Hinweise:

1. Die Angaben zum Arbeitsaufwand in der Form von ECTS-Credits in einem Modul in diesem Studiengang beruhen auf folgender Basis:

 1 ECTS-Credit entspricht in der Summe aus Präsenz und Selbststudium einer durchschnittlichen Arbeitsbelastung von 30 Stunden (45 Minuten Lehrveranstaltung werden als 1 Zeitstunde gerechnet).

2. Erläuterungen zum Aufbau des Modulhandbuchs

 Die Module sind nach Studienabschnitten unterteilt und innerhalb eines Abschnitts alphabetisch sortiert. Jedem Modul sind eine oder mehrere Veranstaltungen zugeordnet. Die Beschreibung der Veranstaltungen folgt jeweils im Anschluss an das Modul. Durch Klicken auf das Modul oder die Veranstaltung im Inhaltsverzeichnis gelangt man direkt auf die jeweilige Beschreibung im Modulhandbuch.

3. Auszug aus der Studien- und Prüfungsordnung für den Masterstudiengang Bauingenieurwesen (Civil Engineering) an der Ostbayerischen Technischen Hochschule Regensburg:

 § 5 Aufbau des Studiums und Regelstudienzeit

 (4) Mit der Prüfungsanmeldung im ersten Studiensemester muss die Wahl des Studienschwerpunkts erfolgen. Im Rahmen des gewählten Studienschwerpunkts müssen neben den Pflichtmodulen des Schwerpunkts (Anlage 1a bzw. 1b) 15 weitere Credits aus den einem Studienschwerpunkt zugeordneten Wahlpflichtmodulen (Anlage 2a bzw. 2b) erworben werden.

 (5) Die erforderlichen restlichen Module mit bis zu 20 Credits können aus dem verbleibenden Angebot der Pflicht- und Wahlpflichtmodule gewählt werden.

Hinweis für das Wintersemester 2020/21:

Modulliste

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Numerische Methoden und ausgewählte Kapitel der Mathematik</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.1 Numerische Methoden</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.2 Ausgewählte Kapitel der Mathematik</td>
<td>9</td>
</tr>
<tr>
<td>02</td>
<td>Numerische Verfahren in der Geotechnik</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2 Numerische Verfahren in der Geotechnik Veranstaltung</td>
<td>12</td>
</tr>
<tr>
<td>03</td>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3.1 Interkulturelle Kommunikation</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3.2 Technical English for Building and Infrastructure Rehabilitation</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>3.3 Verhandeln in Konfliktssituationen</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3.4 Technikfolgenabschätzung und ethische Verantwortung</td>
<td>22</td>
</tr>
<tr>
<td>04</td>
<td>Interdisziplinäres Projekt</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>04 Interdisziplinäres Projekt</td>
<td>25</td>
</tr>
<tr>
<td>05</td>
<td>Masterarbeit mit Präsentation</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>5.1 Schriftliche Ausarbeit</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>5.2 Mündliche Präsentation und Verteidigung</td>
<td>30</td>
</tr>
</tbody>
</table>

Schwerpunkt Bauen im Bestand

Schwerpunkt Bauen im Bestand (Pflichtmodule)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>Technologie der Baustoffe</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>06 Technologie der Baustoffe</td>
<td>33</td>
</tr>
<tr>
<td>07</td>
<td>Sicherheit von neuen und bestehenden Bauwerken</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>07 Sicherheit von neuen und bestehenden Bauwerken</td>
<td>37</td>
</tr>
<tr>
<td>08</td>
<td>Erhaltung und Instandsetzung von Betonbauten</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>08 Erhaltung und Instandsetzung von Betonbauten</td>
<td>40</td>
</tr>
</tbody>
</table>

Schwerpunkt Bauen im Bestand (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Erdbebensicherung von Bauwerken</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>12.1 Grundlagen der Erdbebensicherung</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>12.2 Verhaltensbasierte Auslegung der Erdbebensicherung</td>
<td>56</td>
</tr>
<tr>
<td>13</td>
<td>Ausgewählte Kapitel der Tragwerksanalyse</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>13.1 FE-Modellierung</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>13.2 Traglastberechnungen</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>13.3 Schalenstatik</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>Sonderbauweisen im Bestandsbau</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>14.1 Glasbau</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>14.2 Bauen mit Seilen</td>
<td>69</td>
</tr>
<tr>
<td>15</td>
<td>Brückenbau – Erhaltung und Ertüchtigung</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>15.1 Statische Überprüfung des Brückenbestandes mit Beispiel</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>15.2 Sanierungs- und Ertüchtigungskonzepte</td>
<td>74</td>
</tr>
<tr>
<td>16</td>
<td>Stahlverbundbau</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>16.1 Grundlagen des Stahlverbundbaus</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>16.2 Stahlverbundbrückenbau</td>
<td>79</td>
</tr>
<tr>
<td>17</td>
<td>Konstruieren im Stahlbetonbau</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>17.1 Stabwerkmodelle im Stahlbetonbau</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>17.2 Ausgewählte Kapitel des Stahlbetonbaus</td>
<td>84</td>
</tr>
<tr>
<td>18</td>
<td>Bauphysik – Messungen und Diagnosen</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>18.1 Schall- und Lärmenschutz</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>18.2 Wärme- und Feuchteschutz</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>Ausgewählte Kapitel der Baustoffe in der Erhaltung</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>19 Ausgewählte Kapitel der Baustoffe in der Erhaltung</td>
<td>92</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Abschnitt</td>
<td>Titel</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Denkmal und Ingenieurtechnik</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Denkmal und Ingenieurtechnik</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Brandschutz in Neu- und Bestandsbauten</td>
</tr>
<tr>
<td>21.1</td>
<td></td>
<td>Brandschutz ingenieurwesen</td>
</tr>
<tr>
<td>21.2</td>
<td></td>
<td>Bemessung für den Brandfall</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Erweiterte betontechnologische Ausbildung (E-Schein)</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Erweiterte betontechnologische Ausbildung (E-Schein)</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Rückbau und Altlastensanierung</td>
</tr>
<tr>
<td>23.1</td>
<td></td>
<td>Gebäuderückbau: Probennahme, Bewertung, Planung / Altlasten in Boden und Grundwasser</td>
</tr>
<tr>
<td>23.2</td>
<td></td>
<td>Kontrollierter Rückbau: Erkundung, Entsorgung / Chemie der Altlasten und Nachweise im Labor</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Ertüchtigung von Gründungen und Erdbauwerken</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Ertüchtigung von Gründungen und Erdbauwerken</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>Praxis der Bau- und Bodendynamik</td>
</tr>
<tr>
<td>26.1</td>
<td></td>
<td>Praxis der Baudynamik</td>
</tr>
<tr>
<td>26.2</td>
<td></td>
<td>Praxis der Bodendynamik</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>Siedlungswasserwirtschaft – Erhalt und Ertüchtigung von Abwasserreinigungsanlagen</td>
</tr>
<tr>
<td>27.1</td>
<td></td>
<td>Technische und betriebswirtschaftliche Gesichtspunkte der Kläranlagensanierung</td>
</tr>
<tr>
<td>27.2</td>
<td></td>
<td>Energieeffizienz von Kläranlagen und Klärschlammbehandlung</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Siedlungswasserwirtschaft – Erhalt und Ertüchtigung von Abwasserableitungssystemen</td>
</tr>
<tr>
<td>28.1</td>
<td></td>
<td>Kanalunterhalt / GIS und hydrodynamische Kanalnetzberechnung</td>
</tr>
<tr>
<td>28.2</td>
<td></td>
<td>Sanierungsmethoden</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>Wasserbau – Erhalt und Ertüchtigung</td>
</tr>
<tr>
<td>29.1</td>
<td></td>
<td>Wasserkraftanlagen</td>
</tr>
<tr>
<td>29.2</td>
<td></td>
<td>Flussbau</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Straßenbau – Erhaltung, Umbau und Ausbau</td>
</tr>
<tr>
<td>30.1</td>
<td></td>
<td>Straßenerhaltung</td>
</tr>
<tr>
<td>30.2</td>
<td></td>
<td>Straßenumbau und -ausbau</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>Rechtliche Bewertung im Bestand</td>
</tr>
<tr>
<td>31.1</td>
<td></td>
<td>Öffentlich-rechtliche Belange bei der Planfeststellung und dem Projektmanagement in der Planung</td>
</tr>
<tr>
<td>31.2</td>
<td></td>
<td>Rechtliche Rahmenbedingungen rund um die Planung</td>
</tr>
<tr>
<td>31.3</td>
<td></td>
<td>Rechtliche Rahmenbedingungen rund um die Bauausführung (Bauvertragsrecht, Vergaberecht, Beweissicherung)</td>
</tr>
</tbody>
</table>

Schwerpunkt Digitales Bauen

Schwerpunkt Digitales Bauen (Pflichtmodule)

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Abschnitt</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td></td>
<td>Prozessübergreifende Modelle von der Planung über die Ausführung zum Betrieb</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Automatisierung von Modellierungsprozessen</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Automatisierung und Integration von Planungs- und Bauabwicklungsprozessen</td>
</tr>
</tbody>
</table>

Schwerpunkt Digitales Bauen (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Abschnitt</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td>Geodätische Bestandsaufnahme und Geodätische Überwachungsvermessung im Bauwesen</td>
</tr>
<tr>
<td>35.1</td>
<td></td>
<td>Geodätische Bestandsaufnahme</td>
</tr>
<tr>
<td>35.2</td>
<td></td>
<td>Geodätische Überwachungsvermessung im Bauwesen</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>Messverfahren für die Zustandsbewertung bautechnischer Strukturen</td>
</tr>
<tr>
<td>36.1</td>
<td></td>
<td>Grundlagen des Bauwerksmonitorings; Anforderungen an Mess- und Monitoringsysteme</td>
</tr>
<tr>
<td>36.2</td>
<td></td>
<td>Praxis des Bauzustandsmonitorings; moderne Monitoringverfahren</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>Visualisierung und Virtual Reality: BIM Livemodelle</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>Visualisierung und Virtual Reality: BIM Livemodelle</td>
</tr>
</tbody>
</table>
38 Lifecycle Management - Digitale Prozessmodellierung... 171
 38 Lifecycle Management - Digitale Prozessmodellierung... 172
39 Parametrisches und modellorientiertes Arbeiten... 174
 39.1 Grundlagen der Parametrik und des modellorientierten Arbeitens... 175
 39.2 BIM-Workflow in der Bauplanung anhand eines Hochbauprojektes.. 177
 39.3 Parametrische Modellierung Brückenbau... 179
40 BIM in der Planung und Entwurf von geotechnischen und Infrastrukturbauwerken....................... 182
 40 BIM in der Planung und Entwurf von geotechnischen und Infrastrukturbauwerken....................... 183
41 Workflows für strukturmechanische Modelle; Assoziative Kopplung von Planungs- und
 Tragwerksmodellen... 186
 41 Workflows für strukturmechanische Modelle; Assoziative Kopplung von Planungs- und
 Tragwerksmodellen... 187
42 Projektmanagement.. 190
 42 Projektmanagement.. 191
43 Facility Management.. 194
 43.1 Praktische und theoretische Grundaspekte des Facility-Managements.. 195
 43.2 Facility Management im gewerblichen und industriellen Sektor... 197
44 Digitaler Workflow für die Planung von Membranbauten.. 199
 44 Digitaler Workflow für die Planung von Membranbauten.. 200
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulname:</th>
<th>01 Numerische Methoden und ausgewählte Kapitel der Mathematik (Numerical Methods and Advanced Mathematics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-KzBez. oder Nr.</td>
<td>01</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
<th>Bauingenieurwesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td></td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.1 Numerische Methoden</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>1.2 Ausgewählte Kapitel der Mathematik</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Numerische Methoden (Numerical Methods and Advanced Mathematics)</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Klausur, Dauer: 60 Minuten

Inhalte

Iterationsverfahren: Fixpunktitration; Newton-Raphson-Iteration; baupraktische Beispiele, Nullstellensuche, numerische Integration

Eigenwert-Berechnung: Einführungsbeispiel; Eigenwerte und Stabilität; Numerische Eigenwertberechnung; Beispiele zur begeitenden und linearisierten Eigenwertanalyse

Kurvenverfolgung: Inkrementell-Iterative Vorgehensweise

Lösung linearer Gleichungssysteme:
Direkte Lösungsverfahren, iterative Lösungsverfahren.

Computerorientierte numerische Verfahren:
Iterative Verfahren: Theorie und programmtechnische Umsetzung auf Basis Excel-VBA.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- nichtlineare Gleichungssysteme mit Iterationsverfahren (Fixpunktitration, Newton-Raphson-Verfahren, Crisfield-Verfahren, Line-Search)) zu lösen (2)
- Eigenwertanalysen mit Iterationsverfahren (Inverse Iteration, Vorwärtsiteration) durchzuführen (2)
- die Grundzüge einer Kurvenverfolgung zu verstehen (1)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Iterationsverfahren im Rahmen von FE-Programmen anzuwenden und deren Ergebnisse
 und Ausgaben zu verstehen (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum

Lehrmedien
Vortragsvorlesung / e-Learning Veranstaltung (Teleteaching) mit Übungen am PC und
Tafelanschrieb

Literatur
Golub G.H., van Loan C.F.: Matrix Computations. The John Hopkins University Press,
Nahrstedt H.: Algorithmen für Ingenieure realisiert mit Visual Basic, Vieweg Verlag, Wiesbaden,
2005.
Skripten zu den Lehrveranstaltungen mit weiteren Literaturhinweisen.
Liste wissenschaftlicher Fachaufsätze und Dissertationen zu den Themen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
1.2 Ausgewählte Kapitel der Mathematik | 1.2

Verantwortliche/r | Fakultät
Prof. Dr. Susanne Rockinger | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Susanne Rockinger | in jedem Semester

Lehrform
Seminaristischer Unterricht

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
[SWS oder UE] | | | [ECTS-Credits]
2 SWS | deutsch | 2.5

Zeitauflaufwand:
Präsenzstudium | Eigenstudium
30 Stunden seminaristischer Unterricht (Präsenz) | 45 Stunden eigenverantwortliches Lernen (Eigenstudium)

Studien- und Prüfungsleistung
Studienleistung: keine
Prüfungsleistung: Klausur Dauer: 60 Minuten

Inhalte
Partielle Differentialgleichungen
- Fourierreihenentwicklung
- Partielle Differentialgleichungen: Klassifikation, Lösung der Wellengleichung, Lösung der Wärmeleitungsgleichung

Statistik
- Beschreibende Statistik: Empirische Verteilungsfunktion, Lagekennwerte, Streuungskennwerte, graphische Darstellungsformen
- Wahrscheinlichkeitsrechnung: Kombinatorik, Zufallsvariable, Verteilungsfunktion und Dichte, wichtige diskrete und stetige Verteilungen (z.B. Binomialverteilung, hypergeometrische Verteilung, Poisson-Verteilung, Gaußsche Normalverteilung, Exponentialverteilung, chi^2- Verteilung, t-Verteilung)
- Schließende Statistik: Parametertests, Hypothesentests, Verteilungstests

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- eine gegebene partielle Differentialgleichung zu klassifizieren (1)
- Lösungsverfahren für bestimmte, im Bauingenieurwesen häufig auftretende, Typen partieller Differentialgleichungen zu entwickeln (2)
- Anfangs- und Randbedingungen von partiellen Differentialgleichungen mit Hilfe der Methode der Fourieranalyse zu berücksichtigen (2)
- die Ergebnisse von Stichproben statistisch aufzubereiten und auszuwerten (2)
- Verfahren und Methoden der Wahrscheinlichkeitsrechnung zur Bearbeitung statistischer Fragestellungen anzuwenden (3)
- auf Basis statistischer Beobachtungen Schlüsse zu ziehen bzgl. unbekannter Parameter einer gegebenen Verteilung bzw. bzgl. einer unbekannten Verteilung (2)
- statistische Aussagen sicher zu interpretieren und einen Zusammenhang zwischen der Menge der verfügbaren Daten und der daraus resultierenden Vorhersage-Sicherheit und Vorhersage-Genauigkeit herzustellen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- mathematische und statistische Aufgabenstellungen aus dem Bereich des Bauingenieurwesens zu erfassen und zu analysieren (2)
- mathematische und statistische Zusammenhänge in korrekter Fachsprache wiederzugeben (2)
- fachliche Inhalte in Lerngruppen zu diskutieren (2)
- mathematische und statistische Aufgabenstellungen in einer Lerngruppe zu lösen (3)
- mathematische und statistische Aufgabenstellungen eigenständig zu lösen (3)

Angebotene Lehrunterlagen

Vorlesungsskriptum, umfangreiche Sammlung von Übungsaufgaben mit detaillierten Lösungswegen

Lehrmedien

Vortragsvorlesung / Gruppenarbeit (Beamer, Visualizer, Simulationen mit MAPLE)

Literatur

Liste wissenschaftlicher Fachaufsätze und Dissertationen zu den Themen.

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Mathematische Kenntnisse im Umfang des Moduls B1-MAB

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 Numerische Verfahren in der Geotechnik</td>
<td>02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Neidhart</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Grundkenntnisse in Bodenmechanik und Geotechnik sowie Mechanik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2 Numerische Verfahren in der Geotechnik Veranstaltung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

TM-Kurzbezeichnung

2 Numerische Verfahren in der Geotechnik Veranstaltung

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Neidhart</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Neidhart</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Labor- und Rechner-Praktikum/-Übungen

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staatliches</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium

<table>
<thead>
<tr>
<th>60 Stunden seminaristischer Unterricht (Präsenz)</th>
</tr>
</thead>
</table>

Eigenstudium

| 90 Stunden eigenverantwortliches Lernen, ergänzendes Literaturstudium, Studienarbeiten u.a. auch am Rechner |

Studien- und Prüfungsleistung

Prüfungsleistung: Portfolioprüfung

Inhalte

- Spannungs- und Verformungszustände; Spannungs-Dehungsbeziehungen/-tensoren, elastisches und elasto-plastisches Stoffverhalten
- Verzögerte Zusammendrückung (1D): Konsolidierung ein- und mehrschichtiger Böden, Konsolidierungsverhältnis (äquivalente Spannungen, Normal- und Überkonsolidierung), Sekundärsetzung (Kriechen), Viskosität (Zähigkeit)
- Triaxiales Spannungs-Verformungsverhalten: Versuchstypen (D, CU, UU, CVV), Spannungspfade und Spannungs-Dehungscurven, Dilatanz- und Kontraktanz, Entfestigung und Restscherfestigkeit, Scherfestigkeiten normal- und überkonsolidierter Böden, geschwindigkeitsabhängiges Verhalten, Hinweise zu zyklischen Versuchen.
- Plastisches Versagen von Boden: Statisches und kinematisches Kollaps-theorien, Anfangsstandsicherheit und Endstandsicherheit, Spannungsfelder und Geschwindigkeitsfelder, Kinematische Traglast- und Standsicherheits-Berechnung,
- Finites Spannungs-Verformungsverhalten: Fließregeln, Spannungsabhängigkeit der Steifigkeit, Modelle: Mohr-Coulomb, Cam-Clay (Soft-Soil), HS-Modell, Small-Strain-Modell, Ermittlung von Parametern für die Modelle
- Vorlesungsbegleitende Übungen am Rechner mit FE-Programm PLAXIS 2D: Traglast von Fundamenten, Last-Setzungsverhalten von Dämmen, Tiefgründungen, Standsicherheit von Geländesprüngen, Erddruckberechnungen, etc.
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- dreidimensionale Spannungs- und Dehnungszustände aufzustellen, zu bewerten und zu transformieren (3).
- das nichtlineare Stoffverhalten von Boden, Spannungs-Formänderungsbeziehungen und von Grenzzuständen zu verstehen. (2)
- Wechselwirkung zwischen Feststoff, Wasser und Luft im Boden berechnen (3)
- die maßgebenden Parameter aus Laborversuchen abzuleiten und in Stoffgesetzen einzugeben. (2)FEM- Berechnungen am Rechner selbstständig durchzuführen und die Ergebnisse zu bewerten (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- konstruktive Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihre Fachkenntnisse realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Skripten

Lehrmedien

Vortragsvorlesung mit Vizualizer, Laborpraktikum und Übungen am Rechner, Kompaktkurs FEM PLAXIS 2D

Literatur

- Witt (Hrsg.): Grundbautaschenbuch Band1 bis 3, Ernst & Sohn, Berlin.
- Empfehlungen der AK Numerik der DGGT, Essen.

Weitere Informationen zur Lehrveranstaltung

Siehe Kurs im E-Learning

Die Zahlen in Klammern geben die zu erreichenden Niveaupten an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 Allgemeinwissenschaftliches Wahlpflichtmodul (3 Softskills)</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Ottl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3.1 Interkulturelle Kommunikation</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>3.2 Technical English for Building and Infrastructure Rehabilitation</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>3.</td>
<td>3.3 Verhandeln in Konfliktsituationen</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>4.</td>
<td>3.4 Technikfolgenabschätzung und ethische Verantwortung</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
2 LV aus 3.1 bis 3.3 sind zu wählen
Teilmodul	TM-Kurzbezeichnung
3.1 Interkulturelle Kommunikation (3.1 Intercultural Communication) | 3.1

Verantwortliche/r | Fakultät
Prof. Dr. Andreas Maurial (LB) | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Andreas Maurial (LB) | in jedem Semester
Carmen Maurial (LB) |

Lehrform
Seminaristischer Unterricht mit Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Portfolioprüfung

Inhalte

Einführung in die Grundlagen und Konzepte der interkulturellen Handlungskompetenz; Kulturstandards als Beschreibungsparameter innerhalb einer Kultur (Kultur als Orientierungssystem);
Erkennen und Hinterfragen der Kulturstandards für den eigenen Kulturraum (aus Selbstsicht) sowie für fremde Kulturräume (über Fremdwahrnehmung);
 Reflexion über Probleme des interkulturellen Handelns aus verschiedenen Perspektiven (Perspektivenwechsel)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Fähigkeit in einer Fremdkultur kulturelle Differenzen wahrzunehmen (das Eigene und das Fremde); Fähigkeit zu interkulturellem Handeln in kulturellen Überschneidungssituationen, d. h. wenn es zu wechselseitigen Beziehungen zwischen Eigenem und Fremdem kommt; Nutzen der Akkulturationserfahrung in einer Fremdkultur als Lern- und Entwicklungschance.

