream-based system planning and design
- Basic elements of material flow systems, visualising material flow systems, delay system models
- Material flow analysis, the design of transport, handling and material flow systems

Literature

Required reading

Recommended reading
- each in their latest edition

Teaching and learning methods
Seminar tuition with the active participation of the students in the seminar sessions, supported by work sheets, lecture notes, PPT presentations, Videos and additional use of whiteboards

Type of examination/Requirements for the award of credit points
Written class exercise
Duration: 90 minutes

Other information
Excursions as applicable
Guest presentations as applicable

ECTS Credits
5

Workload
150 hours
Contact/attendance time: 60 h
Additional work: 90 h

Course language
German