Angebotene Lehrunterlagen
Vorlesungsskriptum

Lehrmedien
Seminar mit Beamerunterstützung, Overheadprojektor und Moderationsmedien
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)
Modulname: 03 Allgemeinwissenschaftliches Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26.10.2020
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)
Modulname: 03 Allgemeinwissenschaftliches Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Technical English for Building and Infrastructure Rehabilitation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Boland (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Paul Boland (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>englisch</td>
<td>2.5 ECTS-Credits</td>
<td></td>
</tr>
<tr>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Studienleistung: keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Portfolioprüfung</td>
</tr>
</tbody>
</table>

Inhalte

Situationsbezogene Fallbeispiele, Wortschatzbefestigung durch Übungen.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Selbstbewusst und effektiv ihre Sprachkenntnisse in beruflichen bzw. fachbezogenen Kontexten einzusetzen (2).
- Einschlägige englische Fachliteratur (einfacher bis mittlerer Schwierigkeitsgrad) mit Verständnis zu lesen (1) sowie wesentliche Merkmale der Textstruktur im Englischen zu erkennen (2) und anzuwenden, um selber fachbezogene Texte erstellen zu können (3).
- Technische Informationen klar und präzise zu präsentieren (1).
- Praktische Elemente des Ingenieurwesens auf Englisch zu beherrschen, z.B. Verträge zu verstehen (2), Verhandlungen durchzuführen (1), an Meetings teilzunehmen (2) und Problemlösungen zu erarbeiten (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ihre Sprachkenntnisse kommunikativ in Diskussionen oder Teamarbeit erfolgreich einzusetzen, auch im Sinne der lösungsorientierten Problembehandlung (2).
- Merkmale angelsächsischer Kommunikation auch im interkulturellen Sinne (z.B. Indirektheit) zu erkennen (1).
Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Vorlesungsskriptum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrmedien</td>
</tr>
<tr>
<td>Skriptum</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>Skriptum</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26.10.2020
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
03 Allgemeinwissenschaftliches Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Verhandeln in Konfliktsituationen (3.3 Negotiating in Conflict Situations)</td>
<td>3.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz) - 15 Stunden Praktika, Gruppenarbeit (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: keine</td>
</tr>
<tr>
<td>Prüfungsleistung: Klausur (Dauer 60 Min.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhandlungsmethoden im Vergleich</td>
</tr>
<tr>
<td>Konfliktstufen nach Glasl</td>
</tr>
<tr>
<td>Grundlagen Konfliktmanagement</td>
</tr>
<tr>
<td>Die Methode des sachgerechten Verhandelns</td>
</tr>
<tr>
<td>Interessen statt Positionen verhandeln</td>
</tr>
<tr>
<td>Das Entwickeln von Optionen</td>
</tr>
<tr>
<td>Optionen nach objektiven Kriterien beurteilen</td>
</tr>
<tr>
<td>Kommunikative Techniken</td>
</tr>
<tr>
<td>Verhandlungstricks und Gegenmaßnahmen</td>
</tr>
<tr>
<td>Selbstkenntnis, eigenes Konfliktverhalten</td>
</tr>
<tr>
<td>Die Mediation als Sonderform der Konfliktlösung</td>
</tr>
<tr>
<td>Praktische Übungen in mehreren Rollenspielen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>(Wissen)</td>
</tr>
<tr>
<td>• die Fachbegriffe zu erläutern (1).</td>
</tr>
<tr>
<td>• die häufigsten Konfliktursachen und -arten angeben (1).</td>
</tr>
<tr>
<td>• die grundlegenden Methoden des Konfliktbeilegung zu benennen (1).</td>
</tr>
</tbody>
</table>
• die Methode des sachgerechten Verhandelns nach der Harvard Methoden anzuwenden (2).
• unterschiedliche Konfliktstufen zu klassifizieren (2).
• die wichtigsten Kommunikationstechniken zu benennen (1).
• den Unterschied zwischen Positionen und Interessen zu erläutern (1).
• die wichtigsten Erfolgs- und Misserfolgsfaktoren bei Verhandlungen aufzuzählen (1).
• die unterschiedlichen Phasen einer Mediation zu benennen und zu erläutern (1).

(Fertigkeiten)

• unterschiedliche Konfliktstufen zu erkennen (2).
• die wichtigsten Kommunikationstechniken anzuwenden (2).
• unlautere Verhandlungstricks zu erkennen (2) und geeignete Gegenmaßnahmen zu planen (2).
• geeignete Optionen zu finden, auszuwählen und zu entwickeln (3).
• den Grad der Eskalation eines Konflikts zu festzustellen und über geeignete Maßnahmen zu entscheiden (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
(Sozialkompetenz)
• die Methode des sachgerechten Verhandelns anzuwenden (2).
• in Konflikt situationen deeskalierende Methoden anzuwenden (3).
• Verhandlungen zielgerichtet zu führen (3).
• gemeinsam mit den Verhandlungspartnern optimale Lösungen zu erarbeiten (2).

(Selbstständigkeit)

• Lösungsoptionen zu entwickeln (2) und zu bewerten (2).
• über ihr eigenes Konfliktverhalten zu reflektieren (2).
• Alternativen zu bewerten und sich für die situativ beste Option zu entscheiden (3).

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Vorlesung mit Beamerunterstützung, Gruppenarbeiten mit Flipcharts, Moderationstafeln
<table>
<thead>
<tr>
<th>Name des Studiengangs:</th>
<th>Master Bauingenieurwesen (PO:20181)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname:</td>
<td>03 Allgemeinwissenschaftliches Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher, Ury, Patton – Das Harvard Konzept, campus-Verlag</td>
</tr>
<tr>
<td>Dörner – Die Logik des Mißlingens, rororo-Verlag</td>
</tr>
<tr>
<td>Schirm – Die Biostrukturanalyse 1, IBSA</td>
</tr>
<tr>
<td>Edmüller, Wilhelm – Manipulationstechniken, Haufe-Verlag</td>
</tr>
<tr>
<td>Lakoff – Don’t think of an elephant, Chelsea Green</td>
</tr>
<tr>
<td>Ruede-Wissmann – Satanische Verhandlungskunst, Heyne</td>
</tr>
<tr>
<td>Schulz von Thun – Miteinander reden, rororo-Verlag</td>
</tr>
<tr>
<td>Dr. Eric Berne – Spiele der Erwachsenen, rororo-Verlag</td>
</tr>
<tr>
<td>Paul Watzlawick – Anleitung zum Unglücklichsein – Serie Piper</td>
</tr>
<tr>
<td>Nassim Nicholas Taleb – The Black Swan – Penguin</td>
</tr>
<tr>
<td>Udo Haeske – Konflikte im Arbeitsleben – Kösel Verlag</td>
</tr>
<tr>
<td>Duve, Eidenmüller, Hacke – Mediation in der Wirtschaft – Verlag Dr. Otto Schmidt Köln</td>
</tr>
<tr>
<td>Anita von Hertel – Professionelle Konfliktlösung – Campus Verlag</td>
</tr>
<tr>
<td>Jeweils aktuelle Auflagen</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>Modulname: 03 Allgemeinwissenschaftliches Wahlpflichtmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Technikfolgenabschätzung und ethische Verantwortung</td>
<td>3.4 Technology Assessment and Ethical Responsibility)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Kriza</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Kriza</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden Präsenzstudium</td>
<td>30 Stunden Eigenstudium</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

| Prüfungsleistung: Portfolioprüfung |

Inhalte

Die technikethische Lehrveranstaltung thematisiert die Dynamiken der modernen Technik, die Möglichkeiten eines ethisch verantwortlichen Umgangs mit der Technik und das ethische Prinzip der Nachhaltigkeit. Thematisiert werden insbesondere:

- einzelne innovative, dynamische Technologiefelder wie die Digitalisierung (mit Aspekten wie künstliche Intelligenz und Big Data), erneuerbare Energien, Biotechnologie u.a.
- die generellen Wirkweisen der (modernen) Technik und die dahinterstehenden Denkmuster.
- die gewollten und ungewollten Folgen einer globalisierten, durch den Einsatz von Technik geprägten Lebensweise.
- die bestimmenden kulturellen Menschenbilder, Wertvorstellungen und Sinnhorizonte der Gegenwart.
- die ethische Verantwortung des Menschen im Umgang mit Technik.
- Nachhaltigkeit als umfassendes ethisches Prinzip und als zentrale Herausforderung der Gegenwart.

Die Auswahl der Beispiele und Anwendungsfelder wird einen direkten Bezug zum Studienfach der Teilnehmenden aufweisen.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- wichtige innovative und „disruptive“ Technologien zu kennen (1) und den Kern ihrer Funktionsweise zu verstehen (3).
• ein vertieftes Verständnis für die generellen Dynamiken der modernen Technik herauszubilden (3).
• grundlegende kulturelle Wertvorstellungen und Menschenbilder zu kennen (1) und die Potentiale innovativer Technologien vor diesem Hintergrund ethisch zu beurteilen (3).
• die Grundidee von Ethik und ethischer Verantwortung in Abgrenzung zu (natur)wissenschaftlicher Beweisbarkeit und technischer Machbarkeit zu verstehen (2).
• ein Verständnis von Nachhaltigkeit als umfassendes ethisches Prinzip und als zentrale Herausforderung der Gegenwart herauszubilden (3).
• anhand von konkreten Anwendungsfällen das ethische Streben nach mehr Nachhaltigkeit, die Suche nach technischen und nichttechnischen Lösungen und die hierbei auftretenden Widersprüche zu analysieren (3).

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• eigenständig und kritisch über die Seminarthemen zu reflektieren, dabei eigene ethische</td>
</tr>
<tr>
<td>Positionen einzunehmen und sie vor anderen zu begründen (3).</td>
</tr>
<tr>
<td>• in freien Diskussionen mit anderen ein Bewusstsein für ethisch verantwortliches Handeln</td>
</tr>
<tr>
<td>im Umgang mit Technik herauszubilden (3).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>z. B. Präsentationen, Texte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>z. B. Tafel, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• => Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>04 Interdisziplinäres Projekt (4 Student Research Project)</td>
<td>04</td>
</tr>
</tbody>
</table>

Fakultät: Bauingenieurwesen

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fritsche</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
-

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>04 Interdisziplinäres Projekt</td>
<td>3 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
04 Interdisziplinäres Projekt
(Project Work))

Verantwortliche/r
Prof. Dr. Thomas Fritsche
Bauingenieurwesen

Lehrende/r / Dozierende/r
N.N.

Verantwortliche/r
Fakultät

Lehrende/r / Dozierende/r
Angebotsfrequenz
in jedem Semester

Teilmodul
04 Interdisziplinäres Projekt
(Project Work))

Lehrumfang
[SWS oder UE]

Lehrsprache
deutsch

Arbeitsaufwand
[ECTS-Credits]

Lehrform
Selbstständige Bearbeitung der Aufgabenstellung mit Betreuung durch den Aufgabensteller

Zeitaufwand:

Präsenzstudium
45 Stunden seminaristischer Unterricht

Eigenstudium
135 Stunden eigenverantwortliches Lernen, Projektbearbeitung

Inhalte

Das Modul beinhaltet die von einer(m) Dozentin(en) betreute(n) Gruppenarbeit in einem Team mit der Zusammenführung unterschiedlicher Disziplinen. Die Disziplinen werden durch die einzelnen Teammitglieder bearbeitet.

Je nach Aufgabenstellung können sich unterschiedliche inhaltliche Schwerpunkte ergeben. Die Aufgabenstellungen werden jedoch so gewählt, dass stets mehrere Themenbereiche des Masterstudiengangs abgedeckt werden, um die Zielsetzung einer interdisziplinären Zusammenarbeit innerhalb der Projektgruppe zu verwirklichen.

Beispiel: Planung eines Bauwerkes mit den Einzeldisziplinen:
- Bauwerksentwurf mit zeichnerischer Darstellung
- Statische Berechnungen (evtl. ausgewählte Positionen)
- Massenermittlung und Kostenberechnung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- interdisziplinäres Arbeiten in der Gruppe im Rahmen einer praxisnahen Aufgabenstellung zu erlernen und anzuwenden (2),
- die während des Studiums erworbenen Kenntnisse im Kontext einer Gesamtaufgabenstellung anzuwenden (2),
- die jeweiligen Fachbegriffe der Aufgabenstellung zu kennen (1) und...

Stand: 26.10.2020
Ostbayerische Technische Hochschule Regensburg
Seite 25
- die jeweiligen spezifischen Fähigkeiten zu erlernen und anwendungsbezogen weiter zu entwickeln.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, in einem Team zu arbeiten (2), fachliche Inhalte innerhalb eines Teams zu erarbeiten und vor dem Team, Dozentinnen und Dozenten in korrekter Fachsprache vorzustellen (2), fachliche Fragen zu stellen und Fragen alleine oder Team zu beantworten (2) und Ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Lehrmedien

Gruppenarbeit mit unterschiedlicher Medienunterstützung (Beamer, Overheadprojektor, Tafel)

Literatur

Die Recherche über die erforderliche Literatur ist Bestandteil der Aufgabenstellung.

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
## Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
05 Masterarbeit mit Präsentation (5 Master Thesis with Presentation) | 05

Modulverantwortliche/r
- Fakultät
- Prof. Dr. Othmar Springer
- Bauingenieurwesen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pflicht</td>
<td>20</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Als Voraussetzung ist eine Vorleistung von mindestens 30 CP zu erbringen. Voraussetzung für die mündliche Präsentation ist eine Bewertung der schriftlichen Ausarbeitung mindestens mit „ausreichend“.

Empfohlene Vorkenntnisse

keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5.1 Schriftliche Ausarbeit</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>5.2 Mündliche Präsentation und Verteidigung</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>5.1</th>
</tr>
</thead>
</table>

5.1 Schriftliche Ausarbeit
(Master Thesis)

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>deutsch</td>
<td>16</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600 Stunden Gesamtstudieraufwand für LV 5.1 + 5.2</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Die Abgabefrist ist einzuhalten.

Studienleistung: Schriftliche Ausarbeit (LV 5.1) und Präsentation / Verteidigung (LV 5.2) werden gemeinsam bewertet (Gewichtung: Ausarbeitung 4/5, Präsentation 1/5)

Prüfungsleistung: keine schriftliche Prüfung

Inhalte

Die Inhalte variieren je nach Aufgabenstellung.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die im Masterstudium erworbenen Kenntnisse und Fertigkeiten auf komplexere, wissenschaftlich orientierte Aufgabenstellungen anzuwenden (3).
- fachliche Zusammenhänge selbstständig zu erarbeiten (3).
- erforderliche Grundlagendaten durch Kontaktaufnahme mit außerschulischen Organisationen extern zu recherchieren (3).
- grundlegende Fertigkeiten einer wissenschaftlichen Arbeitsweise anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- komplexe konstruktive Aufgabenstellungen zu erfassen und sich vertieft damit auseinanderzusetzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Literatur

Die Recherche über die erforderliche Literatur ist Bestandteil der Aufgabenstellung.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Teilmodul	TM-Kurzbezeichnung
5.2 Mündliche Präsentation und Verteidigung (Master Thesis) | 5.2

Verantwortliche/r | Fakultät
Prof. Dr. Othmar Springer | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
N.N. | in jedem Semester
Lehrform

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
[SWS oder UE]		[ECTS-Credits]	
		deutsch	4

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 Stunden Gesamtstudieraufwand für LV 5.1 + 5.2</td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Die Abgabefrist ist einzuhalten.

Studienleistung: Schriftliche Ausarbeit (LV 5.1) und Präsentation / Verteidigung (LV 5.2) (Gewichtung: Ausarbeitung 4/5, Präsentation 1/5)

Prüfungsleistung: keine schriftliche Prüfung

Inhalte

Die Inhalte variieren je nach Aufgabenstellung.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • selbstständig erarbeitete Zusammenhänge öffentlich und adäquat zu vermitteln und zu präsentieren (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • sicher öffentlich aufzutreten (2).
 • fachliche Fragen angemessen zu beantworten und ihre Ergebnisse adäquat zu verteidigen (2).

Lehrmedien

Präsentation mit Beamerunterstützung
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Recherche über die erforderliche Literatur ist Bestandteil der Aufgabenstellung.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
06 Technologie der Baustoffe | 06

### Modulverantwortliche/r	Fakultät
Charlotte Thiel (LB) | Bauingenieurwesen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Dieses Seminar baut auf den Vorlesungsinhalten des Grundstudiums Bauingenieurwesen in Baustoffkunde und Bauchemie auf, vertieft und ergänzt die Inhalte

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>06 Technologie der Baustoffe</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Pflichtmodul im Schwerpunkt Bauen im Bestand

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.
06 Technologie der Baustoffe

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 Technologie der Baustoffe</td>
<td>06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Florian Fleischmann (LB)</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Charlotte Thiel (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht und Praktika

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

| 4 SWS | | 5 |

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Portfolioprüfung (Referate, Studienbegleitender Leistungsnachweis Schriftlich oder Kolloquium)

Zugelassene Hilfsmittel für Leistungsnachweis

keine
Inhalte

Vertiefte und erweiterte baustofftechnische Fragestellungen

Betontechnologie:
- Rheologie (Theorie und praktische Erarbeitung im Labor)
- Selbstverdichtender Beton (Theorie und praktische Erarbeitung im Labor)
- Hochfester Beton + Ultrahochfester Beton (Theorie und praktische Erarbeitung im Labor)
- Massenbeton (Theorie und praktische Erarbeitung im Labor)
- Faserbeton (Theorie und praktische Erarbeitung im Labor)
- Wassereindurchlässige Bauteile aus Beton (Theorie und praktische Erarbeitung im Labor)
- Leichtzuschläge und gefügedichter Leichtbeton (Exkursion)
- Recyclingbeton (Theorie)
- Beton für besondere Bauteile (Selbständige Erarbeitung und Vorträge durch die Studierenden)
 - Betonfahrbahnen
 - Erdfeuchter Beton und Verfestigungen mit hydraulischen Bindemitteln
 - Wasserbauten
 - Brücken
 - Parkhäuser und Tiefgaragen
 - Betonböden
 - Unterwasserbeton
 - Sichtbeton

- Möglichkeiten des Beton- und Fertigteilveres (Exkursion)
- Konformitätskontrolle bei der Betonherstellung (Exkursion)

Technologie anderer Baustoffe:
- Stahl und Spannstahlherstellung- und Prüfung (Exkursion)
- Kunststoffe im Bauwesen (Vorlesung)

Sonstige Themen:
- Nachhaltigkeit und Ressourceneffizienz von Baustoffen (Vorlesung)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- komplexe betontechnologische Problemstellungen einzuschätzen (3).
- komplexe Betonrezepte zu erstellen (2).
- vertieftes baustoffkundliches, bauchemisches, baubetriebliches und statisches Wissen an ausgewählten Baustoffen zu kennen und anzuwenden (3)
- die Grundlagen ausgewählter gängiger Baustoffe zu kennen und anzuwenden (2).
- die Grundlagen ausgewählter innovativer Baustoffe zu kennen und anzuwenden (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- konstruktive Aufgabenstellungen zu erfassen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- neue baustoffkundliche Fragestellungen wissenschaftlich fundiert aufzubereiten und zu präsentieren (3).
- die vermittelten Prinzipien für andere komplexe Fragestellungen zu übernehmen (2).

Angebotene Lehrunterlagen

- Literaturlisten, Kurzskripte, PowerPoint-Folien

Lehrmedien

- Praktikumsversuche, Tafelanschrieb, Powerpoint

Literatur

- WTA-Schriftenreihe, Heft 1: Die Rolle von Salzen bei der Verwitterung mineralischer Baustoffe.

- Am Laufwerk k bereitgestellte Literatur und Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 Sicherheit von neuen und bestehenden Bauwerken (07 Safety of New and Existing Structures)</td>
<td>07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dimitris Diamantidis</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Modul 1.2 Ausgewählte Kapitel der Mathematik (Wahrscheinlichkeitstheorie)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>07 Sicherheit von neuen und bestehenden Bauwerken</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)
Modulname: 07 Sicherheit von neuen und bestehenden Bauwerken
(07 Safety of New and Existing Structures)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 Sicherheit von neuen und bestehenden Bauwerken</td>
<td>07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dimitris Diamantidis</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dimitris Diamantidis</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht 4 SWS in Englischer Sprache</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td>englisch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60 Stunden seminaristische Lehrveranstaltungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung (90 Minuten, in Deutsch)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of probability theory and statistical analysis: Fundamentals and axioms, data analysis, statistical description of random variables, logic trees, risk analysis</td>
</tr>
<tr>
<td>Reliability analysis: First-Order Reliability Method (FORM), computation of reliability index with the VAP software, calculation of design values and safety factors, stochastic models for actions and resistances</td>
</tr>
<tr>
<td>Reliability and risk acceptance: Target reliability in the codes (Eurocodes and ISO), calibration, life-quality index method, calibration, partial and global failure</td>
</tr>
<tr>
<td>Reliability of existing structures: Updating of variables, updating of limit states, conditional probabilities, design by testing, case studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• die Grundlagen der Wahrscheinlichkeitstheorie und der Zuverlässigkeitstheorie zu kennen (1)</td>
</tr>
<tr>
<td>• einfache Grenzzustände probabilistisch zu untersuchen (2)</td>
</tr>
<tr>
<td>• bestehende Bauwerke aus der Sicht der Sicherheit zu beurteilen (2)</td>
</tr>
<tr>
<td>• Risikokonzepte mit Hilfe von Entscheidungsanalysen zu verstehen und zu beurteilen (2)</td>
</tr>
</tbody>
</table>
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- in Englischer Sprache zu arbeiten (2)
- Interaktions- und Kommunikationskompetenzen zu reflektieren (2)
- Technische Berichte zu analysieren und zu hinterfragen (2)

Angebotene Lehrunterlagen

PPP- Folien, Skriptum, Beispiele, alte Prüfungen, E-Learning über Webseiten

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur

- Schneider, J.: Sicherheit und Zuverlässigkeit im Bauwesen, vdf Verlag (deutsch und englisch)
- Umdruckmaterial zur Lehrveranstaltung mit vielen Literatuangaben.

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 Erhaltung und Instandsetzung von Betonbauten (08 Maintenance and Repair of Concrete Structures)</td>
<td>08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>08 Erhaltung und Instandsetzung von Betonbauten</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 Erhaltung und Instandsetzung von Betonbauten (08 Maintenance and Repair of Concrete Structures)</td>
<td>08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Maurial (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Charlotte Thiel (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht, Praktika</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolioprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>
Inhalte

- Ausgangsstoffe und Mischung in Bezug auf Dauerhaftigkeit
- Angriffsmechanismen
- Korrosionsschutz
- Inspektion
- Untergrundvorbehandlung
- Spritzmörtel, Mörteltechnologie
- Risse und Injektionen
- Oberflächenschutzsysteme
- Qualitätssicherung und Ausschreibung
- Verstärkung mit CFK-Lamellen
- Kunststoffe in Betoninstandsetzung
- Kathodischer Korrosionsschutz
- Spannstahlinstandsetzung
- Besondere Einsatzgebiete: Brücken, Tunnels,
- Bemessung von Verstärkungsmaßnahmen: Druckglieder, Biegebalken, Platten, Aufbeton,
- zusätzliche Bewehrung: Konventionell, CFK-Lamellen, schlaff, vorgespannt, geklebt, geschlitz
- Exkursionen: Baustellen mit Hochdruckwasserstrahl, mit Spritzmörtelauftrag und mit Verstärkungsmaßnahmen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
Die Studierenden
- haben vertiefte Kenntnisse zum Erkennen und Beurteilen von Schäden an Stahl- und Spannbetonkonstruktionen (2)
- sowie deren nachhaltigen Instandsetzung bzw. Verstärkung (3),
- verstehen die Angriffsmechanismen auf Stahl- und Spannbetonkonstruktionen (3),
- beherrschen die Bestandsaufnahme, Methoden und Verfahren der Instandsetzung und die wichtigsten Instandsetzungsmaterialien sowie Verstärkungsmaßnahmen (3),
- sind fähig sein, die richtige Materialauswahl zu treffen, die Bemessung sowie die konstruktive Durchbildung der Verstärkungsmaßnahmen durchzuführen (2),
- können das erarbeitete Wissen unmittelbar für spezielle Fragestellungen einsetzen und die vermittelten Prinzipien für andere komplexe Fragestellungen übernehmen (2),
- sind fähig neue Fragestellungen zu Betoninstandsetzungen wissenschaftlich fundiert aufzubereiten und zu präsentieren (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- konstruktive Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (3).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Am Laufwerk k bereitgestellte Literatur und Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen)
Lehrmedien
Seminar, Labor, Exkursionen, Präsentationen der Studenten

Literatur
- ZTV-ING.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 Prozessübergreifende Modelle von der Planung über die Ausführung zum Betrieb (09 Cross Process Modeling from Planning, Construction to Operation)</td>
<td>09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Grundkenntnisse in computerorientierten Methoden und Planungs- und Baumanagement.

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>09 Prozessübergreifende Modelle von der Planung über die Ausführung zum Betrieb</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
09 Prozessübergreifende Modelle von der Planung über die Ausführung zum Betrieb (09 Cross Process Modeling from Planning, Construction to Operation) | 09

Verantwortliche/r	Fakultät
Prof. Dr. Mathias Obergrießer | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Mathias Obergrießer | nur im Wintersemester

Lehrform
Seminaristischer Unterricht mit Übungen und Exkursionen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
60 Stunden seminaristischer Unterricht (Präsenz) | 90 Stunden eigenverantwortliches Lernen (Eigenstudium)

Studien- und Prüfungsleistung
digitale, schriftliche Prüfung am PC (90 Min.)

Inhalte
Überblick über die Grundlagen modellbasierter Arbeitsweisen: Einführung in das Themenfeld Building Information Model (BIM); Definition und Aufbau von BIM-Standards; Normengrundlagen; Aufgaben und Verantwortungen der BIM-Koordinatoren / BIM-Manager.

Prozessbeschreibung / Standardisierung: Einführung in Business Process Model Notation (BPMN) zur Beschreibung von Prozessen; Definition und Aufbau von Auftraggeber Information Anforderungen (AIA) und BIM-Abwicklungspläne (BAP).

Interoperabilität: Beschreibung, Aufbau und Anwendung von Schnittstellen wie z.B. Industrie Fundation Class (IFC), STandard for the Exchange of Product model data (STEP), CityGml, CPIxml, LandXML; Ansätze zur Datenhaltung und Datenmanagement.

Vernetzung und Kopplung: Aufgaben und Bedeutung von Koordinationsmodellen; Ansätze und Realisierungen von Zeit-Kosten-Modellen (3D-4D-5D BIM-Modelle); Prozessstatusrückmeldungen und geometrisch-semantische Rücktransformierungskonzepte zur as-built Modellerstellung; modellbasierte Betriebsverwaltung des Bauwerks.

Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die BIM-Methode fachgerecht vermitteln (2)
- BIM-Begriffe verstehen und anwenden (2)
- BIM-Standards wie z.B. IFC oder BCF interpretieren, einsetzen und erweitern (2)
- bauspezifische Prozesspläne entwickeln und analysieren (3)
- BIM-Leistungen und Anforderungen einstufen (2)
- neue BIM-Aufgabenfelder einordnen (2)
- fachspezifische Fragen stellen und beantworten (2)
- interdisziplinäre Lösungsstrategien und Ansätze liefern und vermitteln (3)

zu können.

Angebotene Lehrunterlagen
Vorlesungsskriptum, Vorlagedaten, Schulungsunterlagen, E-Learning-Plattform

Lehrmedien
Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26. 10. 2020 Ostbayerische Technische Hochschule Regensburg Seite 45
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Automatisierung von Modellierungsprozessen (10 Automation of Modeling Processes)</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Grundkenntnisse in computerorientierten Methoden (Programmierung, Konstrukte einer Programmiersprache, Programmtechnische Umsetzung und Implementierung von Algorithmen, Überblick SW-Engineering); Kenntnisse in der Modellkonstruktion.

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10 Automatisierung von Modellierungsprozessen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 10 Automatisierung von Modellierungsprozessen

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Automatisierung von Modellierungsprozessen (10 Automation of Modeling Processes)</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan
Lehrumfang [SWS oder UE] | Lehrsprache | Arbeitsaufwand [ECTS-Credits] |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>90 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
digitale, schriftliche Prüfung am PC (90 Min.)

Inhalte
Überblick über die Grundlagen zur Automatisierung von Modellierungsprozessen: Einblick in verschiedene Automatisierungsstrategien und Automatisierungstechniken; Methoden zur Bewertung der Automatisierbarkeit eines Konstruktionsprozesses; Vorstellung verschiedener digitalen Automatisierungswerkzeuge.

Modellbasierte Konstruktion: Einführung in ein leistungsfähiges Freiformmodellierungssystem zur Umsetzung komplexer Konstruktionsaufgaben; Beschreibung und Anwendung von verschiedenen Konstruktions-, Modellierungs- und Strukturierungsmethoden.

Programmierung: Grundkenntnisse der Programmierung; Entwicklung eines Algorithmus / Programms zur automatisierten Bauteil- Teilmodellgenerierung; Anwendung und Manipulation von Makroprogrammen.

Integrierte und automatisierte Modellierung: Entwicklung einer Benutzeroberfläche (GUI) zum Aufruf des Automatisierungsprogramms; Erweiterung des Programms um eine Schnittstellen basiertes Importfunktion zum Einlesen von geometrisch/semantischen Grundinformationen aus vorgelagerten Prozessen.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Grundlagen zur Automatisierung von Konstruktionsprozessen auszuüben, sodass eine Identifizierung, Dokumentierung, Einstufung und Automatisierung von CAD-basierten...
Konstruktionsabläufen möglich ist. Es sollen als Ergebnis Application Programming Interface (API) basierte Programmierkompetenzen erlangt werden, mithilfe der sich häufig wiederholenden Konstruktionsabläufe optimieren lassen.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Komplexität einer Konstruktionsaufgabe analysieren und einstufen (2)
- Methoden und Techniken zur automatisierten Konstruktion einsetzen (2)
- digitale Werkzeuge zur automatisierten CAD-basierten Konstruktion anwenden (2)
- Programmierkonzepte, strategischer Aufbau und Ablauf entwickeln (2)
- Algorithmen aus den Konstruktionsaufgaben ableiten (3)
- digitale Werkzeuge mittels API-Programmierung entwickeln (3)
- digitale Werkzeuge mittels visueller Programmierung umsetzen (3)
- fachspezifische Fragen stellen und beantworten (2)
- fachorientierte Lösungsstrategien und Ansätze liefern und vermitteln (3)

tzu können.

Angebotene Lehrunterlagen

Vorlesungsskriptum, Vorlagedaten, Schulungsunterlagen, E-Learning-Plattform

Lehrmedien

Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Automatisierung und Integration von Planungs- und Bauabwicklungsprozessen</td>
<td>11</td>
</tr>
<tr>
<td>(11 Automation and Integration of Planning and Construction Management Processes)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>11 Automatisierung und Integration von Planungs- und Bauabwicklungsprozessen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Teilmodul	TM-Kurzbezeichnung
11 Automatisierung und Integration von Planungs- und Bauabwicklungsprozessen (11 Automation and Integration of Planning and Construction Management Processes) | 11

Verantwortliche/r	Fakultät
Prof. Dr. Mathias Obergrießer | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
---|---
Prof. Dr. Mathias Obergrießer | nur im Sommersemester

Lehrform	seminaristischer und projektorientierter Unterricht

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>90 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Portfolioprüfung

Inhalte

Überblick über die Prozesslandschaft von Bauprojekten: Einblick in die verschiedenen Prozesse zur Planung- und Bauabwicklung von Hoch-, Tief- und Ingenieurbauwerken; Vorstellung verschiedener digitaler Werkzeuge zur integrierten und automatisierten Prozessabwicklung und Prozesssteuerung.

Definition eines Prozessablaufs (Workflow): Einführung in die Thematik Workflow - Aufbau, Strategien, Ausrichtung, Komponenten, Verfahren, Abbildung und technische Umsetzung.

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- BIM-Projektstrukturen koordinieren und aufbauen (3)
- Anwender Informationsanforderungen, BIM-Abwicklungspläne und Modellierungsleitfäden erstellen (3)
- interdisziplinäre Arbeitsmethoden fächerübergreifend koordinieren (3)
- BIM-Fachmodelle im Bereich der Vorbemessung, Kosten u. w. umsetzen (3)
- eine integriert/automatisiert Fachmodellkoordination und -prüfung durchführen (3)
- digitale Projektplattformen einsetzen und managen (3)
- diverse digitale BIM-Werkzeuge praxisgerecht anwenden (3)
- fachspezifische Fragen stellen und beantworten (2)
- kollaborative Lösungsstrategien und Ansätze liefern und vermitteln (3)
zu können.

Angebote Lehrunterlagen
Vorlesungsskriptum, Vorlagedaten, Schulungsunterlagen, E-Learning-Plattform

Lehrmedien
Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Erdbebenschutz von Bauwerken (12 Seismic Design)</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Lehrveranstaltung</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>12.1 Grundlagen der Erdbebenschutz</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>12.2 Verhaltensbasierte Auslegung der Erdbebenschutz</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1 Grundlagen der Erdbebensicherung (12.1 Basic Seismic Design)</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dietlinde Köber (LB)</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Maurial (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Die Lehrveranstaltungen 12.1 und 12.2 werden in einer Portfolioprüfung geprüft.
Inhalte

Grundlagen der Erdbebensicherung:

- **Seismologische Grundlagen**: Arten und Merkmale von Erdbeben; Erdbebenskalen; seismologische und ingenieurmäßige Auswertungen, Epizentrum, Herdtiefe, Magnitude, Intensität, physikalische Kenngrößen, Zeitverläufe, Antwortspekten

- **Bemessungsbeben, Tragwiderstand und Duktilität**: Seismische Gefährdung; Bebenkenngrössen, elastisches Bemessungsantwortspektrum; spektrumskonforme Zeitverläufe; Tragwiderstand und Duktilität

- **Erdbebengerechter Entwurf von einfachen Bauwerken**: Tragwerkseigenschaften; Tragwerksarten; Entwurfsgrundsätze; Tragwerksverformungen; Duktilitätsklasse; Tragwiderstand und Bemessungsduktilität; Bemessungsbeben

- **Berechnungsverfahren**: Bauwerksschwingungen; Ersatzkraftverfahren; Antwortspektrenverfahren; Zeitverlaufsverfahren; Berechnung von Hochbauten

- **Bemessung und konstruktive Durchbildung**: Methode der Kapazitätsbemessung; Versagensmechanismen, Überfestigkeit, Kapazitätsbemessung; Anwendungen auf verschiedene Tragsysteme und Bauwerkstypen

- **Weitere Aspekte der Erdbebengefährdung und –sicherung von Bauwerken**: Gefährdung der Gründung durch Bodenverflüssigung; kinematische Boden-Bauwerks-Interaktionen; Maßnahmen zur seismischen Entkopplung und zusätzlichen Dämpfung von Bauwerken

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Die wichtigsten seismologischen Grundlagen zu können (2).
- die wesentlichen Zusammenhängen über Bemessungsbeben, Tragwiderstand und Duktilität zu verstehen (3).
- einfache Bauwerke erdbebengerecht zu entwerfen (3) und auf der Grundlage gebräuchlicher Berechnungsverfahren zu berechnen (3)
- und sind in der Lage die Bemessung und konstruktive Durchbildung auf der Grundlage einer Kapazitätsbemessung durchzuführen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Aufgabenstellungen des Erdbebeningenieurwesens zu erfassen (2).
- technische Zusammenhänge des Erdbebeningenieurwesens in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Ständig aktualisiertes Umdruckmaterial zu den Lehrveranstaltungen
Lehrmedien
Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur
- Ständig aktualisiertes Umdruckmaterial zu den Lehrveranstaltungen (mit weiteren Literaturhinweisen).

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>12.2</th>
</tr>
</thead>
</table>

12.2 Verhaltensbasierte Auslegung der Erdbebensicherung (Performance Based Design under Seismic Effects)

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detlef Schermer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Andreas Maurial (LB)</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Amador Terán Gilmore (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>45 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Die Lehrveranstaltungen 12.1 und 12.2 werden in einer Portfolioprüfung geprüft.
Inhalte

Verhaltensbasierte Auslegung der Erdbebensicherung:

Notwendigkeit eines verformungsbasierten Konzeptes für eine erdbebensichere Auslegung:
Gegenüberstellung kräftebasiertes Konzept und verformungsbasierter Konzept

Eingangsdaten für ein verformungsbasierter Auslegungskonzept: Antwortspektren und Zeitverläufe der Bodenbewegungen

Grundlagen des direkten verformungsbasierten Auslegungskonzeptes: Grenzzustände für die verformungsbasierter Auslegung, Tragwerke mit einem Freiheitsgrad, Tragwerke mit mehreren Freiheitsgraden, P-δ-Effekte, Kombination von Eigengewicht und seismischen Einwirkungen, Torsionseffekte, Kapazitätsbemessung beim direkten verformungsbasierter Auslegungskonzept

Bausteine zur Berechnung im Rahmen einer verformungsbasierter Auslegung: Kraft-Verformungs-Antwort von Stahlbetonbauteilen, Kraft-Verformungs-Antwort von Stahlbauteilen, Elastische Steifigkeit des gerissenen Betonquerschnitts, Berechnungsablauf bei der Kapazitätsbemessung, Schubsteifigkeit von Betonbauteilen, analytische Überprüfung des ausgelegten Antwortverhaltens

Anwendungen einer verformungsbasierter Auslegung für verschiedene Bauwerkstypen: Rahmenförmige Hochbauten, wandausgesteifte Hochbauten, Mauerwerksbauten, Brücken

Ertüchtigung seismisch beanspruchter Bauwerke auf der Grundlage des verformungsbasierter Auslegungskonzeptes: Berücksichtigung von Maßnahmen zur seismischen Entkopplung und zusätzlichen Dämpfung von Bauwerken, Bauwerk mit Maßnahmen seismischer Entkopplung und zusätzlicher Dämpfung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die neuen Ansätzen wirklichkeitsnaher, verformungsbasierter Entwurfs- und Berechnungskonzepte für eine erdbebensichere Auslegung von Bauwerken zu verstehen (3),
- wie bereits über den Entwurf eines Bauwerks sein seismisches Antwortverhalten zu kontrollieren und zu steuern (3),
- darauf aufbauend fundierte Konzepte und Möglichkeiten der Ertüchtigung seismisch beanspruchter Bauwerke einzuschätzen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die besondere Aufgabenstellungen und Möglichkeiten der verformungsbasierter Auslegungskonzepte zu erfassen (2).
- technische Zusammenhänge des verformungsbasierter Bemessung in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
Angebotene Lehrunterlagen
Ständig aktualisiertes Umdruckmaterial zu den Lehrveranstaltungen

Lehrmedien
Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur
- Ständig aktualisiertes Umdruckmaterial zu den Lehrveranstaltungen mit weiteren Literaturhinweisen.

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
13 Ausgewählte Kapitel der Tragwerksanalyse

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Ausgewählte Kapitel der Tragwerksanalyse</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>13.1 FE-Modellierung</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>13.2 Traglastberechnungen</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>3.</td>
<td>13.3 Schalenstatik</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Für die Anerkennung des Moduls ist die erfolgreiche Belegung von zwei Lehrveranstaltungen nötig. 2 LV aus 13.1 bis 13.3 sind zu wählen.
Teilmodul

<table>
<thead>
<tr>
<th>13.1 FE-Modellierung</th>
<th>TM-Kurzbezeichnung</th>
<th>13.1</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Thomas Bulenda</th>
<th>Baubringenieurwesen</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Prof. Dr. Thomas Bulenda</th>
<th>nur im Wintersemester</th>
</tr>
</thead>
</table>

Lehrform

Seminaristischer Unterricht mit Praktikum

Studiensemester

<table>
<thead>
<tr>
<th>gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>45 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Inhalte

- Scheibenmodellierung: Einfluß der Lagerung und Lasteinleitung, Spaltzugkräfte, Scheibe mit Loch
- Flächenbewehrung: Verfahren von Baumann
- Plattenbalken: Modellierung und Bemessung
- Arbeit mit einem automatischen Netzgenerator: Scheibenbeispiel und Plattenbeispiel
- Stützlinientragwerke: Formfindung und Tragverhalten von Bogen und Bogenschale
- Räumliches Gesamtmodell
- Baupraktische Biegedrillknicknachweise

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Scheiben zu modellieren unter Berücksichtigung des Einflusses von Lagerung und Lasteinleitung (2)
- Flächentragwerke aus Stahlbeton nach dem Verfahren von Baumann zu bemessen (1)
- Plattenbalken zu modellieren und bemessen (2)
- mit einem automatischen Netzgenerator zu arbeiten (1)
- für Stützlinientragwerke eine Formfindung durchzuführen (1)
- räumliche Gesamtmodelle zu erstellen (1) und zu bewerten (2)
- baupraktische Biegedrillknicknachweise im Stahlbau zu führen (2)
- Stahlbetonstützen nach Theorie II. Ordnung zu berechnen (2)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- FE-Programme anzuwenden und deren Ergebnisse und Ausgaben zu verstehen (2).
- statische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- durch Verfeinerungen in der FE-Modellierung eine über den Standard eines üblichen
der Berechnung zu erzielen (2).

Angebotene Lehrunterlagen

- Vorlesungsskriptum
- Lehrmedien
 - Multimediavorlesung mit Praktikum am PC
- Literatur
 - Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Teilmodul

| TM-Kurzbezeichnung | 13.2 Traglastberechnungen |

Verantwortliche/r

| Fakultät |
| Bauingenieurwesen |

| Lehrende/r / Dozierende/r |
| Angebotsfrequenz |
| nur im Sommersemester |

Lehrform

Seminaristischer Unterricht mit Praktikum

| Studiensemester gemäß Studienplan |
| Lehrumfang [SWS oder UE] |
| Lehrsprache |
| Arbeitsaufwand [ECTS-Credits] |

Zeitaufwand:

| Präsenzstudium |
| Eigenstudium |
| 30 Stunden seminaristische Lehrveranstaltungen |
| 45 Stunden eigenverantwortliches Lernen |

| Studien- und Prüfungsleistung |
| Prüfungsleistung: Klausur Dauer: 60 Minuten |

Inhalte

Materialnichtlinearität:
Grenztragfähigkeit des Querschnitts
Grenztragfähigkeit des Systems
Fließgelenktheorie mit dem PC
Fließzonentheorie
Geometrische Nichtlinearität - Vergleich verschiedener Berechnungsverfahren
Verzweigungsprobleme
Imperfektionen und Imperfektionsempfindlichkeit
Das Durchschlagproblem
Systemnichtlinearität

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Berechnungen unter Berücksichtigung der Materialnichtlinearität durchzuführen (2)
- die Grenztragfähigkeit eines Querschnitts und eines statischen Systems zu bestimmen (2)
- mit FE-Programmen Berechnungen nach der Fließgelenktheorie und Fließzonentheorie durchzuführen (3)
- mit FE-Programmen geometrisch nichtlineare Berechnungen am imperfecten System durchzuführen (3)
- mit FE-Programmen Eigenwertanalysen (linearisiert und begleitend durchzuführen (3)
- mit FE-Programmen Systemnichtlinearitäten zu modellieren (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- nichtlineare FE-Programme anzuwenden und deren Ergebnisse und Ausgaben zu
 verstehen (2).
- statische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- durch Anwendung der nichtlinearen FE-Methode eine über den Standard einer üblichen
 linearen Berechnung hinausgehende Genauigkeit in der Berechnung zu erzielen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum,

Lehrmedien

Multimediavorlesung mit Praktikum am PC

Literatur

Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
13.3 Schalenstatik | 13.3

Verantwortliche/r	Fakultät
Prof. Dr. Ursula Albertin-Hummel | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Ursula Albertin-Hummel | nur im Sommersemester

Lehrform
Seminaristischer Unterricht mit Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Lehrumfang: 2 SWS
Lehrsprache: deutsch
Arbeitsaufwand: 2.5

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>45 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Leistungsnachweis: Verpflichtende Abgabe von 2 Studienarbeiten (Beide StA gleichgewichtet)

Inhalte

Membranzustand:
Zylinderschale, Kugelschale, Kegelschale, Rotationsschalen

Biegetheorie:
Zylinderschale, Kugelschale, Kegelschale, Rotationsschalen
Zusammengesetzte Rotationsschalen
Stabilität von Schalen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- das statische System und die Zusammenhänge bei Schalentragwerken zu verstehen (3)
- Rotationsschalen nach Membrantheorie unter verschiedenen Lastarten und Fragestellungen zu berechnen (3)
- Rotationsschalen nach Biegetheorie unter verschiedenen Lastarten und Fragestellungen zu berechnen (3)
- die Stabilität von Schalentragwerken unter verschiedenen Lastarten und Fragestellungen gemäß DIN EN 1993-1-6 zu berechnen (3)
- Sonderfälle und Problemstellungen bei Schalentragwerken zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• komplexe konstruktive Aufgabenstellungen zu erfassen und sich vertieft damit auszudämmen (3)
• die Ergebnisse statischer Berechnungen von Schalentragwerken inklusive FE-Berechnungen zu bewerten und zu verstehen (2)
• die Schalenstatik betreffende Zusammenhänge in korrekter Fachsprache wiederzugeben (2)
• fachliche Fragen zu stellen (2)
• fachliche Fragen angemessen zu beantworten (2)
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2)

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung und Tafelanschrieb

Literatur

Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Sonderbauweisen im Bestandsbau</td>
<td>14</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
- Prof. Dr. Joachim Gschwind
 Fakultät: Bauingenieurwesen

Studiensemester gemäß Studienplan
- Modultyp: Schwerpunkt Wahlpflichtmodul
- Arbeitsaufwand: 5 ECTS-Credits

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>14.1 Glasbau</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>14.2 Bauen mit Seilen</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Zielsetzung: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den Werkstoff Glas zu verstehen (3)
- liniengelagerte Verglasung nach DIN 18008-1 bzw. -2 zu bemessen (3)
- punktgehaltene Verglasung nach DIN 18008-3 zu bemessen (3)
- absturzsichernde Verglasung nach DIN 18008-4 zu bemessen (3)
- Isolierverglasung zu bemessen (3)
- Sonderfälle der Verglasung zu kennen (1)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• den Glasbau betreffende Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Vortragsvorlesung mit Übung am PC

Literatur

SIEBERT, G., MANIATIS; I.: Tragende Bauteile aus Glas. Ernst & Sohn 2012
KASPER, PIEPLOW, FELDMANN: Beispiele zur Bemessung von Glasbauteilen nach DIN 18008, Ernst&Sohn 2016
Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
## Teilmodul	TM-Kurzbezeichnung
14.2 Bauen mit Seilen | 14.2

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>2 SWS</td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Klausur (Dauer: 60 Min.)</td>
</tr>
</tbody>
</table>

Inhalte

Einführung in den Seilbau: Anwendungsbeispiele in Seilbau, mechanische Eigenschaften der Seile, Seiltypen, Anwendungsgebiete, Vor- und Nachteile der Seilkonstruktionen.

Vorbemessung mittels überschlägiger Handrechnung: Entwicklung der Bemessungsmöglichkeiten und Anwenungsbeispiele.

Tragwerksplanung mittels EDV

Sicherheitsphilosophie bei Seiltragwerken: Darstellung verschiedener Sicherheitskonzepte.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die verschiedenen Seiltypen und deren Anwendungsmöglichkeiten im Ingenieurbau zu kennen. (1).
- verschiedene Möglichkeiten, Seilanschlüsse, Verankerungen sowie Klemmkonstruktionen auszuführen, sinnvoll zum Einsatz zu bringen (2).
- Nachweise für Seile, Seilverankerungen, Umlenkungen und Klemmungen zu führen (2).
- Berechnungen und Nachweise von Seiltragwerken an einfachen Konstruktionen „per Hand“ anzustellen (3).
- praxisgerechte Berechnungen mittels moderner EDV durchzuführen (3).
- die Bedeutung der Vorspannung zu erfassen (2).
- Vorspannung geschickt zur Tragfähigkeits- und Gebrauchstauglichkeitsverbesserung einzusetzen (3).
- Eigenheiten von praxisnahen Seilkonstruktionen zu analysieren und sinnvoll einzusetzen und zu kombinieren (3).
- die spezifischen und unterschiedlichen Sicherheitsaspekte zu überblicken (1).
- das passende Sicherheitskonzept anzuwenden (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- ebene und räumliche Seiltragwerke hinsichtlich ihrer Tragfähigkeit und ihrem Verformungsverhalten zu beurteilen (2).
- den zielgerichteten Umgang mit der Vorspannung gewinnbringend einzusetzen (3).
- selbständig einfache Seilkonstruktionen zu entwerfen und zu berechnen (2).
- Konstruktionsvarianten zu diskutieren und zu beurteilen (3).
- Sicherheitsanforderungen zu beurteilen und zu berücksichtigen (3).

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Vortragsvorlesung mit Tafelanschrieb sowie Beamerunterstützung,

Literatur

- Beuth: Kommentare Stahlbauten, Erläuterungen zu DIN 18800 Teil 1 bis 4.
- Palkowski, Szymon: Statik der Seilkonstruktionen, Springer Berlin, 1989
- Unterlagen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 15 Brückenbau – Erhaltung und Ertüchtigung

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Brückenbau – Erhaltung und Ertüchtigung</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fritsche</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>[ECTS-Credits] 5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Kenntnisse im konstruktiven Bereich, insbesondere in Statik, FEM-Modellierungen, Brückenbau und Spannbetonbau

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,
- Wichtige Fachbegriffe im Ingenieurbau bzw. Brückenbau zu kennen (1),
- frühere Bemessungsnormen des Brückenbaues des 20. Jahrhunderts und deren Zusammenhänge zu kennen (2),
- Nachweiskonzepte früherer Normen zu verstehen und anzuwenden (3),
- Numerische Modellierungen im Brückenbau zu verstehen und praktisch anzuwenden (3),
- Wichtige Grundlagen hinsichtlich Sanierung von Bauwerken mit den zugehörigen Tragkonzepte zu kennen und zu verstehen (2) und
- Sanierungskonzepte für verschiedene Ingenieurbauwerke zu entwickeln und anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,
- Tragverhalten verschiedenster Bauwerk- bzw. Tragsysteme insbesondere im Brückenbau zu kennen und zu erfassen (2),
- Entwurfsaufgaben der Sanierung oder Verstärkung von Brücken auch skizzenartig darzustellen und in Diskussion fachlich zu erläutern (2),
- Fachliche Fragen zu stellen und auch fachliche Fragen zu beantworten (2),
- Bestandssituationen und Lösungsmöglichkeiten in Teamarbeit zu erarbeiten und bis ins Detail mit fachlicher Diskussion zu erläutern (3) und
- Ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>15.1 Statische Überprüfung des Brückenbestandes mit Beispiel</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>15.2 Sanierungs- und Ertüchtigungskonzepte</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>15.1 Statische Überprüfung des Brückenbestandes mit Beispiel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Prof. Dr. Thomas Fritsche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Fritsche</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Susanne Hüttner (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Siehe Modulbeschreibung

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

| 2 SWS |

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Die Lehrveranstaltungen 15.1 und 15.2 werden in einer gemeinsamen schriftlichen Prüfung (Modul 15) mit einer Dauer von 90 min geprüft.

Inhalte

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Siehe Modulbeschreibung

Literatur

Siehe Modulbeschreibung
Teilmodul

<table>
<thead>
<tr>
<th>15.2 Sanierungs- und Ertüchtigungskonzepte</th>
<th>TM-Kurzbezeichnung</th>
<th>15.2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fritsche</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fritsche, Susanne Hüttner (LB)</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Modulbeschreibung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Die Lehrveranstaltungen 15.1 und 15.2 werden in einer gemeinsamen schriftlichen Prüfung (Modul 15) mit einer Dauer von 90 min geprüft.

Inhalte

Die Studierenden sollen im Teil b Kenntnisse hinsichtlich folgender inhaltlicher Schwerpunkte erlangen:
- DIN 1076 – Bauwerksprüfung; Bauwerksuntersuchungen
- Typische Schadensbilder
- Organisation der Bauwerksprüfungen
- Sanierungsmassnahmen für unterschiedliche Schadensbilder – Schutz und Instandsetzung
- Möglichkeiten hinsichtlich Verstärkungsmaßnahmen oder Ersatzneubauten

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Siehe Modulbeschreibung

Literatur

Siehe Modulbeschreibung

Stand: 26.10.2020
Ostbayerische Technische Hochschule Regensburg
Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeistunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Stahlverbundbau</td>
</tr>
<tr>
<td>(16 Steel Composite Structures)</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

| Prof. Dr. Othmar Springer |

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>16.1 Grundlagen des Stahlverbundbaus</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>16.2 Stahlverbundbrückenbau</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Modulname:
16 Stahlverbundbau

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Grundlagen des Stahlverbundbaus</td>
<td>16.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Ursula Albertin-Hummel</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: keine</td>
</tr>
<tr>
<td>Prüfungsleistung: Die Lehrveranstaltungen 16.1 und 16.2 werden in einer gemeinsamen schriftlichen Prüfung (Modul 16) mit einer Dauer von 90 min geprüft.</td>
</tr>
</tbody>
</table>

Inhalte

Grundlagen: Entwicklung der Stahlverbundbauweise, Anwendungsmöglichkeiten, Wirtschaftlichkeit, Baustoffe.

Verbund: Grundprinzip des Stahlverbundträgers, Kraftübertragung in der Verbundfuge, ideelle Querschnittswerte.

Tragfähigkeit von Stahlverbundträgern: Querschnittsklassen, elastische und plastische Grenztragfähigkeit, elastische und plastische Schnittgrößenermittlung, Mitwirkung des Betons.

Verbundmittel: Arten von Verbundmitteln, Versagensmechanismen und Grenztragfähigkeit von Kopfbolzendübeln, Bemessung und Verteilung der Verbundmittel, Nachweis des Druckgurtanschlusses und der Dübelumrißfläche.

Nachweise im Grenzzustand der Gebrauchstauglichkeit: Berechnung der Verformungen einschließlich Kriechen und Schwinden, Spannungsbegrenzung, Berechnung der Eigenfrequenz zur Beurteilung der Schwingungsempfindlichkeit.

Verbundstützen: Anwendung, Krafteinleitung, Berechnung des Interaktionsdiagramms zur Verbundstützenbemessung.

Verbunddecken: Grundprinzip der Tragwirkung, Deckensysteme und deren Besonderheiten.

Brandschutz im Stahlverbundbau: Besonderheiten beim Nachweis der Feuerwiderstandsdauer von Verbundbauteilen, “heiße” Bemessung, Wirkungsweise von Kammerbeton.
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die grundsätzlichen Zusammenhänge sowie die wesentlichen Eigenarten der Stahlverbundbauweise zu kennen (1).
- einfache Stahlverbundtragwerke zu entwerfen (2).
- Stahlverbundtragwerke auf der Grundlage gebräuchlicher Berechnungsverfahren zu berechnen (2).
- die Bemessung und konstruktive Durchbildung durchzuführen (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- komplexe konstruktive Aufgabenstellungen zu erfassen und sich vertieft damit auseinanderzusetzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

- Bode: Euro-Verbundbau, Werner-Verlag.
- Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
16 Stahlverbundbau

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>Stahlverbundbrückenbau</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Othmar Springer</th>
<th>Bauingenieurwesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Susanne Hüttner (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td>deutsch</td>
<td>2.5</td>
</tr>
<tr>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>45 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine
Prüfungsleistung: Die Lehrveranstaltungen 16.1 und 16.2 werden in einer gemeinsamen schriftlichen Prüfung (Modul 16) mit einer Dauer von 90 min geprüft.

Inhalte

Grundlagen: Entwicklung der Stahlverbundbrücken, Anwendungsmöglichkeiten, Normung.

Entwurf: Kriterien beim Entwurf einer Verbundbrücke, Randbedingungen, Wahl des statischen Systems.

Tragfähigkeit von Stahlverbundträgern: Querschnittsklassen, Grenztragfähigkeit, Schnittgrößenermittlung, Mitwirkung des Betons.

Verbundmittel: Grenztragfähigkeit von Kopfbolzendübeln, Bemessung und Verteilung der Verbundmittel, Nachweis des Druckgurtanschlusses und der Dübelumrißfläche, Lasteinleitung.

Grenzzustand der Gebrauchstauglichkeit: Berechnung der Verformungen einschließlich Kriechen und Schwinden, Spannungsbegrenzung, Ermüdung.

Bauzustände: Kritische Bauzustände, Stabilisierung, Bauverfahren, Betonierfolge.

Konstruktive Gestaltung: Detailausführungen, Auflager, Querträger, Doppelverbund, Einleitung des Bogenschubes bei Stabbogenbrücken.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Entwurfs- und Berechnungskonzepte für Stahlverbundbrückenbauwerke zu kennen (1).
- einfachen Stahlverbundbrücken zu entwerfen (2).
- Stahlverbundbrücken mit modernen rechnergestützten Verfahren zu berechnen und zu bemessen (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- komplexe konstruktive Aufgabenstellungen zu erfassen und sich vertieft damit auseinanderzusetzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Lehrmedien
Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur
- Bode: Euro-Verbundbau, Werner-Verlag.
- Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
17 Konstruieren im Stahlbetonbau
(Reinforced Concrete Structures)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Konstruieren im Stahlbetonbau</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>17.1 Stabwerkmodelle im Stahlbetonbau</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>17.2 Ausgewählte Kapitel des Stahlbetonbaus</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Stand: 26. 10. 2020

Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>17.1</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Maurial (LB)</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

| 2 SWS | 2.5 |

Zeitaufwand:

Präsenzstudium

| 30 Stunden seminaristische Lehrveranstaltungen | 45 Stunden eigenverantwortliches Lernen |

Studien- und Prüfungsleistung

Die Lehrveranstaltungen 17.1 und 17.2 werden in einer gemeinsamen Portfolioprüfung (Modul 17) geprüft.

Inhalte

Stabwerkmodelle im Stahlbetonbau:

Theoretische Grundlagen:
Der Grundgedanke für das Bemessen und Konstruieren mittels Stabwerkmodellen

Die Unterteilung des Tragwerks in B- und D-Bereiche:
Die B-Bereiche, die D-Bereiche und das Abgrenzen der D-Bereiche.

Das Modellieren des Tragwerks als Stabwerk:

Zusammenfassung der Bemessung mittels Stabwerkmodellen und Hinweise zum praktischen Vorgehen: Finite Elemente oder Stabwerkmodelle?

Anwendungen:
Auflagerbereiche und Lasteinleitungen, Querschnittsänderungen, Rahmen, Konsolen, Scheiben, Fundamente, Druckglieder, Platten

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Die Studierenden
-vertraut mit den Grundgedanken und den wesentlichen Zusammenhängen für das Bemessen und Konstruieren mittels Stabwerkmodellen im Stahlbetonbau und

Stand: 26. 10. 2020

Ostbayerische Technische Hochschule Regensburg Seite 82
-besitzen die Fähigkeit die Bemessung und konstruktive Durchbildung von Stahlbetonbauteilen auf der Grundlage von Stabwerkmodellen durchzuführen.

Angebotene Lehrunterlagen

Ständig aktualisiertes Umdruckmaterial zu den Lehrveranstaltungen

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur

Umdruckmaterial zu den Lehrveranstaltungen mit weiteren Literaturhinweisen.

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>17.2</th>
</tr>
</thead>
</table>

TM-Kurzbezeichnung

17.2 Ausgewählte Kapitel des Stahlbetonbaus (Structural Design of Reinforced Concrete Structures)

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
<tr>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>45 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Die Lehrveranstaltungen 17.1 und 17.2 werden in einer gemeinsamen Portfolioprüfung (Modul 17) geprüft.

Inhalte

Ausgewählte Kapitel des Stahlbetonbaus:

- **Weiße Wanne und Fugen im Stahlbetonbau:** Anwendungsbereich und Beanspruchungsklassen von WU-Bauteilen, Ausführung von WU-Bauteilen in Ortbetonbauweise und Besonderheiten bei Halbfertigteilelementen, konstruktive Durchbildung in den Übergangsbereichen, Regelungen, Fugenarten und Anwendungsbereiche, Fugenabdichtungsprodukte
- **Dübelbemessung:** Wirkprinzip verschiedener Dübelarten, Einfluss der Ausführungsgüte auf das Trag- und Verformungsverhalten, Bemessung auf Zug-, Quer- und Schräglast, Gruppenwirkung, Einfluss von Rand- und Achsabständen sowie Bauteildicken und Bewehrung auf die rechnerische Tragfähigkeit
- **Rechnersiche Ermittlung der Rissbreiten:** Explizite Berechnung, Ansätze in den Normvorgaben
- **Bewehrungsführung und -darstellung:** Unterstützungen und Abstandhalter, Biegung von Bewehrung, Rückbiegeanschlüsse, konstruktive Randbedingungen der Bewehrungsführung, Sonderfälle
- **Schiefe Biegung:** Anwendungsfälle, Grenzen des Superpositionsprinzips mit Einfluss auf Nachweise der Bewehrung sowie der Betontragfähigkeit, numerische Bemessungsverfahren, normative Regelungen
- **Bewehrungsanschlüsse:** Arten und Anwendungsbereiche verschiedener Bewehrungsanschlüsse
- **Träger mit Stegöffnungen:** Besonderheiten und Übergang von B- zu D-Bereichen, Modellbildung, Nachweisführung, konstruktive Durchbildung und Bewehrungsführung

Stand: 26. 10. 2020
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
Die Studierenden
-sind vertraut mit den ausgewählten Problemstellungen der behandelten Bereiche des
Stahlbetonbaus,
-besitzen die Fähigkeit selbständig zugehörige Lösungsansätze für die Praxis zu bewerten und
-sind in der Lage im Rahmen einer praxisnahen Herangehensweise diese für spezifische
Randbedingungen in Planung, Ausführung und Konstruktion umzusetzen.

Angebotene Lehrunterlagen

Ständig aktualisiertes Umdruckmaterial zu den Lehrveranstaltungen

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelananschrieb

Literatur

Merkblatt des Deutschen Beton- und Bautechnik-Vereins „Abstandhalter“ nach Eurocode 2
(2011-02)
WU-Richtlinie des Deutschen Ausschusses für Stahlbetonbau (2003-11) mit zugehöriger
Berichtigung (2006-03)
Deutsche Ausschusses für Stahlbetonbau – Heft 555: Erläuterungen zur DAFStb -Richtlinie
wasserundurchlässige Bauteile (2006)
Lohmeyer, G.; Ebeling, K.: Weiße Wannen - einfach und sicher. Verlag Bau+Technik,
Merkblatt des Deutschen Beton- und Bautechnik-Vereins „Unterstützungen nach Eurocode
2“ (2011-02)
Merkblatt des Deutschen Beton- und Bautechnik-Vereins „Wasserundurchlässige Bauteile aus
Beton“ (1996-02)
Merkblatt des Deutschen Beton- und Bautechnik-Vereins „Rückbiegen von Betonstahl und
Anforderungen an Verwahrkästen“ (2008-01)
Merkblatt des Deutschen Beton- und Bautechnik-Vereins „Fugenausbildung für ausgewählte
Baukörper aus Beton“ (2001-04)
Umdruckmaterial zu den Lehrveranstaltungen mit weiteren Literaturhinweisen.

Weitere Informationen zur Lehrveranstaltung

[1] Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine
Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den
Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von
etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Bauphysik – Messungen und Diagnosen</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfolgreiche Absolvierung einer Lehrveranstaltung Bauphysik 1 mit Praktikum</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>18.1 Schall- und Lärmschutz</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>18.2 Wärme- und Feuchteschutz</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 18 Bauphysik – Messungen und Diagnosen

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Schall- und Lärmschutz</td>
<td>18.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrian Blödt (LB)</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Christoph Höller</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h Präsenzstudium</td>
<td>45 h Eigenstudium</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienbegleitende Leistungsnachweise: Präsentation (15 Min)

Inhalte

- Grundlagen der Bau- und Raumakustik
- DIN 4109, DIN EN ISO 12354, DIN EN ISO 717, DIN EN ISO 10140
- Messungen im Labor: Schalldämm-Maß, Norm-Trittschallpegel, Nachhallzeit
- Messungen auf der Baustelle: Bau-Schalldämm-Maß, Norm-Trittschallpegel, Nachhallzeit, praktische Überlegungen und Herausforderungen
- Praktischer Schallschutz im Massivbau und im Holzbau, Schallbrücken
- Lärmschutz: Lärmessungen, Messverfahren für den Immissionsschutz

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die für den Schallschutz in Gebäuden relevanten Normen zu benennen (1)
- die physikalischen Grundlagen der Bau- und Raumakustik zu erklären (1)
- die Bedeutung der Raumimpulsantwort für Bau- und Raumakustik zu erklären (1)
- die physikalischen Grundlagen des Lärmschutzes wiederzugeben (1)
- Berechnungen der Schalldämmung gemäß DIN 4109 und DIN EN ISO 12354 durchzuführen (2)
- Messungen von Schalldämm-Maß und Norm-Trittschallpegel selbständig durchzuführen (2)
- Das (bewertete) Schalldämm-Maß und den (bewerteten) Norm-Trittschallpegel aus gemessenen Daten zu berechnen (2)
- Bauteile auf ihre Schalldämmigenschaften zu untersuchen (2) und zu bewerten (3)
die Unterschiede zwischen Labormessungen und Messungen auf der Baustelle einzuordnen (1) und Datenblätter und Messdaten gegenüberzustellen (3)
ein Thema aus dem Schall- und Lärmschutz eigenständig aufzuarbeiten (3) und in einer Präsentation darzustellen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
erfolgreich in Kleingruppen praktische Aufgaben im Labor zu lösen (2)
ein Thema eigenständig aufzuarbeiten (3) und in einer Präsentation darzustellen (3)

Angebotene Lehrunterlagen
Vorlesungsskriptum

Lehrmedien
Tafel, Beamer, Computersimulationen, Demonstrationsversuche, Messungen im Labor, Messungen auf der Baustelle

Literatur
• Normen
• Vorlesungsskript
• Fachliteratur zur Vorbereitung der Präsentation

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

| 18.2 Wärme- und Feuchteschutz | 18.2 |

Verantwortliche/r
Prof. Dr. Oliver Steffens
Lehrende/r / Dozierende/r
Adrian Blödt (LB)
Prof. Dr. Oliver Steffens

Fakultät
Angewandte Natur- und Kulturwissenschaften
Angebotsfrequenz
nur im Wintersemester

Lehrform
Seminaristischer Unterricht mit Praktikum

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h Präsenzstudium</td>
<td>45 h Eigenstudium</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienbegleitende Leistungsnachweise: Präsentation (15 Min)

Inhalte

Wärmeschutz:
- Erstellen eines Wärmeschutznachweises nach EnEV
- Erstellen eines Wärmeschutznachweises nach DIN 18599
- Entwicklung eines Nullenergiehauses
- Praktische Lösungen der Differentialgleichung der Wärme
- Wärmebrücken: Berechnung, Wärmebrückenkatalog, Messverfahren
- Aufheiz- und Abkühlprozesse
- Berechnung der Kontakttemperatur
- Zyklische Temperaturen (Temperaturamplitudenverhältnis)
- Behaglichkeit und Thermographie

Feuchteschutz:
- Wärme- und Feuchtetransport
- Näherung nach Glaser
- Lösungen mit WUFI

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Anforderungen an den energetischen Wärmeschutz gemäß EnEV 2014 zu benennen (1) und einen Wärmeschutznachweis gemäß EnEV zu erstellen (2)
- einen Wärmeschutznachweis gemäß DIN 18599 zu erstellen (2) und einen Entwurf für ein Nullenergiehaus zu entwickeln (3)
- instationäre Wärmetransportvorgänge in Gebäuden zu beschreiben (1)
- Lösungsansätze für die Differentialgleichungen zum Wärmetransport wiedergabe (1) und selbständig Lösungen zu berechnen (2)
- ein Gebäude auf Wärmebrücken zu untersuchen (2) und zu bewerten (3)
- Thermographie-Messungen selbständig durchzuführen (2) und zu analysieren (3)
- Wärme- und Feuchteschutztechnische Probleme mit WUFI zu analysieren (3)
- ein Thema aus dem Wärme- und Feuchteschutz eigenständig aufzuarbeiten (3) und in einer Präsentation darzustellen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- erfolgreich in Kleingruppen praktische Aufgaben im Labor zu lösen (2)
- ein Thema eigenständig aufzuarbeiten (3) und in einer Präsentation darzustellen (3)

Angebotene Lehrunterlagen
Vorlesungsskriptum

Lehrmedien
Tafel, Beamer, Computersimulationen, Demonstrationsversuche, Messungen im Labor

Literatur
- Normen
- Vorlesungsskript
- Fachliteratur zur Vorbereitung der Präsentation

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Ausgewählte Kapitel der Baustoffe in der Erhaltung (Special Materials and Methods for Repair Work)</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.bis 3.</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Anwesenheitspflicht bei Praktika und Exkursionen, Portfolioprüfung

Empfohlene Vorkenntnisse

Dieses Seminar baut auf den Vorlesungsinhalten des Bachelorstudiums in Baustoffkunde (B1-BSK) und des Masterstudiums Technologie der Baustoffe (6) sowie Bauphysik: Wärme- und Feuchteschutz (18) auf.

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19 Ausgewählte Kapitel der Baustoffe in der Erhaltung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Ausgewählte Kapitel der Baustoffe in der Erhaltung (Special Materials and Methods for Repair Work)</td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolfgang Hollweck (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Michael Schmalz (LB)</td>
<td></td>
</tr>
<tr>
<td>Dr. Alexander Stoll (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht und Praktika</td>
</tr>
<tr>
<td>Begrenzung auf 15 Studierende / Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.bis 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen 30 Stunden Praktika</td>
<td>90 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- Studienleistung: Anwesenheitspflicht bei Praktika und Exkursionen
- Prüfungsleistung: Portfolioprüfung

Zugelassene Hilfsmittel für Leistungsnachweis

- Keine bzw. angegebene Literaturstellen
<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Kapitel aus folgenden Stoffgebieten werden erarbeitet:</td>
</tr>
<tr>
<td>Mörtel/Putz/Wärmedämmverbundsysteme: Bindemittel, Putzaufbau, Auswahl der richtigen Putze, Schadensbilder, Sanierputze, Mauerwerks-Trockenlegung, Laborübungen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, den Einsatz ausgewählter Baustoffe und Instandsetzungsverfahren in der Bauwerksinstandsetzung zu beurteilen.</td>
</tr>
<tr>
<td>Die Studierenden</td>
</tr>
<tr>
<td>- verfügen über ein vertieftes Wissen über ausgewählte Baustoffe für Erhaltungs- und Instandsetzungsauflagen (2),</td>
</tr>
<tr>
<td>- kennen die Bandbreite der Herstellung, die erzielbaren technologischen Eigenschaften (1),</td>
</tr>
<tr>
<td>- sind mit Dauerhaftigkeitsspektren, den richtigen Einsatz und der Materialwahl vertraut (2),</td>
</tr>
<tr>
<td>- verfügen über vertiefte Erkenntnisse zur Erkennung und Beurteilung von Schäden (3),</td>
</tr>
<tr>
<td>- verfügen über Kenntnisse der Bindemitteltechnologie, Schadensmechanismen, den Einsatz von Putz und WDVS, übliche Schadensmechanismen und Sanierungsmöglichkeiten (2),</td>
</tr>
<tr>
<td>- beherrschen spezielle Prüfverfahren für die behandelten Baustoffe (2),</td>
</tr>
<tr>
<td>- können das erarbeitete Wissen unmittelbar für spezielle Fragestellungen einsetzen und die vermittelten Prinzipien für andere komplexe Fragestellungen übernehmen (3),</td>
</tr>
<tr>
<td>- sind fähig neue baustoffkundliche Fragestellungen wissenschaftlich fundiert aufzubereiten und zu präsentieren (2),</td>
</tr>
<tr>
<td>- verfügen vertiefte Kenntnisse über die geltenden Regelwerke/anerkannten Regeln der Technik (3).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>- konstruktive Aufgabenstellungen zu erfassen (2),</td>
</tr>
<tr>
<td>- spezielle Themen anhand von Vorträgen und praktischer Arbeit im Labor und Technikum (z.B. mit Putz- oder Abdichtungssystemen) zu vertiefen (2),</td>
</tr>
<tr>
<td>- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2),</td>
</tr>
<tr>
<td>- fachliche Fragen zu stellen (3),</td>
</tr>
</tbody>
</table>
• fachliche Fragen angemessen zu beantworten (2), ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

<table>
<thead>
<tr>
<th>Angebote Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durch die Dozenten vorbereitete Unterlagen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar, Labor, Exkursionen, Präsentationen der Studenten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>und weitere durch die Dozenten vorbereitete Unterlagen</td>
</tr>
<tr>
<td>Weitere Informationen zur Lehrveranstaltung</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Begrenzung auf 15 Studierende / Semester</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Denkmal und Ingenieurtechnik</td>
<td>20</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Prof. Florian Weininger
Fakultät: Bauingenieurwesen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
keine

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>20 Denkmal und Ingenieurtechnik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 20 Denkmal und Ingenieurtechnik

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Denkmal und Ingenieurtechnik</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Florian Weininger</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernhard Köck (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Wolfgang Kugler (LB)</td>
<td></td>
</tr>
<tr>
<td>Nele Reichel (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht und Übung, Gruppenarbeit, Exkursion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristische Lehrveranstaltungen und Übung (Präsenz)</td>
<td>90 Stunden eigenverantwortliches Lernen, Studienarbeiten und Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
</table>

| Prüfungsleistung: schriftliche Prüfung; Dauer: 90min |

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taschenrechner</th>
</tr>
</thead>
</table>
Inhalte

- Einführung in das Thema Denkmalpflege
- Bayerisches Denkmalschutzgesetz
- Baustilkunde
- Bauphysik und Brandschutz im Denkmal
- Baustoffe und Bauteile
- Historische Dachwerke – Konstruktion und Tragverhalten:
 Zimmermannsmäßige Verbindungen; Sparren- und Pfettendachwerke;
 Konstruktionsprinzipien und -elemente; Dachwerke mit nicht durchgehender Zerrbalkenlage;
 Lastabtragungsmechanismen; Materialkennwerte; Nachgiebigkeiten der Verbindungen;
 Räumliche Lastabtragung
- Historisches Mauerwerk – Konstruktion und Tragverhalten:
 Steinarten- und -wahl; Historische Mörtel; Herstellungsprozesse und -techniken;
 Konstruktionsformen und -merkmale von Mauern und Gewölbem; Mauerwerk und Mörtel als
 Verbundwerkstoff; Spannungszustände in der Lagerfuge; Klaffende Fuge und Stützlinientheorie
 bei Gewölbem; Traglastuntersuchungen von Gewölbem
- Grundlagen der Instandsetzung
- Ablauf einer Objektbegehung
- Ablauf eines Vorprojekts
- Instandsetzung von Holzbauteilen
- Instandsetzung von Mauerwerk
- Nachgründung von Gebäuden
- Historische Stützmauern
- Verstärkung von Bauteilen
- Präsentation von Instandsetzungsbeispielen und typischen Schäden

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • die in der Denkmalpflege vorkommenden Aufgabenstellungen zu kennen (1).
 • Problemstellungen in der Denkmalpflege einzuschätzen (2).
 • Berechnungsverfahren an historischen Konstruktionen anzuwenden (2).
 • grundlegende Möglichkeiten zu kennen, um typische Schäden statisch-konstruktiv zu
 beheben (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • statistisch-konstruktive Aufgabenstellungen zu erfassen (2).
 • technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
 • fachliche Fragen zu stellen (2).
 • fachliche Fragen angemessen zu beantworten (2).
 • ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
20 Denkmal und Ingenieurtechnik

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung

Literatur

• Denkmalschutzgesetz
• Bedeutung, Rezeption, Sanierung Beiträge zur Denkmalpflege in Berlin, Band 26, Landesdenkmalamt Berlin, Michael Imhof Verlag, Petersberg, 2007
• Energieeffizient sanieren, Mit innovativer Technik zum Niedrigenergiestandard Alfred Kerschberger, Martin Brillinge, Markus Binder Solarpraxis, April 2007
• Erler, K.: Alte Holzbauwerke – Beurteilen und Sanieren. Verlag für Bauwesen, 2004
• Holzer, S.: Statische Beurteilung historischer Tragwerke. Bd. 1: Mauerwerkskonstruktionen; Verlag Ernst & Sohn, August 2013
• Niemz, P.: Physik des Holzes und der Holzwerkstoffe. DRW-Verlag, 1993
• u. a.

Weitere Informationen zur Lehrveranstaltung

Stand: 22.04.2020

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>ModulkzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Brandschutz in Neu- und Bestandsbauten</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kathrin Grewolls</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
</tbody>
</table>
Teilmodul

21.1 Brandschutzingenieurwesen

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>21.1</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kathrin Grewolls</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kathrin Grewolls</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Praktikum

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>45 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: mündliche Prüfung (Dauer 15 Minuten)

Inhalte

Bestandsschutz: Arten des Betandsschutzes, Recht auf Bestandsschutz, Wegfall des Bestandsschutzes; beispielgebende Gerichtsurteile;
Beurteilung alter Baukonstruktionen
Abweichungen: Zweck der Abweichungen; richtige Wahl von Kompensationsmaßnahmen; formelles Vorgehen;
Muster-Industriebauachtlinie: MIndBauRL als Beispiel für die Anwendung von Berechnungen im Brandschutzgenieurwesen; Rechnerische Ermittlung von Brandlasten Grundlagen der rechnerischen Modellierung von Bränden: Thermodynamische Vorgänge, Wärmeleitung, Grundlagen der Wärmestrahung, der Gaströmungen und der Modellierung; Plumeberechnungen. Einführung in die Simulationsmethoden mit praktischer Anwendung

Grundlagen der Rauch- und Wärmeableitung:
Praktische Beispiele für die Rauchableitung aus Gebäuden
Evakuierung aus Gebäuden:
Einfache Evakuierungsszenarien auch mit Simulation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die brandschutztechnischen Anforderungen an ein Gebäude aus der BayBO und den entsprechenden Sonderbauverordnungen herauszulesen und zu verstehen (2).
- Brandschutzmaßnahmen für Regelbauten und einfache Sonderbauten zu erstellen (2).
- Maßnahmen zu erkennen, die für eine brandschutztechnische Bewertung eines Bestandsgebäudes erforderlich sind (1).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- konstruktive Aufgabenstellungen zu erfassen (2).
- erforderliche Maßnahmen gegenüber Bauherren, Fachplanern und Behörden zu kommunizieren (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen und angemessen zu beantworten (3).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur

Koch, St.: Brandschutz und Baurecht, FeuerTRUTZ-Verlag, Köln 2011.

Muster-Industriebauvorschriften

Weitere Sonderbauvorschriften

Skripten und weitere Vorlesungsunterlagen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname: 21 Brandschutz in Neu- und Bestandsbauten

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.2 Bemessung für den Brandfall</td>
<td>21.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kathrin Grewolls</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Christian Scholz (LB)</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>Eigenstudium</td>
</tr>
<tr>
<td>30 Stunden seminaristische</td>
</tr>
<tr>
<td>45 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Klausur (Dauer 60 Minuten)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• die Änderungen der Eigenschaften der einzelnen Materialien im Brandfall zu benennen (1) und</td>
</tr>
<tr>
<td>• den Feuerwiderstand von verschiedenen Bauteilen zu ermitteln (2).</td>
</tr>
<tr>
<td>Anwendungsmöglichkeiten und Grenzen von Ingenieurm methoden (Brand- und Evakuierungssimulation) zu erkennen (1).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• konstruktive Aufgabenstellungen zu erfassen (2).</td>
</tr>
</tbody>
</table>
• erforderliche Maßnahmen gegenüber Bauherren, Fachplanern und Behörden zu kommunizieren (2).
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• fachliche Fragen zu stellen und angemessen zu beantworten (3).
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum,

Lehrmedien
Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur
(Achtung: Bald in Neuauflage von Hosser, D. Verlag Bau+Technik)
Skrptum zur Lehrveranstaltung mit weiteren Literaturhinweisen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Erweiterte betontechnologische Ausbildung (E-Schein)</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Modul 06

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>22 Erweiterte betontechnologische Ausbildung (E-Schein)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Erweiterte betontechnologische Ausbildung (E-Schein)</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht und Praktika / 12 SWS Aufwand, 5 SWS anrechenbar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td></td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>40 Stunden anrechenbares Seminar</td>
</tr>
<tr>
<td>20 Stunden anrechenbare Praktika</td>
</tr>
<tr>
<td>Eigenstudium</td>
</tr>
<tr>
<td>90 Stunden anrechenbares,</td>
</tr>
<tr>
<td>eigenverantwortliches Lernen</td>
</tr>
<tr>
<td>1 Monat</td>
</tr>
<tr>
<td>tatsächlicher Gesamtaufwand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwesenheitspflicht</td>
</tr>
</tbody>
</table>

Studienbegleitende Leistungsnachweise: Portfiolioprüfung (3 Studienbegleitende schriftliche Leistungsnachweise, Mündliche Prüfung vor dem vom „Ausbildungsbeirat Beton“ beim DBV bestellten Prüfungsausschuss)

Zugelassene Hilfsmittel für Leistungsnachweis
Keine
Inhalte

Der Lehrplan umfasst alle zur Führung einer Betonprüfstelle notwendigen theoretischen Kenntnisse und praktischen Fähigkeiten nach den neuesten Normen und Vorschriften.

Eingegangen wird auf alle aktuellen Themen rund um den Baustoff Beton. Der Lehrgangsinhalt richtet sich nach dem Lehrplan des DBV:

Inhalte sind zum Beispiel:
- Zweck einer Betonprüfstelle; bauaufsichtliche Bestimmungen, Normen und Vorschriften;
- Konstruktive Anforderungen an Beton- und Stahlbeton; Bestandteile des Betons, Entwerfen von Betonmischungen; Dauerhaftigkeit,
- Frisch-, Fest-, Transportbeton; Zementestrich und Mörtel
- Zement, Zugabewasser, Gesteinskörnungen; Betonzusätze
- Konformitätskriterien; Expositionsklassen;
- Bauausführung und Fugen
- Arten von Beton wie Leicht-, Schwer-, Unterwasser-, Bohrpfahl-, Vakuum-, Spritzbeton, WU-Beton, hochfester und selbstverdichtender Beton; Faser-, Sichtbeton und Betonfertigteile Qualitätsicherung, Dauerhaftigkeit, Schnittstellen und Verantwortlichkeiten

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, konstruktive Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (3).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Zum Kurs gibt es eine eigene Kursmappe mit umfangreichen Unterlagen zum Stoffgebiet.

Lehrmedien

Seminar, Laborpraktika
Literatur

Einschlägige Normen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Rückbau und Altlastensanierung (23 Dismantlement and Brownfield Restoration)</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Grundkenntnisse in Hydrogeologie, Bodenansprache, Baustoffkunde

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>23.1 Gebäuderückbau: Probennahme, Bewertung, Planung / Altlasten in Boden und Grundwasser</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>23.2 Kontrollierter Rückbau: Erkundung, Entsorgung / Chemie der Altlasten und Nachweise im Labor</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 23 Rückbau und Altlastensanierung

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Gebäuderückbau: Probennahme, Bewertung, Planung / Altlasten in Boden und Grundwasser (23.1 Dismantlement: Sampling, assessment, planning / contaminated land and water)</td>
<td>23.1</td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät
Prof. Dr. Walter Rieger | Allgemeinwissenschaftliches Programm
Lehrende/r / Dozierende/r | Angebotsfrequenz
Roland Kunz (LB) | nur im Sommersemester
Dr. Dieter Zerbes (LB) |

Lehrform
Multimedialer seminaristischer Unterricht

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
2 SWS | deutsch | 2.5 |

Zeitaufwand:
Präsenzstudium | Eigenstudium
Vorlesung 30 h | Vor und Nachbereitung 35 h, Prüfungsvorbereitung 10 h

Studien- und Prüfungsleistung
Prüfungsleistung: Klausur: 60 min

Zugelassene Hilfsmittel für Leistungsnachweis
alle
Inhalte

- Grundlagen des selektiven Gebäuderückbaus
- stufenweiser Bearbeitungsablauf
- Grundlagen Schadstoffe / Störstoffe
- historische Recherche
- Probenahme, Stoffanalyse, abfallrechtliche Bewertung
- Gefährdungsabschätzung
- Abfalleinstufung und Erstellung von Schadstoffkatastern
- Planung Rückbau / Sanierung unter abfallrechtlichen Gesichtspunkten
- Erstellung von Verwertungs- / Entsorgungskonzepten
- Erarbeitung von Arbeits- und Emissionsschutzkonzepten
- Erstellung von Boden- und Grundwasserschutzkonzepten
- Kosten-Nutzen-Analyse
- Genehmigungsverfahren
- Bauüberwachung, Entsorgungsmanagement, Abrechnung
- Dokumentation, Registerführung gemäß NachwV sowie
- Grundsätze der elektronischen Abfallnachweisführung (eANV)
- Grundlagen Abfallrecht

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- verschiedene Phasen bei Rückbau- / Sanierungsmaßnahmen anzugeben (1)
- Schadstoffe und Störstoffe in Gebäuden / baulichen Anlagen zu beproben und zu analysieren (3)
- Verteilung von Schadstoffen in Planunterlagen sowie bei der Mengenermittlung Umwelt- und abfallrechtliche Bewertung von Analysenergebnissen darzustellen (2)
- Schadstoffe und Störstoffe in Gebäuden / baulichen Anlagen durch eigenständige Recherchen im Rahmen von Rückbau- / Sanierungsmaßnahmen zu bewerten (3)
- Verwertungs- / Entsorgungskonzepten zu erstellen (3)
- Rückbau- / Sanierungsmaßnahmen zu planen (2)
- mit den abfall- und arbeitsschutzrechtlichen Gesetzgebungen umzugehen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- im Rahmen von Praxisbeispielen das Gefahrenpotential von Schadstoffen bodenschutzrechtlich und abfallrechtlich zu beurteilen (3)
- die erforderlichen Sicherungsmaßnahmen bei der Bewertung der Vor-Ort-Situation in Hinblick auf arbeits- und gesundheitsschutzrechtliche Belange abzuleiten (3)
- Berufsunabhängige Grundbegriffe und Kenngrößen der Analytischen Chemie und der Altlastenproblematik zu benutzen (2)

Angebotene Lehrunterlagen

Foliensatz

Lehrmedien

Multimediales seminaristischer Unterricht
Literatur

- Kreislaufwirtschafts- und Abfallgesetz - KrW-/AbfG Verordnung zur Vereinfachung des Deponierechts - Deponieverordnung DepV
- Verordnung über das Europäische Abfallverzeichnis - Abfallverzeichnis-Verordnung - AVV
- Nachweisverordnung - NachwV
- Länderarbeitsgemeinschaft Abfall (LAGA) (Mitteilung M 20 - Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen / Abfällen und LAGA PN 98 - Richtlinie für das Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit der Verwertung / Beseitigung von Abfällen...
- Gefahrstoffverordnung - GefStoffV
- Chemikalien-Verbotsverordnung - ChemVerbotsV
- Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten- BBodSchG
- Wasserhaushaltsgesetz - WHG
- Bundes-Immissionsschutzgesetz - BImSchG
- FGSV, AG Mineralstoffe im Straßenbau: M RC - Merkblatt über die Wiederverwertung von mineralischen Baustoffen als Recycling-Baustoffe im Straßenbau...
- VDI 6202 - Sanierung schadstoffbelasteter Gebäude und Anlagen - in Bearbeitung
- VDI 6210 - Abbruch und Rückbau baulicher und technischer Anlagen - in Bearbeitung
- LfU: Arbeitshilfe Kontrollierter Rückbau - Kontaminierte Bausubstanz - Erkundung, Bewertung, Entsorgung
- ZTVwwG-StB By 05 - Zusätzliche Technische Vertragsbedingungen und Technische Lieferbedingungen für die einzuhaltenden wasserwirtschaftlichen Gütemerkmale bei der Verwendung von Recycling-Baustoffen im Straßenbau in Bayern
- TRGS 524 - Schutzmaßnahmen für Tätigkeiten in kontaminierten Bereichen
- Sonstige Normen, Richtlinien und Regelwerke
- Arbeitshilfen - Merkblätter des BayLfW-LfU; Download: http://www.stmug.bayern.de/umwelt/boden/vollzug/altlasten.htm
- LAGA 20: Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen - Technische Regeln - (Mitteilungen der LAGA 20, 11/1997)
- LAGA PN 98: Richtlinie für das Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit der Verwertung / Beseitigung von Abfällen (Mitteilungen der LAGA 32, 12/2001) Download: http://www.laga-online.de/servlet/is/23874/
- G. Schwedt, Analytische Chemie; Wiley-VCH Verlag GmbH & Co. KGaA; Auflage: 3 (7. Dezember 2016)
Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2 Kontrollierter Rückbau: Erkundung, Entsorgung / Chemie der Altlasten und Nachweise im Labor</td>
<td>23.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Josef Steretzeder (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimedialer seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung 30 h</td>
<td>Vor und Nachbereitung 35 h, Prüfungsvorbereitung 10 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

| Prüfungsleistung: Klausur: 60 min |

Zugelassene Hilfsmittel für Leistungsnachweis

| alle |

Inhalte

- Altlasten in Bayern / Deutschland
- Wichtige Schadstoffe/Schadstoffgruppen
- Rechtliche Grundlagen Bodenschutzrecht
- Schutzgüter und Wirkungspfade
- Altlastenerkundung, Gefährdungsbeurteilung
- Entsorgung/Verwertung
- Arbeitsschutz
- Schadstoffe in der Bausubstanz
- Erkundung des Gebäudes
- Bewertung der Erkundungsergebnisse
- Entsorgung
- Relevante chemische Stoffe
- Analysenverfahren für Grund-, Oberflächen- und Abwasser sowie Sickerwasser
- Analysenverfahren für Feststoffe
- Probennahmeverfahren
- Analytische Bestimmungsmethoden
- Bewertungs- und Beurteilungskriterien für die Analysenverfahren
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den ordnungsgemäßen und sicheren Ausbau schadstoffhaltiger Materialien vor dem Abbruch und einer höchstmöglichen sortenreinen Verwertung von Bauabfällen praxisorientiert zu überblicken (1)
- die technologischen Schritte bei der Erkundung, Bewertung und Entsorgung anzuwenden. Der Schwerpunkt liegt dabei im kontrollierten Rückbau (2)
- durch Kenntnis der Methoden Ergebnisse von Analysen von Altlasten zu beurteilen und zu bewerten. Dadurch und durch das erlangte Verständnis der Chemie der Altlasten werden Gefährdungspotentiale objektivierbar (3)
- analytisch chemische Problemstellungen im Schadstoffbereich zu analysieren und geeignete Verfahren zur Lösung auszuwählen (3)
- Fehlerabschätzung und statistische Methoden anzuwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- allgemeine analytische und altlastenspezifische Veröffentlichungen einzuordnen (2)
- die Pflicht zur Verwertung nutzbarer Abfälle nach der grundsätzlichen Handlungsabfolge „Vermeiden-Verwerten-Beseitigen“ darzustellen (3)
- Berufsunabhängige Grundbegriffe und Kenngrößen der Analytischen Chemie und der Altlastenproblematik zu benutzen (2)

Angebotene Lehrunterlagen

- Foliensatz
- Lehrmedien
- Multimedialer seminaristischer Unterricht
Literatur

- Kreislaufwirtschafts- und Abfallgesetz - KrW-/AbfG Verordnung zur Vereinfachung des Deponierechts - Deponieverordnung DepV
- Verordnung über das Europäische Abfallverzeichnis - Abfallverzeichnis-Verordnung - AVV
- Nachweisverordnung - NachwV
- Länderarbeitsgemeinschaft Abfall (LAGA) (Mitteilung M 20 - Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen / Abfällen und LAGA PN 98 – Richtlinie für das Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit der Verwertung / Beseitigung von Abfällen...
- Gefahrstoffverordnung - GefStoffV
- Chemikalien-Verbotsverordnung - ChemVerbotsV
- Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten- BBodSchG
- Wasserhaushaltsgesetz - WHG
- Bundes-Immissionsschutzgesetz - BImSchG
- FG SV, AG Mineralstoffe im Straßenbau: M RC - Merkblatt über die Wiederverwertung von mineralischen Baustoffen als Recycling-Baustoffe im Straßenbau...
- VDI 6202 - Sanierung schadstoffbelasteter Gebäude und Anlagen - in Bearbeitung
- VDI 6210 - Abbruch und Rückbau baulicher und technischer Anlagen - in Bearbeitung
- LfU: Arbeitshilfe Kontrollierter Rückbau - Kontaminierte Bausubstanz - Erkundung, Bewertung, Entsorgung
- ZTVwwG-StB By 05 - Zusätzliche Technische Vertragsbedingungen und Technische Lieferbedingungen für die einzuhaltenden wasserwirtschaftlichen Gütemerkmale bei der Verwendung von Recycling-Baustoffen im Straßenbau in Bayern
- TRGS 524 - Schutzmaßnahmen für Tätigkeiten in kontaminierten Bereichen
- Sonstige Normen, Richtlinien und Regelwerke
- Arbeitshilfen - Merkblätter des BayLfW-LfU; Download: http://www.stmug.bayern.de/umwelt/boden/vollzug/altlasten.htm
- LAGA 20: Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen - Technische Regeln - (Mitteilungen der LAGA 20, 11/1997)
- LAGA PN 98: Richtlinie für das Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit der Verwertung / Beseitigung von Abfällen (Mitteilungen der LAGA 32, 12/2001) Download: http://www.laga-online.de/servlet/is/23874/
- G. Schwedt, Analytische Chemie; Wiley-VCH Verlag GmbH & Co. KGaA; Auflage: 3 (7. Dezember 2016)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.

Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
25 Ertüchtigung von Gründungen und Erdbauwerken

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Ertüchtigung von Gründungen und Erdbauwerken</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul 5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Modul 2 (M1-9) Numerische Verfahren in der Geotechnik
B2-GT I Geotechnik I

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>25 Ertüchtigung von Gründungen und Erdbauwerken</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ertüchtigung von Gründungen und Erdbauwerken</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. oder 3. Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60 Stunden seminaristische Lehrveranstaltungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung, Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanierung und Ertüchtigung</td>
</tr>
</tbody>
</table>

Gründungen: Schadensbilder und -analyse, Ursachen, Bestandsaufnahme, Sofortsicherungsmaßnahmen, Entlastung, konventionelle Unterfangungen, Injektionen und Düsenstrahlverfahren, säulenartige Tragglieder und deren Anschluss an die Gründung, messtechnische Überwachung, Praxisbeispiele

Stützmauern: Schadensbilder und -analyse, Ursachen, Bestandsaufnahme, Sofortsicherungsmaßnahmen, Entlastung durch Erdruckreduzierung, Verankerung und Vernagelung, Stützkörper, messtechnische Überwachung, Praxisbeispiele

Baugrundverbesserungen: Methoden und Verfahren der Baugrundverbesserung, Systematisierung, Tragverhalten, Eigenschaften der verbesserten Böden, Standsicherheits- und Gebrauchstauglichkeitsnachweise, messtechnische Überwachung, Praxisbeispiele

Erdbauwerke von Verkehrswege: Schadensbilder und -analyse, Ursachen, Bestandsaufnahme, Sofortsicherungsmaßnahmen unter Berücksichtigung des Verkehrs, erdbautechnische Sanierungsverfahren, Stützkonstruktionen, Baugrundverbesserungsverfahren, aufgeständerte Konstruktionen, messtechnische Überwachung, Praxisbeispiele

Hangrutschungen: Schadensbilder und –analyse, Ursachen, Bestandsaufnahme, Sofortsicherungsmaßnahmen, Vorschüttungen, Entwässerung und Drainagen, Stützkörper, Verdübelungen, messtechnische Überwachung, Praxisbeispiele
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Baugrundbedingte Schäden an Gründungen, Stützmauern, Erdbauwerken zu analysieren und die möglichen Schadensursachen zu diskutieren (2)
• Unterfangungen von bestehenden Bauwerken zu entwerfen, zu dimensionieren und die technologischen und wirtschaftl. Besonderheiten zu bewerten (2)
• dabei sowohl ästhetische als auch Belange des Natur- u. Denkmalschutzes zu berücksichtigen (2)
• unterschiedliche Möglichkeiten der Baugrundverbesserung entsprechend den geotechnischen Randbedingungen zu identifizieren, überschläglich zu dimensionieren und wirtschaftlich zu bewerten (2-3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• begründet durch die detaillierten Ausführungen geotechnisch Sanierungserfordernisse zu erkennen und anzuwenden (3)
• die ingenieurtechnische Zusammenhänge über die geotechnischen Fragestellungen hinaus zwischen Erkundung, Planung und Ausführung zu erkennen und mit der entsprechenden Maschinentechnik zu kombinieren (2)
• weitere innovative Verständnisfrage im Rahmen der interdisziplinäre Ausbildung zum Bauingenieur zu formulieren (2)

Lehrmedien

Vortragsvorlesung mit Präsentationen, Visualizerunterstützung und Tafelanschrieb

Literatur

• Kunzer, Ch.: Injektionen im Baugrund, Enke Verlag 1991
• Normen und RegelwerkeUmdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 Praxis der Bau- und Bodendynamik (Applied Structural and Soil Dynamics)</td>
<td>26</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

| Prof. Dr. Othmar Springer | Bauingenieurwesen |

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>26.1 Praxis der Baudynamik</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>26.2 Praxis der Bodendynamik</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.1 Praxis der Baudynamik (Applied Structural Dynamics)</td>
<td>26.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine

Inhalte

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die grundlegenden Zusammenhänge der Bau- und Bodendynamik zu kennen (1).
- dynamische Problemstellungen zu beurteilen, konstruktive Lösungsvorschläge zu erarbeiten und Schäden aus dynamischen Vorgängen zu vermeiden (2).
- sich mit komplexen theoretischen Grundlagen und abstrakten mechanischen Modellen auseinanderzusetzen und diese auf praktische Problemstellungen umzusetzen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- komplexe konstruktive Aufgabenstellungen zu erfassen und sich vertieft damit auseinanderzusetzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiedzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur

- Grundmann, H. et. al.: Einführung in die Baudynamik. (Mitteilungen Institut für Bauingenieurwesen, TUM, 1983).
- Petersen, Chr.: Dynamik der Baukonstruktionen. (Vieweg-Verlag, jeweils aktuelle Auflage).
- Weitere Normen und Regelwerke
- Skripte zu den Vorlesungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
26 Praxis der Bau- und Bodendynamik

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.2 Praxis der Bodendynamik</td>
<td>26.2</td>
</tr>
<tr>
<td>(Applied Soil Dynamics)</td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät |
Prof. Dr. Thomas Neidhart | Bauingenieurwesen |
Lehrende/r / Dozierende/r | Angebotsfrequenz |
Prof. Dr. Thomas Neidhart | nur im Sommersemester|

Lehrform:
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
30 Stunden seminaristischer Unterricht (Präsenz)

Eigenstudium
45 Stunden eigenverantwortliches Lernen (Eigenstudium)

Studien- und Prüfungsleistung

Inhalte

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die grundlegenden Zusammenhänge der Bau- und Bodendynamik zu kennen (1).
- dynamische Problemstellungen zu beurteilen, konstruktive Lösungsvorschläge zu erarbeiten und Schäden aus dynamischen Vorgängen zu vermeiden (2).
- sich mit komplexen theoretischen Grundlagen und abstrakten mechanischen Modellen auseinanderzusetzen und diese auf praktische Problemstellungen umzusetzen (3).
- Schwingungsmessungen durchzuführen und deren Ergebnisse auszuwerten bzw. zu bewerten (2).
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname: 26 Praxis der Bau- und Bodendynamik

• einfache Schwingungsprognosen u. a. mittels Softwareunterstützung durchzuführen (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• komplexe konstruktive Aufgabenstellungen zu erfassen und sich vertieft damit
 auseinanderzusetzen (3).
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien
Vortragsvorlesung mit Beamerunterstützung,
Overheadprojektor und Tafelanschrieb

Literatur
 Tiefbauarbeiten. Bericht 20 der Informationsreihe des Instituts für Bauforschung e. V.,
 Hannover.
• Deutsche Bahn AG: Körperschall und Erschütterungsschutz. Leitfaden für den Planer
 (1996).
• Eibl, J.; Häussler-Combe, U.: Baudynamik. Betonkalender 1997/II (Verlag Ernst & Sohn.)
 (SpringerVerlag, 2004).
• Grundmann, H. et. al.: Einführung in die Baudynamik. (Mitteilungen Institut für
 Bauingenieurwesen, TUM, 1983).
• Haupt, W.: Bodendynamik. (Vieweg Verlag, 1986).
• Lehrstuhl für Nachrichtentechnik: Lerntutorial „Signaldarstellung“. Technische Universität
• Neuner, F.; Springer, O.: Grundlagen der Baudynamik. (Skriptum, TH Deggendorf und
 OTH Regensburg, jeweils aktuelle Fassung).
• Petersen, Chr.: Dynamik der Baukonstruktionen. (Vieweg-Verlag, jeweils aktuelle Auflage).
• Ruscheweyh, H.: Dynamische Windwirkung an Bauwerken. Band 1 und 2 (Bauverlag,
 1982).
• Vrettos, C.: Bodendynamik. Kapitel 1.8 im Grundbau-Taschenbuch. Band 1 (Verlag Ernst
 & Sohn, 2009).
• Weitere Normen und Regelwerke
• Skripte zu den Vorlesungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg

Seite 125
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 Siedlungswasserwirtschaft – Erhalt und Ertüchtigung von Abwasserreinigungsanlagen (Environmental Engineering – Maintenance and Retrofitting of Wastewater Treatment Plants)</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Ottl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Kenntnisse und Fähigkeiten aus den Modulen B2-SWG 1 (Siedlungswasserwirtschaft 1) und B3-SWG 2 (Siedlungswasserwirtschaft 2) des Bachelorstudiengangs "Bauingenieurwesen".

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>27.1 Technische und betriebswirtschaftliche Gesichtspunkte der Kläranlagensanierung</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>27.2 Energieeffizienz von Kläranlage und Klärschlammbehandlung</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.1 Technische und betriebswirtschaftliche Gesichtspunkte der Kläranlagensanierung (Technical and Economic Aspects of the Rehabilitation of Wastewater Treatment Plants)</td>
<td>27.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
<th>Prof. Andreas Ottl</th>
<th>Bauingenieurwesen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Seminaristischer Unterricht mit Übungen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>20 Stunden eigenverantwortliches Lernen (Eigenstudium) ; 25 Stunden Studienarbeiten und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Studienleistung: keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsleistung:</th>
<th>schriftliche Prüfung gemeinsam mit Lehrveranstaltung 27.2; Dauer: 90 Minuten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle außer internetfähiger Medien</td>
</tr>
</tbody>
</table>
Inhalte

| Allgemeines zum Zustand der Abwasserreinigung in Deutschland und Bayern |
| Benchmarking in der Siedlungswasserwirtschaft |
| Wirtschaftlichkeitsberechnungen, Dynamische Kostenvergleichsrechnungen (KVR, ...) |
| Beurteilung der Kläranlagenbelastung (DWA-A 198) |
| Vertiefte Kenntnisse in die Verfahrenstechnik der verschiedenen Abwasserreinigungsprozesse |
| Sanierung von Belebungsanlagen (mechanischer und biologischer Teil) |
| Sanierung von Festbettkörperanlagen (mechanischer und biologischer Teil) |
| Sanierung von Abwasser-Teichanlagen und naturnahen Kläranlagen |
| Gesetzliche Anforderungen an die Abwassereinleitung |
| Genehmigungsverfahren, Wasserrecht |
| Einführung in die sich wandelnden Anforderungen an Anlagen der Abwasserbeseitigung infolge von Gesetzgebung, Verwaltungsvorschriften und Verordnungen |
| Kleinkläranlagen |
| Mikroschadstoffe |
| Abwasserdesinfektion |

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- selbständig die grundlegenden Kenntnisse zur Bestandsbeurteilung und zur Auslastung von Anlagen der Abwasserreinigung nach den einschlägigen Vorgaben (z.B. DWA-A 198) zu erarbeiten (2),
- diese an Praxisbeispielen zu bewerten und anzuwenden (3),
- Wirtschaftlichkeitsuntersuchungen (z.B. Kostenvergleichsrechnungen) durchzuführen und dabei integrativ andere Fachwissenschaften zu berücksichtigen (2)
- Grundlagen des Benchmarking in der Abwasserwirtschaft anzuzeigen (1)
- Mikroschadstoffe und Spurenstoffe aufzuzählen (1)
- Sanierungskonzepte für Belebungsanlagen, Festbettkörperanlagen und naturnahen Abwasserreinigungen zu entwickeln, Lösungen vorzuschlagen und die Bauwerke zu konstruieren (3)
- Anlagen zur Abwasserdesinfektion auszuwählen (2)
- Unterlagen für die wasserrechtliche Genehmigungsverfahren zu erstellen (2)
- Systeme und Funktionsweise von Kleinkläranlagen anzugeben (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich im Team zu organisieren, Strukturen aufzubauen und zu kommunizieren (2)
- eine fachliche Literaturrecherche durchzuführen und die Ergebnisse zu interpretieren (3)
- konstruktive Aufgabenstellungen zu erfassen, Entscheidungs- und Problemlösetechniken anzuwenden und eigenständig Ergebnisse zu entwickeln (3).
- sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- sich mit unterschiedlichen Lösungsmöglichkeiten konstruktiv auseinander zu setzen (3).
ihre zeitlichen und finanziellen Ressourcen zu planen und zu kontrollieren (2).

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimediale Vortragsvorlesung mit Tafelanschrieb, Exkursionen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWA: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Postfach 11 65, 53758 Hennef: Regelwerk.</td>
</tr>
<tr>
<td>Bliefert: Umweltchemie. VCH Weinheim.</td>
</tr>
<tr>
<td>Habeck, Tropfke: Abwasserbiologie. Werner Verlag.</td>
</tr>
<tr>
<td>Heyer, Mathias: Grundstücksentwässerungsanlagen, Vulkan-Verlag, Essen 2012</td>
</tr>
<tr>
<td>Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).</td>
</tr>
<tr>
<td>Roscher, H. u.a.: Sanierung städtischer Wasserversorgungsnetze. Verlag Bauwesen</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.2 Energieeffizienz von Kläranlage und Klärschlammbehandlung (Energy Efficiency of Wastewater Treatment Plants and sewage Sludge Treatment)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Ottl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claudia Scharnagl (LB)</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>20 Stunden eigenverantwortliches Lernen (Eigenstudium) ; 25 Stunden Studienarbeiten und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine

Prüfungsleistung: schriftliche Prüfung gemeinsam mit Lehrveranstaltung 27.1; Dauer: 90 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

alle außer internetfähiger Medien

Inhalte

Theorie und Praxisbeispiele aus den Bereichen

- Energiewende und Energieträger
- Energiecheck nach DWA-A 261
- Strom- und Wärmebedarf auf Abwasserreinigungsanlagen
- Spezifische Energieverbräuche bei Kläranlagen
- Effizienz der eingesetzten Aggregate und Motoren
- Effiziente Steuerung der Abwasserreinigung
- Vertiefte Kenntnisse in der Klärschlammbehandlung
- Klärschlamm: Behandlungsmöglichkeiten und Entsorgungswege
- Energieautarke Kläranlagen
- Sanierung von Betriebsgebäuden
- Geruchprobleme auf der Kläranlage und an Pumpstationen
- Betonsanierung
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die grundlegenden Kenntnisse eines Energiechecks und einer Energieanalyse von Anlagen der Abwasserreinigung nach den einschlägigen Vorgaben (z.B. DWA-A 216) zu erarbeiten (2).
- diese an Praxisbeispielen zu bewerten und anzuwenden (3),
- spezifische Energieverbräuche bei Kläranlagen zu bewerten und effiziente Lösungen für Aggregate, Motoren und Belüftungsanlagen zu entwerfen (2)
- eine effiziente Steuerung der Abwasserreinigung zu entwickeln (3)
- eine effiziente Behandlung des Klärschlammes zu konzipieren und Bausteine für eine energieautarke Kläranlage vorzuschlagen (3)
- Unterlagen für die wasserrechtlichen Genehmigungsverfahren zu erstellen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich im Team zu organisieren, Strukturen aufzubauen und zu kommunizieren (2)
- eine fachliche Literaturrecherche durchzuführen und die Ergebnisse zu interpretieren (3)
- konstruktive Aufgabenstellungen zu erfassen, Entscheidungs- und Problemlösetechniken anzuwenden und eigenständige Ergebnisse zu entwickeln (3)
- sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- sich mit unterschiedlichen Lösungsmöglichkeiten konstruktiv auseinander zu setzen (3)
- ihre zeitlichen und finanziellen Ressourcen zu planen und zu kontrollieren (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Exkursionen

Literatur

Imhof: Taschenbuch der Stadtentwässerung. Oldenbourg.
DWA: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Postfach 11 65, 53758 Hennef: Regelwerk.
Stein, Dietrich; Stein Robert: Instandhaltung von Kanalisationsen, Band 1; 4. Auflage Bochum 2014
Heyer, Mathias: Grundstücksentwässerungsanlagen, Vulkan-Verlag, Essen 2012
Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
28 Siedlungswasserwirtschaft – Erhalt und Ertüchtigung von Abwasserableitungssystemen (Environmental Engineering – Maintenance and Retrofitting of Wastewater Collection Systems) | 28

Modulverantwortliche/r

| Prof. Andreas Ottl |
| Bauingenieurwesen |

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Kenntnisse und Fähigkeiten aus den Modulen B2-SWG 1 (Siedlungswasserwirtschaft 1) und B3-SWG 2 (Siedlungswasserwirtschaft 2) des Bachelorstudiengangs "Bauingenieurwesen".

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>28.1 Kanalunterhalt / GIS und hydrodynamische Kanalnetzberechnung</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>28.2 Sanierungsmethoden</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Stand: 26. 10. 2020

Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1 Kanalunterhalt / GIS und hydrodynamische Kanalnetzberechnung (Maintenance of sewer network/GIS and Sewer Simulation)</td>
<td>28.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Ottl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerald Angermair (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Andreas Ottl</td>
<td></td>
</tr>
<tr>
<td>Enno Scholz (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Multimediale Vortragsvorlesung mit Tafelanschrieb
Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>2 SWS</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Arbeiten, Übungen und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine
Inhalte

Kanalunterhalt:

- Allgemeines zum Zustand der Kanalisation in Deutschland und Bayern
- Betreiberpflichten, gesetzliche Anforderungen
- Kanalinspektion:
 - Schäden
 - Schadensursachen - Zustandsbewertung:

- Zustandsbewertung
 - Abwasserleitungen und -kanäle,
 - Schächte
 - Straßeneinläufe

- Zustandsbeurteilung
- Grundlagen der Rohrstatik
- Kanalmanagement:
 - Reinigungsziele
 - Methoden zur strategischen Netzinstrukturierung
 - Kanalsanierungsstrategien

- Besonderheiten bei den Sonderbauwerken (Retentionsbodenfilter, ...)
- Besonderheiten der Grundstücksentwässerungsanlagen

GIS und hydrodynamische Kanalnetzberechnung:

- Aufbau und Aufgaben eines Kanalkatasters:
 - Bestandsdaten
 - Kartenmaterialien
 - Einzugsgebiete

- Regenansätze:
 - Blockregen
 - Modellregen,
 - Naturregenreihen

- Modellierung von Sonderbauwerken
- Hydrodynamische Überstausberechnung
- Hydrodynamischer Überflutungsnachweis
- Schmutzfrachtberechnung

GeoCPM:

- Geowissenschaftliche Simulation urbaner Abflussvorgänge
- Simulationsmodelle für Überflutungen durch Starkregeneignisse
- Überflutungsberechnungen

Stand: 26. 10. 2020
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- selbständig die grundlegenden Kenntnisse zur Zustandserhebung, -bewertung und -beurteilung von Abwasserableitungssystemen anzuwenden (3),
- Sanierungsstrategien zu benutzen und Lösungsvorschläge zu entwerfen (2),
- Managementsysteme einer Kanalbewirtschaftung zu nennen (1)
- Ein Abwasserkataster zu entwickeln und aufzubauen (2)
- Hydrodynamische Kanalnetzberechnungen einschließlich der Kombination mit dem oberirdischen Abflussgeschehen bei Überlastung des Kanals zu entwickeln und darauf aufbauend Lösungsvarianten vorzuschlagen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich im Team zu organisieren, Strukturen aufzubauen und zu kommunizieren (2)
- eine fachliche Literaturrecherche durchzuführen und die Ergebnisse zu interpretieren (3)
- konstruktive Aufgabenstellungen zu erfassen, Entscheidungs- und Problemlösetechniken anzuwenden und eigenständig Ergebnisse zu entwickeln (3).
- sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- sich mit unterschiedlichen Lösungsmöglichkeiten konstruktiv auseinander zu setzen (3)
- ihre zeitlichen und finanziellen Ressourcen zu planen und zu kontrollieren (2).

Literatur

DWA (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall), Hennef: Regelwerk.

DIN (Deutsches Institut für Normung e.V.): Normen zum Thema Abwasserkanäle und -leitungen

Umdrucke und Skriptum

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.2 Sanierungsmethoden (Methods of Rehabilitation)</td>
<td>28.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Ottl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Ottl</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimediale Vortragsvorlesung mit Tafelanschrieb Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>10 Stunden Vorbereitung Referat (Eigenstudium) ; 35 Stunden eigenverantwortliches Arbeiten, Übungen und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine
Inhalte

- Grundlagen der Kanalsanierung

- Sanierungsverfahren zur Reparatur:
 - Roboterverfahren
 - Injektionsverfahren
 - Long-/Kurzliner
 - Hutprofile
 - Innenmanschetten
 - etc.

- Sanierungsverfahren zur Renovierung:
 - Schlauchlining
 - Noppenbahnschlauchlining
 - Wickelrohrlining
 - Close-Fit-Lining
 - Tight-in-Pipe Verfahren
 - etc.

- Sanierungsverfahren zur Erneuerung:
 - Berstverfahren (statisch, dynamisch)
 - Pipe-Eating Verfahren
 - Hilfsrohrverfahren
 - etc.

- Sanierung von Grundstücksentwässerungsanlagen
- Grundlagen der Ausschreibung von Sanierungsmaßnahmen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- komplexe Schadsituationen zu bewerten (3)
- aufbauend auf der Beurteilung von Schäden alle Möglichkeiten zur Reparatur, Renovierung und Erneuerung von Abwasserableitungssystemen zu bewerten und geeignete Lösungsmöglichkeiten zur Sanierung vorzuschlagen (3),
- Kostenansätze zu entwickeln und eine wirtschaftliche Lösung herbeizuführen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- sich im Team zu organisieren, Strukturen aufzubauen und zu kommunizieren (2)
- eine fachliche Literaturrecherche durchzuführen und die Ergebnisse zu interpretieren (3)
- Eigene Lösungen in Fach- und Entscheidungsgremien zu präsentieren und zu analysieren (3)
- konstruktive Aufgabenstellungen zu erfassen, Entscheidungs- und Problemlösetechniken anzuwenden und eigenständig Ergebnisse zu entwickeln (3).
- sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3).
- fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
• sich mit unterschiedlichen Lösungsmöglichkeiten konstruktiv auseinander zu setzen (3).
• ihre zeitlichen und finanziellen Ressourcen zu planen und zu kontrollieren (2).

Literatur

DWA (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall), Hennef: Regelwerk.

DIN (Deutsches Institut für Normung e.V.): Normen zum Thema Abwasserkanäle und -leitungen

Güteschutz Kanalbau e.V.: Handbuch ABS – Ausschreibung und Bauüberwachung von Sanierungsmaßnahmen; Bad Honnef 2015

Umdrucke und Skriptum

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Wasserbau – Erhalt und Ertüchtigung (Hydraulic Engineering – Maintenance and Retrofitting)</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Müller</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stunde</td>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>29.1 Wasserkraftanlagen</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>29.2 Flussbau</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
29.1 Wasserkraftanlagen | 29.1

Verantwortliche/r | Fakultät
Prof. Dr. Mathias Müller | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Mathias Müller | nur im Sommersemester

Lehrform
Seminaristischer Unterricht mit Seminarvorträgen und Exkursion

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienbegleitende Leistungsnachweise: Portfolioprüfung mit bewerteten Seminarbeiträgen

Inhalte

Bauarten von Wasserkraftanlagen: Laufkraftwerke, Speicherkraftwerke, Pumpspeicher netzrelevante Großanlagen, Kleinanlagen, Kleinanlagen
Leistung und Wirkungsgrad: Hydraulische Verluste im Wasserweg, Anlagenwirkungsgrade, Gesamt-Energiebilanz
Niederdruckanlagen: Turbinensätze für Niederdruckanlagen und zugehörige Kraftausgestaltung, Ausbaugrad und Besonderheiten der Leistungsberechnung
Hochdruckanlagen: Turbinensätze für Hochdruckanlagen und zugehörige Kraftausgestaltung Energiewirtschaftliche Bedeutung von Speicherkraftwerken Trassierung der Wasserwege –typisierte Bauweisen
Basiswissen Turbinentechnik: Bauarten von Wasserturbinen, Pelton, Francis, Kaplan, Straflo, Rohrturbinen, Durchströmturbinen spezifische Drehzahl von Strömungsmaschinen; Muscheldiagramm
Konstruktive Durchbildung: Betriebssichere Anlagen, Zugänglichkeit aller Komponenten von Wasserkraftanlagen, Füllen und Entwässern der Anlagenteile, Komponenten von Großanlagen und Schnittstellenmanagement
Triebwasserleitungen: Bauarten und Bauweisen für Triebwasserleitung im Gebirge, Verständnis für instationäre Rohrströmung, Funktion eines Wasserschlosses

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- mit den wichtigsten wasserbaulichen und anlagentechnischen Grundlagen für Bau, Erhalt und Ertüchtigung verschiedener Bauarten von Wasserkraftwerken vertraut. (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• mit ingenieurfachlichen Grundlagen und Fragestellungen aus der Bauingenieurpraxis in
 interdisziplinären Ingenieurprojekten am Beispiel der Wasserkraft vertraut. (3)
• In der Lage, Bauleitungsaufgaben für Bau und Ertüchtigung von Wasserkraftanlagen zu
 übernehmen (2)
• In ihrer persönlichen Kompetenz zu Entwurf und Baumanagement im Industriebau am
 Beispiel der Wasserkraft gestärkt. (2)

Angebotene Lehrunterlagen
Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien
Vortragsvorlesung mit Beamerunterstützung und Tafelanschrieb
Anleitung zum eigenverantwortlichen Ausarbeiten und Präsentieren von fachlichen
Seminarvorträgen
ExkursionVorentwurf eines Laufkraftwerks (Small Hydro)

Literatur
• Giesecke, J.; Mosonyi, E.; Wasserkraftanlagen - Planung, Bau und Betrieb; Springer,
• Kaczynski, J.: Wasserkraftanlagen; Werner, 1994, ISBN 3-8041-4574-4
• Buchserie „Hydropower Development“ der NTNU Trondheim, alle, The Norwegian
 University of Science and Technology, Department of Hydraulic and Environmental
 Engineering, N-7491Trondheim, Norway, e-mail: iivm-hpd@ntnu.no insbesondere
 • Band 11: Kleivan, E., Kummeneje, G., Lyngra, A.J.: Concrete in hydropower structures
 (1994)
 • Band 13: Edvardsson, S., Broch, E.: Underground powerhouses and high pressure tunnels
 (2002)Umdruckmaterial zu den Lehrveranstaltungen (mit weiteren Literaturhinweisen)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 29 Wasserbau – Erhalt und Ertüchtigung

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.2 Flussbau</td>
<td>29.2</td>
</tr>
</tbody>
</table>

Verantwortliche/r
Prof. Dr. Mathias Müller
Prof. Dr. Mathias Müller

Fakultät
Bauingenieurwesen
nur im Wintersemester

Angabe / Dozierende/r
Fakultät
Bauingenieurwesen

Lehrform
Seminaristischer Unterricht mit Seminarvorträgen

Studiensemester gemäß Studienplan
[Lehrumfang [SWS oder UE]
Lehrsprache
Arbeitsaufwand [ECTS-Credits]

2 SWS
deutsch
2.5

Zeitaufwand:
Präsenzstudium
30 Stunden seminaristischer Unterricht (Präsenz)
Eigenstudium
45 Stunden eigenverantwortliches Lernen (Eigenstudium)

Studien- und Prüfungsleistung

Studienbegleitende Leistungsnachweise: Portfolioprüfung mit bewerteten Seminarbeiträgen

Inhalte

• Der gute ökologische Zustand der Fließgewässer nach WRRL: Hydromorphologie, Durchgängigkeit und Nährstoffbelastungen
• Wasserrecht und Genehmigungsstrukturen: Zuständigkeiten, rechtlicher Rahmen, aktuelle Entwicklungen bei landschaftspflegerischen Begleitplänen und EEG-gesponserten Baumaßnahmen
• Inspektion und Unterhalt von Bauwerken: Baumaterialien im Wasserbau, Inspektions- und Beurteilungsrichtlinien der BAW
• Naturnaher Ausbau von Fließgewässern: Rückbaumaßnahmen zur Wiederherstellung von naturnahen Auen- und Überschwemmungsflächen, gezielte Renaturierungsmaßnahmen und Berücksichtigung des Natur- und Landschaftsschutzes

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• mit den wichtigsten wasserbaulichen und ökologischen Grundlagen des Flussbaus und von Entwicklungs- und Pflegemaßnahmen vertraut (2)
• und können den „guten ökologischen Zustand“ (Gewässermorphologie, Sedimentshaushalt, Längsdurchgängigkeit für Fische) der Fließgewässer erkennen und beurteilen (2)
• mit Wasserrecht und Genehmigungsstrukturen in Deutschland vertraut (3)
• mit Inspektion und Unterhalt von Bauwerken im Wasserbau vertraut (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- haben die Studierenden die Natur von Fließgewässern kennengelernt (3)
- und sind befähigt Planungs- und Bauleitungsaufgaben für Pflege und Ertüchtigung im Flussbau zu übernehmen (3)

Angebotene Lehrunterlagen
Vorlesungsskriptum, Beispiele, während des Seminars ausgearbeitete Vorträge

Lehrmedien
Vortragsvorlesung mit Beamerunterstützung und Tafelanschrieb
Anleitung zum eigenverantwortlichen Ausarbeiten und Präsentieren von fachlichen Seminarvorträgen;

Literatur
- DIN 19712: Flusseiche (1997). Deutscher Verband für Wasserkultur und Kulturbau e.V. DVWK (Herausgeber)

Weitere Informationen zur Lehrveranstaltung
Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26. 10. 2020
Ostbayrische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Straßenbau – Erhaltung, Umbau und Ausbau</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Appelt</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Grundlegende und vertiefende Lehrveranstaltungen des Straßenbaus im Bachelorstudiengang

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.1 Straßenerhaltung</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>30.2 Straßenumbau und -ausbau</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Master, Wahlpflichtmodul für den Studienschwerpunkt „Bauen im Bestand“
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.1 Straßenerhaltung</td>
<td>30.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Appelt</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Appelt</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Portfolioprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skriptum, eigene Aufzeichnungen, Bücher, programmierbare, nicht kommunikationsfähige Taschenrechner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zustandserfassung und Bewertung von Straßen</td>
</tr>
<tr>
<td>• Erhaltungsmanagementsysteme</td>
</tr>
<tr>
<td>• Beurteilung der Schäden bei Asphalt- und Betondecken</td>
</tr>
<tr>
<td>• Beurteilung von Schadensursachen wie z.B.: Risse, Kantenabbrüche, Verwerfungen, etc.</td>
</tr>
<tr>
<td>• Planung und Durchführung von baulichen Erhaltungsmaßnahmen, Instandhaltung, Instandsetzung und Erneuerung bei Asphalt- und Betonfahrbahnen</td>
</tr>
<tr>
<td>• Sonderthemen des Asphalt- und Betonstraßenbaus</td>
</tr>
<tr>
<td>• Lärmmindernde Fahrbahnbeläge, Kompaktaphalt, Whitetopping</td>
</tr>
<tr>
<td>• Planung von Straßenbauarbeiten unter Verkehr mit Verkehrsführungen bei zweibahnigen Straßen Bündelung unterschiedlichster Gewerke im Rahmen von Erhaltungsmaßnahmen, Bauwerkssanierungen, Entwässerung, Oberbau, Schutzsysteme, Beschilderung, Markierung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• auf Basis grundlegender Kenntnisse über die Systematik der Zustandserfassung von Straßen den Zustand von Straßen zu bewerten und diese Kenntnisse in Straßenerhaltungsprogramme umzusetzen (2).</td>
</tr>
</tbody>
</table>
die Ansätze und Einsatzbereiche unterschiedlicher Erhaltungsmanagementsysteme zu kennen (2)
die vertieften Kenntnisse in der baulichen Erhaltung von Asphalt- und Betonstraßen auf konkrete Aufgabenstellungen anzuwenden (3)
Sonderbauweisen im Asphalt- und Betonstraßenbau zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Aufgabenstellungen der Straßenzustandserfassung und Straßenerhaltung zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- vertiefte fachliche Fragen zu stellen (3).
- fachliche Fragen angemessen zu beantworten (2).
- teamorientiert und interdisziplinär zu arbeiten und die gefundenen Lösungen fachlich zu vertreten (3)

Angebote Lehrunterlagen

Skriptum

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur

Literaturangaben gelten für die jeweils aktuelle Auflage.

- Bleßmann Werner; Böhm Stefan Rosauer Verena Schäfer, Volker: ZTV BEA-StB: Handbuch und Kommentar. Kirschbaum-Verlag
- Eger, Walter; Ritter Hans-Josef; Rodehack Gernot; Schwarting Heiner.: ZTV/TL Beton-StBHandbuch und Kommentar. Kirschbaum-Verlag
- Hutschenreuther Jürgen; Wörner Thomas.: Asphalt im Straßenbau. Kirschbau-Verlag
- Karcher Karsten; Jansen Dirk.: Straßenbau und Straßenerhaltung: Ein Handbuch für Studium und Praxis. Schmidt-Verlag
- Einschlägige Richtlinien der Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) in der jeweils aktuellen Fassung; RPE-Sta, ZTV BEA-StB, ZTV ZEB-StB, ZTV Asphalt-StB, TL Asphalt-StB, RStO, M ELW, M BEB, E EMI, E SAS, RAL, RAA, ERS, EAS, HBS, RAS-Ew, RStWag, ZTV Ew-StB, Merkblatt für die Anlage von Kreisverkehren.
- Vorlesungs skriptum

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26. 10. 2020

Ostbayerische Technische Hochschule Regensburg Seite 146
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 30 Straßenbau – Erhaltung, Umbau und Ausbau

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.2 Straßenumbau und -ausbau</td>
<td>30.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Appelt</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Andreas Appelt</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen, Studienarbeiten, Praktikum (Präsenz)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Prüfungsleistung: Portfolioprüfung

Zugelassene Hilfsmittel für Leistungsnachweis
Skriptum, eigene Aufzeichnungen, Bücher, programmierbare, nicht kommunikationsfähige Taschenrechner

Inhalte
- Planung und Umsetzung von Straßenumbau- und Straßenausbaumaßnahmen zur Erhöhung der Verkehrssicherheit und Leistungsfähigkeit sowie Einhaltung gesetzlicher Vorgaben.
- Knotenpunktsumbau- und -ausbaumaßnahmen
- Kreisverkehre, Linksabbiegespuren, Versatz, Anbau von Fahrstreifen, Planung und Bau von Lichtsignalanlagen
- Umbau, Ausbau und Nachrüstung von Lärmschutzeinrichtungen,
- Tieflagen, Trogbauwerke, Einhausungen
- Umbau, Ausbau und Nachrüstung von Entwässerungseinrichtungen
- Anlage von Absetz- und Rückhaltebecken, Retentionsbodenfilter
- Qualifizierte Deckenbaumaßnahmen
- Kurvenbegradigungen, Abflachung von Kupp
- Bedarfsermittlung, Erweiterung von LKW Stellplätzen
- Um- und Ausbau von Rastanlagen
- Anbau von zusätzlichen Fahrstreifen bei Straßen mit und ohne Mitteltrennung 3-streifiger Ausbau von Bundesfernstraßen
- 6 bzw.- 8 streifiger Ausbau von Autobahnen
- Berücksichtigung der Barrierefreiheit bei Um- und Ausbaumaßnahmen an Straßenverkehrsanlagen

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg Seite 147
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Im Zuge von Landstraßen Defizite zu ermitteln und Ausbaukonzepte zu erarbeiten (2)
- Die Schwierigkeiten beim Ausbau von Autobahnen zu kennen und die unterschiedlichen Konzepte auf unterschiedliche Aufgabenstellungen anwenden zu können (3)
- auf Grundlage erweiterter theoretischer und praktischer Kenntnisse über die Vielfalt von Straßenum- und Straßenausbaumaßnahmen und Planung diese praktisch anzuwenden und auf Beispiele zu übertragen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Aufgabenstellungen des Straßenumbaus und Ausbau zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- vertiefte fachliche Fragen zu stellen (3).
- fachliche Fragen angemessen zu beantworten (2).
- teamorientiert und interdisziplinär zu arbeiten und die gefundenen Lösungen fachlich zu vertreten (2)

Angebotene Lehrunterlagen

Skriptum, Berechnungsbeispiele

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung

Literatur

Literaturangaben gelten für die jeweils aktuelle Auflage.

- Bleßmann Werner; Böhm Stefan Rosauer Verena Schäfer, Volker: ZTV BEA-StB:Handbuch und Kommentar. Kirschbaum-Verlag
- Eger, Walter; Ritter Hans-Josef; Rodehack Gernot; Schwarting Heiner.: ZTV/TL Beton-StBHandbuch und Kommentar. Kirschbaum-Verlag
- Hutschenreuther Jürgen; Wörner Thomas.: Asphalt im Straßenbau. Kirschbaum-Verlag
- Straube, Edeltraut; Krass Klaus.: Straßenbau und Straßenerhaltung: Ein Handbuch für Studium und Praxis. Schmidt-Verlag
- Einschlägige Richtlinien der Forschungsgesellschaft für Straßen- und Verkehrswesen(FGSV); RPE-Stra 01, ZTV BEA-StB 09, ZTV ZEB-StB, ZTV Asphalt-StB 07, TL Asphalt-StB 07, RStO, M ELW, , M BEB, E EMI 2012, E SAS, RAL, RAA, ERS,RPS, HBS, RAS-Ew, RİStWag, ZTV Ew-StB, Merkblatt für die Anlage von Kreisverkehren.
- Vorlesungsskriptum

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26. 10. 2020 Ostbayrische Technische Hochschule Regensburg Seite 148
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)
Modulname: 31 Rechtliche Bewertung im Bestand

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Rechtliche Bewertung im Bestand</td>
<td>31</td>
</tr>
<tr>
<td>(31 Law for existing Structures)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Ottl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>31.1 Öffentlich-rechtliche Belange bei der Planfeststellung und dem Projektmanagement in der Planung</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>31.2 Rechtliche Rahmenbedingungen rund um die Planung</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>3.</td>
<td>31.3 Rechtliche Rahmenbedingungen rund um die Bauausführung (Bauvertragsrecht, Vergaberecht, Beweissicherung)</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
2 LV aus 31.1 bis 31.3 sind zu wählen

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>Modul: 31 Rechtliche Bewertung im Bestand</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1 Öffentlich-rechtliche Belange bei der Planfeststellung und dem Projektmanagement in der Planung</td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r

- Bernhard Eichner (LB)
- Bauingenieurwesen

Lehrende/r / Dozierende/r

- Bernhard Eichner (LB)

Angebotsfrequenz

- nur im Wintersemester

Lehrform

- Seminaristischer Unterricht

Studiensemester

- gemäß Studienplan

Lehrumfang

- [SWS oder UE]

- 2 SWS

Lehrsprache

- deutsch

Arbeitsaufwand

- [ECTS-Credits]

- 2.5

Zeitaufwand:

- Präsenzstudium

- 28 Stunden seminaristischer Unterricht (Präsenz)

- Eigenstudium

- 28 Stunden eigenverantwortliches Lernen ; 4 Prüfung mit Vorbereitung

Studien- und Prüfungsleistung

- Prüfungsleistung: schriftliche Klausur; Dauer: 60 Minuten

- Zugelassene Hilfsmittel für Leistungsnachweis

- Skriptum, eigene Aufzeichnungen, Bücher, programmierbare, nicht kommunikationsfähige Taschenrechner

Inhalte

- Wasserrecht und Wasserwirtschaft
- Umweltrecht mit europ. Recht, EnWG
- Planfeststellung nach Wasserrecht incl. Öffentlichkeitsarbeit mit Beispielen
- Projektmanagement bei wasserbaulichen Maßnahmen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die auf der Grundlage des Wasserrechts erworbenen rechtlichen Voraussetzungen für die Planung, den Bau und den Unterhalt von Infrastruktur einrichtungen auf Vorhaben anderer Rechtsgebiete zu übertragen und anzuwenden (2)
- Vertiefte Kenntnisse in den dafür erforderlichen Fachrechtsgebieten zu erlangen (2)
- Auf Grundlage von konkreten Beispielen die Ablaufstrukturen bei Infrastrukturprojekten und die wichtigsten Schritte beim Projektmanagement in der Planung zu erarbeiten (2)

Stand: 26. 10. 2020

Ostbayerische Technische Hochschule Regensburg Seite 150
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Aufgabenstellungen der Planfeststellung zu erfassen und zu strukturieren (2)
- Technische Zusammenhänge des Projektmanagements zu strukturieren und auf Genehmigungsverfahren anzuwenden (2)
- Fachliche und rechtliche Fragen auch aus anderen Fachgebieten und Blickwinkeln zu erfassen und Lösungen vorzuschlagen (2)
- Sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinanderzusetzen (3)

Angebote Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Vortragslesung mit Beamerunterstützung/Powerpoint und Besprechung von konkreten Beispielen anhand Maßnahmenplanung und Genehmigungsverfahren

Literatur

Skriptum zur Lehrveranstaltung und weiteren Literaturhinweisen

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Vorlesungen Wasserbau / Straßenbau / Siedlungswasserwirtschaft

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
31.2 Rechtliche Rahmenbedingungen rund um die Planung | 31.2

Verantwortliche/r	Fakultät
Agilolf Babl (LB) | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Agilolf Babl (LB) | nur im Sommersemester

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung:
keine
Prüfungsleistung:
schriftliche Klausur; Dauer: 60 Minuten

Inhalte

- Die seit dem 01.01.2018 geltenden neuen Vertragsgrundlagen im BGB, insbesondere nach § 650 p bis § 650 q (mit entsprechenden Verweisen auf das allgemeine neue Bauvertragsrecht).
- Das Zustandekommen von Architekten- und Ingenieurverträgen insbesondere in Abgrenzung zur reinen Akquisitionstätigkeit.
- Die HOAI in ihren Grundzügen bestehend aus den einzelnen Leistungsbildern, den Honorargrundlagen sowie den einzelnen Leistungsphasen.
- Berechnung des Honorars im Einzelnen.
- Die Sachwalterstellung des Architekten bzw. Ingenieurs und dessen Auswirkungen auf die tägliche Praxis.
- Stufenverträge
- Grundzüge des Urheberrechts
- Die Haftung des Architekten für Planungs-, Ausschreibungs- und Bauüberwachungsfehler bzw. für sonstige Mängel am Architektenwerk.
- Die gesamtschuldnerische Haftung des Architekten.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die im neuen Bauvertragsrecht dargestellten Vertragsarten zu kennen (1)

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg
• das Spannungsverhältnis in der Anwendung VOB/B, Neues Bauvertragsrecht, Allgemeine Geschäftsbedingungen einzuschätzen (2)
• die Grundzüge der HOAI und seiner Berechnungsmethode zu kennen, um das Honorar zu berechnen (2)
• Kenntnisse über das Haftungsrecht des Architekten anzuwenden, um eine Haftung zu vermeiden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• eine richtige Einordnung der Verträge aus dem neuen Bauvertragsrecht vorzunehmen (1)
• rechtliche Fallgestalten im neuen Bauvertragsrecht zu lösen (2)
• rechtliche Abgrenzungsfragen in den Themenbereichen Bauvertragsrecht, VOB/B, Allgemeine Geschäftsbedingungen zu erfassen (2)
• fachliche Fragen zur HOAI angemessen zu beantworten (2)
• Haftungsfragen im Architektenrecht realistisch einzuschätzen (2)

Angebotene Lehrunterlagen

HOAI und VOB, neueste Ausgaben
Skripte für sämtliche Vorlesungsinhalte, die vom Dozenten zur Verfügung gestellt werden neueste Ausgabe BGB (wegen des seit dem 01.01.2018 geltenden neuen Bauvertragsrechts)

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung/Powerpoint sowie Tafelnutzung bzw. Verweise auf die auszulegenden Skripte.

Literatur

HOAI und VOB, neueste Ausgaben
Skripte für sämtliche Vorlesungsinhalte, die vom Dozenten zur Verfügung gestellt werden neueste Ausgabe BGB (wegen des seit dem 01.01.2018 geltenden neuen Bauvertragsrechts)

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>Modulname</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.3 Rechtliche Rahmenbedingungen rund um die Bauausführung (Bauvertragsrecht, Vergaberecht, Beweissicherung)</td>
<td>31.3</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florian Schrems (LB)</td>
</tr>
<tr>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florian Schrems (LB) nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

Studiensemester

gemäß Studienplan

Lehrumfang

<table>
<thead>
<tr>
<th>[SWS oder UE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Lehrsprache

deutsch

Arbeitsaufwand

<table>
<thead>
<tr>
<th>[ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine

Prüfungsleistung: Klausur; Dauer: 60 Minuten

Inhalte

Vertiefte Kenntnisse des Vergaberechts

- Grundsätze des in Deutschland geltenden Vergaberechtsregimes: GWB, VgV, VOB/A EU, VOB/A national, UVgO
- Vergabe von Bauleistungen unterhalb der EU-Schwelle (VOB/A)
- Vergabe von Bauleistungen oberhalb der EU-Schwelle (VOB/A EU)
- Vergabe von freiberuflichen Leistungen unterhalb der EU-Schwelle (UVgO)
- Vergabe von freiberuflichen Leistungen oberhalb der EU-Schwelle (VgV) inkl. Architektenwettbewerbe
- Grundzüge des Rechtsschutzes unterhalb der EU-Schwelle
- Grundzüge des Rechtsschutzes oberhalb der EU-Schwelle: Zusammenspiel der Vergaberechtsnormen mit dem Vertragsrecht (Vergütung etc.)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- in ihrer späteren Tätigkeit sowohl auf Bieterseite (Bauunternehmen/Ingenieurbüro) wie auch auf Auftraggeberseite (Bauherr/öffentlicher Auftraggeber/Ingenieurbüro die vergaberechtlichen Probleme zu erkennen (3),
- die richtige Verfahrensart zu wählen (2).
- Verfahrensfehler zu erkennen und zu vermeiden (2).
- zu erkennen, nach welchen rechtlichen Vorgaben eine Leistungsbeschreibung aufzustellen ist (2),
zu erkennen, welche Arten der Vergabe es gibt und welche konkret anwendbar sind (3),
zu wissen, welche Eignungs- und Zuschlagskriterien es gibt (2),
für die Ausschreibungspflicht national und europaweit unter den verschiedenen Gesichtspunkten Wettbewerbsrecht, Fördermittelrecht, Haushaltsrecht ein Problembewusstsein zu entwickeln (2),
zu erkennen, dass vergaberechtliche Fehler haftungsrechtlich relevant sind (2),
Grundzüge des Rechtsschutzes im Vergaberecht, sowohl aus Bieterseite (Wettbewerber-Nachprüfung) wie auch aus Auftraggeberseite zu benennen (1),
zu erkennen, wann rechtliche Hilfe in Anspruch genommen werden sollte (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• auch mit der Methodik der Juristen an ein Vergabeverfahren heranzugehen (1),
• sich der vergaberechtlichem Problemstellungen bewußt zu werden (3),
• sich die Folgen von Vergabefehler/Vergabeverstößen bewußt zu machen (3),
• ein Vergabeverfahren unter Berücksichtigung der unterschiedlichen Vergabeverfahren zeitlich angemessen zu planen (2),
• sowohl die Auftraggeberseite wie auch die Bieterseite im Vergabeverfahren verstehen zu können (2).

Angebotene Lehrunterlagen

• Skript
• Auszug aus dem GWB und der VgV und der UVgO

Vom Studierenden bereitzuhaltende Unterlagen:

• dtv-Text „VOB und HOAI“ oder dtv-Text „Vergaberecht“

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung

Literatur

Hinweise erfolgen in der Lehrveranstaltung

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltung, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Stand: 27.03.2019

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 26. 10. 2020

Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 Geodätische Bestandsaufnahme und Geodätische Überwachungsvermessung im Bauwesen</td>
<td>35</td>
</tr>
<tr>
<td>(35 Geodetical Survey and Monitoring)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

| Verpflichtende Voraussetzungen | keine |

| Empfohlene Vorkenntnisse | Siehe Lehrveranstaltung |

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Bezeichnung der Teilmodule</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1.</td>
<td>35.1 Geodätische Bestandsaufnahme</td>
</tr>
<tr>
<td>2.</td>
<td>35.2 Geodätische Überwachungsvermessung im Bauwesen</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Modulname</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.1 Geodätische Bestandsaufnahme</td>
<td>35.1</td>
</tr>
</tbody>
</table>

Verantwortlich/r

<table>
<thead>
<tr>
<th>Name</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Name</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit praktischen Übungen

Studiensemester

gemäß Studienplan

Lehrumfang

<table>
<thead>
<tr>
<th>[SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: Teilnahmenachweis zu 100% (inkl. Exkursionen)

Prüfungsleistung: Klausur Dauer: 60 Minuten

Inhalte

Grundlagenermittlung / Motivation:
Bezugssysteme und Koordinaten
Dokumentation von Gebäuden und baulichen Anlagen:
Amtliche Dokumentationen, 3D-Beschreibungen
Erfassung von Messelementen:
Messprinzipien, Geräte und Instrumente
Messverfahren:
Handaufmass, Tachymetrische Verfahren, Terrestrisches Laserscanning, Airborne Laserscanning, Handgeführte Scannersysteme und UAS, GNSS
Geodätisches Projektmanagement:
Aufgabenanalyse, Messplanung, Messdokumentation, Auswertung und Nachbearbeitung Entwicklung und Projekte:
Geodätische Bestandsaufnahme an konkreten Beispielen aus dem Bauwesen; Datenfluß von der Aufnahme bis zur Auswertung;
Exkursionen und externe Fachvorträge

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die in der geodätischen Bestandsaufnahme vorkommenden Messtechnologien zu kennen (1).
- Problemstellungen in der geodätischen Bestandsaufnahme einzuschätzen (2).
- Digitale Messmethoden eigenständig anzuwenden (2).
- Durch die erworbene Methodenkompetenz eigenständige Messprogramme zu entwickeln (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Vermessungstechnische Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung

Literatur

Möser, M.; Müller, G.; Schlemmer, H.; Werner, H. u.a.: Handbücher Ingenieurgeodäsie. ISBN 3-87907-293-0/3-87907-295-7; Verlag Wichmann.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
35.2 Geodätische Überwachungsvermessung im Bauwesen | 35.2

Verantwortliche/r	Fakultät
Prof. Wolfgang Stockbauer | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Wolfgang Stockbauer | nur im Wintersemester

Lehrform
Seminaristischer Unterricht mit praktischen Übungen

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
2 SWS | deutsch | 2.5 |

Zeitaufwand:
Präsenzstudium	Eigenstudium
30 Stunden seminaristischer Unterricht (Präsenz) | 45 Stunden eigenverantwortliches Lernen (Eigenstudium) |

Studien- und Prüfungsleistung
Studienleistung: Teilnahmenachweis zu 100% (inkl. Exkursionen)
Prüfungsleistung: Klausur Dauer: 60 Minuten

Inhalte
Grundlagenermittlung / Motivation:
Bautechnische Messaufgaben im Zuge der Errichtung, Überwachung und Instandsetzung von Bauwerken, rechtliche Grundlagen

Innovative Messverfahren, messtechnische Abläufe:
Potentiale geodätischer Messverfahren für das Bauwesen, Stand der Messtechnik, Integrierte Modellbildung zur permanenten geodätischen Überwachung von Bauwerken, Datenakquisition, Geometrische Objektmodelle, Messprogramme und Messkonzepte

Quantifizierung von Vermessungsleistungen bei der Bauwerksüberwachung:
Interpretation von Genauigkeitsmaßen, Meßunsicherheiten in der Praxis

Geodätisches Projektmanagement in der Bauwerksüberwachung:
Aufgabenanalyse, Messplanung, Messdokumentation, Nachbearbeitung

Entwicklungen und Projekte:
Geodätische Überwachungsvermessung an konkreten Bauspielen aus dem Bauwesen Exkursionen und externe Fachvorträge

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die in der geodätischen Überwachungsvermessung vorkommenden Messtechnologien zu kennen (1).
- Problemstellungen in der geodätischen Überwachungsvermessung einzuschätzen (2).
Digitale Messmethoden eigenständig anzuwenden (2).
Durch die erworbene Methodenkompetenz eigenständige Messprogramme zu entwickeln (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Vermessungstechnische Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungs-skriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien
Multimediale Vortragsvorlesung

Literatur
Möser, M.; Müller, G.; Schlemmer, H.; Werner, H. u.a.: Handbücher Ingenieurgeodäsie. ISBN 3-87907-293-0/3-87907-295-7; Verlag Wichmann.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 Messverfahren für die Zustandsbewertung bautechnischer Strukturen (36 Measurement Technologies for Assessment of Civil Engineering Structures)</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Bachelor-Abschluss in technischer Fachrichtung

Empfohlene Vorkenntnisse
Grundkenntnisse der Messtechnik und bautechnischer Messgrößen
Grundkenntnisse der experimentellen Messdaten-Erfassung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>36.1 Grundlagen des Bauwerksmonitorings; Anforderungen an Mess- und Monitoringsysteme</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>36.2 Praxis des Bauzustandsmonitorings; moderne Monitoringverfahren</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Absolvierung beider Teilmodule 36.1 und 36.2 erforderlich für die Teilnahme an der Prüfung im Wahlpflichtfach.
Teilmodul

<table>
<thead>
<tr>
<th>Modulname</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.1 Grundlagen des Bauwerksmonitorings; Anforderungen an Mess- und Monitoringsysteme</td>
<td>36.1</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Lehrende/r</th>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Verantwortliche/r</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Wolfgang R. Habel (LB)</td>
<td>Lehrende/r, Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
</tbody>
</table>

Lehreform

Seminaristischer Unterricht und Praktika

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch/englisch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 h seminaristischer Unterricht (Präsenz) ; 10 h Praktikum (Präsenz)</td>
<td>45 h</td>
</tr>
</tbody>
</table>

Prüfungsleistung

Prüfungsleistung: Die Lehrveranstaltungen 36.1 und 36.2 werden in einer gemeinsamen Portfolioprüfung geprüft.

Zugelassene Hilfsmittel für Leistungsnachweis

keine
Inhalte

Monitoring-Strategien als Bestandteil der Bauwerksdiagnostik

Messaufgaben und Anforderungsprofile

Welche Messaufgaben sind für die Bewertung der Bausubstanz wichtig, welche typische Messgrößen bzw. Messroutinen sind für die Schadensfrüherkennung bzw. Schadensbewertung von Bedeutung? Wie werden zuverlässige Messungen erreicht? Aufbau einer Messkette, Grundlagen zur Bewertung und Behandlung der Messdaten. Welche Störeinflüsse die gewünschten Messdaten sind zu beachten?

Grundlegende Kriterien für Auswahl und Einsatz von Sensorik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Grundinhalte der Mess- und Monitoringtechnik zu verstehen, wesentliche Schwerpunkte bei der Auswahl erforderlicher Überwachungsverfahren zu setzen sowie angebotene Techniken hinsichtlich der Einsatzkriterien zu bewerten (1),
- angebotene Messtechnik korrekt für die geforderte Messaufgabe einzusetzen (3),
- unterschiedlich stark strukturierte Monitoring-Projekte zu analysieren und die Kernbestandteile erforderlicher Mess- und Überwachungsverfahren definieren (2),
- abhängig von der Aufgabenstellung für die Zustandsbewertung einer Struktur die optimale Mess- bzw. Überwachungsstrategie zu finden (2),
- den Einsatz von technischen Verfahren zu planen, die Inbetriebnahme zu bewerten und die Leistungsfähigkeit der Monitoring-Anlage bestätigen (3),
- Gefährdungen der Bausubstanz durch unerwartete Ereignisse bzw. schleichende Schädigung der Bausubstanz zu erkennen, zu bewerten und geeignete Gegenmaßnahmen zu veranlassen (3),
- notwendige Schritte der Wartung bzw. Reparatur zum Zwecke des Erreichens der Lebensdauer der Struktur bzw. deren Lebensdauerverlängerung festzulegen und einzuleiten (2),
- die Beanspruchungshistorie bzw. besondere Belastungen der Struktur zu kennen (2) sowie den Zustand der Struktur hinsichtlich Integrität und Funktionalität zu bestätigen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- im Team mit Bauherren, Baufachleuten sowie Lieferanten von Messtechnik sachkundig die Anforderungen an ein Zustandsüberwachungssystem herauszuarbeiten (3),
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
36 Messverfahren für die Zustandsbewertung bautechnischer Strukturen

- Schwachstellen im Monitoringkonzept aufzudecken, alternative Lösungen anzufordern und im fachlichen Disput die bestmöglichen technischen Lösungen auszuwählen (3),
- messtechnische Varianten mit unzureichender technischer Spezifikation oder mangelnder Fertigungsqualität zu identifizieren und Entscheidungen für alternative Lösungen zu treffen (3),
- sich mit unterschiedlichen Ansichten und Kritiken bei der Entscheidung über notwendigen Zustandsüberwachungsmaßnahmen konstruktiv auseinander zu setzen (3) sowie
- eigenverantwortlich für die Zustandsüberwachung agieren zu können (3).

Angebotene Lehrunterlagen

Skripte

Lehrmedien

Seminar mit Beamerunterstützung, Overheadprojektor, Tafelanschrieb.
Fachbücher, Internet für das Selbststudium

Literatur

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Grundlegende Kenntnisse der Physik und der Werkstoffe

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.2 Praxis des Bauzustandsmonitorings; moderne Monitoringverfahren</td>
<td>36.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlotte Thiel (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Wolfgang R. Habel (LB)</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht und Praktika

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 h seminaristischer Unterricht (Präsenz) ; 10 h Praktikum (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Die Lehrveranstaltungen 36.1 und 36.2 werden in einer gemeinsamen Portfolioprüfung geprüft.

Zugelassene Hilfsmittel für Leistungsnachweis

keine
Inhalte

Messverfahren und Sensortechniken für die jeweiligen Messaufgaben
- Beschreibung / Funktionsweise der wichtigsten Messverfahren
- Vorstellung neuer optischer/faseroptischer Mess- und Monitoringverfahren
- Ausblick auf wichtige NDT-Methodiken (z. B. Ultraschall, Thermografie) als komplementäre Diagnostik-Methodik.

Anwendungsaspekte
- Zuverlässigkeitsaspekte bei der anwendungsspezifischen Anpassung (Adaption) der Messverfahren für die jeweilige Messaufgabe
- Aspekte der Applikation bzgl. Langzeitstabilität
- Fragen der Bewertung von Sensortechniken vor Ort, Fragen der Kalibrierung und Wartung
- Nutzung von Standards und Richtlinie für den Sensoreinsatz

Anwendungsbeispiele
- Verdeutlichung der praktischen Aspekte an Hand von zahlreichen Beispielen aus der messtechnischen Praxis an unterschiedlichen Bauwerken bzw. bautechnischen Strukturen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Mess- und Detektionsverfahren zur Bewertung des Strukturverhaltens umfassend zu kennen (1),
- an Hand zahlreicher Anwendungsbeispiele wesentliche Aspekte für Messungen an Bauwerken und bautechnischen Strukturen zu kennen (1),
- die notwendigen Voraussetzungen zu haben, um zuverlässige Messungen an der Infrastruktur vorzube reiten und durchführen zu können (3),
- über die klassische Strukturmesstechnik hinaus Verfahren der faseroptischen Messtechnik für mechanische und physikalische Messgrößen sowie weitere moderne Messverfahren zu kennen (1),
- moderne Messverfahren und Messsysteme auszuwählen, für ihren praktischen Einsatz zu konzipieren und hinsichtlich der spezifischen Anforderungen zu dimensionieren (3),
- sich fachlich kompetent mit Anbietern messtechnischer Lösungen und Systemkomponenten über die Spezifikation und Funktionalität auf Augenhöhe abzustimmen und die angebotenen Messsysteme hinsichtlich ihrer Qualität (Stärken und Schwächen) und Zuverlässigkeit zu bewerten (2),
- Validierungsverfahren anzuwenden (3),
- Aspekte der Kalibrierung von im Betrieb befindlichen Messsystemen zu kennen, um einen zuverlässigen Langzeiteinsatz abzusichern (1) sowie
- Probleme bei der Anwendung von Messverfahren auf der Baustelle rechtzeitig zu erkennen und Einbaufehler zu vermeiden (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- im Team mit Bauherren, Baufachleuten sowie Lieferanten von Messtechnik sachkundig die Anforderungen an ein Zustandsüberwachungssystem herauszuarbeiten (3),
-
• messtechnische Lösungen hinsichtlich ihrer technischen Spezifikation zu identifizieren und im Gespräch mit Anbietern dieser Lösungen Entscheidungen für die angebotenen bzw. alternative Lösungen zu treffen (3),
• ihre zeitlichen und finanziellen Ressourcen zu planen und zu kontrollieren (2),
• die für eine zuverlässige Überwachung erforderlichen Schritte und Maßnahmen zu veranlassen, zu überprüfen und gegenüber dem Auftraggeber zu verantworten (3).

Angebotene Lehrunterlagen

Skripte

Lehrmedien

Seminar mit Beamerunterstützung, Overheadprojektor, Tafelanschrieb.
Fachbücher, Internet für das Selbststudium

Literatur

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse:
• Grundkenntnisse der Messtechnik und bautechnischer Messverfahren
• Grundkenntnisse der experimentellen Messdaten-Erfassung
• zuerst Teilnahme an Lehrveranstaltung M36.1 empfohlen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 Visualisierung und Virtual Reality: BIM Livemodelle (37 Visualization and Virtual Reality: BIM Live – Models)</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Florian Weininger</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>37 Visualisierung und Virtual Reality: BIM Livemodelle</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 26. 10. 2020

Ostbayerische Technische Hochschule Regensburg Seite 168
Teilmodul	TM-Kurzbezeichnung
37 Visualisierung und Virtual Reality: BIM Livemodelle (37 Visualization and Virtual Reality: BIM Live – Models) | 37

Verantwortliche/r	Fakultät
Prof. Florian Weininger | Bauingenieurwesen

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Florian Weininger | nur im Sommersemester

Lehrform
Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
1./2./3. Semester | 4 SWS | deutsch | 5 ECTS-Credits

Zeitaufwand:
Präsenzstudium	Eigenstudium
60 Stunden seminaristischer Unterricht (Präsenz) | 90 Stunden eigenverantwortliches Lernen (Eigenstudium)

Studien- und Prüfungsleistung

Studienbegleitender Leistungsnachweis: digitale, schriftliche Klausur am PC (90 Min.)

Zugelassene Hilfsmittel für Leistungsnachweis

keine

Inhalte

- Parametrische Konstruktion mittels grafischer Algorithmus Editoren
- Echtzeit Modifikation und Visualisierung von komplexen Strukturen
- Einblick in verschiedene Visualisierungstechniken;
- Vorstellung verschiedener digitaler Werkzeuge zur hochwertigen Visualisierung
- CAD integrierte Animation in Echtzeit
- Virtual Reality (VR): Einführung in die VR-Technik; Notwendige Modellvorbereitungen;
- Augmented / Mixed Reality (AR / MR): Einführung in die AR-Technik; Notwendige Modellvorbereitungen; Datentransfer, Datenkopplung; Handhabung;

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Einfache parametrische Strukturmodellierungen durchführen zu können (Algorythm Aided Design, AAD) (3)
- Anwendungsmöglichkeiten von Visualisierungswerkzeugen zu verstehen (2)
- Visualisierungen von Gebäuden, Gebäudeteilen und Bauteilen auf Basis der geforderten Bauaufgabe zu erstellen. (3)
- Animationen für einfache Planungsaufgaben anzuwenden (3)
- Notwendige Grundlagen zur Erstellung von 3d Modellen für die Anwendung in VR- und AR- Applikationen zu verstehen (1)Einfache 3d Modelle für VR Anwendungen zu erstellen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die gelernten Arbeitstechniken entsprechend einer geforderten Aufgabe zielgerichtet und effektiv anzuwenden. (3)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- die eigene fachliche Kompetenzzentwicklung auf Basis von Grundlagenwissen zielgerichtet voranzutreiben. (2)
- Fachbegriffe im Dialog mit anderen Planern anzuwenden (2)

Angebotene Lehrunterlagen
Vorlesungsskriptum, Vorlagedaten, Schulungsunterlagen, E-Learning-Plattform

Lehrmedien
Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur
- Virtual Reality und Augmented Reality in der Digitalen Produktion, Horst Orsolits, Dr. Maximilian Lackner, Springer Nature 2020
- Virtual und Augmented Reality (VR/AR), Grundlagen und Methoden der Virtuellen und Augmentierten Realität, Prof. Dr. Ralf Dörner... Springer Nature 2019
- Über Form und Struktur – Geometrie in Gestaltungsprozessen, Cornelia Leopold. Springer Vieweg 2014

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 Lifecycle Management - Digitale Prozessmodellierung (38 Lifecycle Management - Digital Process Modeling)</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Ulrike Plach</td>
<td>Betriebswirtschaftslehre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>38 Lifecycle Management - Digitale Prozessmodellierung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
38 Lifecycle Management - Digitale Prozessmodellierung (38 Lifecycle Management - Digital Process Modeling) | 38

Verantwortliche/r	Fakultät
Prof. Dr. Ulrike Plach | Betriebswirtschaftslehre

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Dr. Ulrike Plach | in jedem Semester

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./ 2./ 3. Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>90 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienbegleitender Leistungsnachweis: Klausur (90 Min.)

Inhalte

- Definition (u. a. Life Cycle, Prozess, Management) und betriebswirtschaftliche Grundlagen
- Phasen, Tätigkeiten und Trends im Lebenszyklusprozess
- Standard vs. IndividualsoftwareDatenbanken
- Produktdatenmanagementsysteme / Product-Lifecycle-Managementsystem (u. a. Aufbau und Struktur, Rechteverwaltung)
- Prozessmodellierung und -steuerung durch Workflowabbildung (u. a. ePK, BPMN)
- Simulation (u. a. Aufbau von Simulationsmodellen und Durchführung von Simulationsstudien)
- Datenanalyse (u. a. Ablauf und Datenaufbereitung, Auswerteverfahren und -methoden, Interpretation und Nutzung der Auswerteergebnisse)

Lernziele: Fachkompetenz

und können einfache Simulationsstudien im Kontext von Bauprozessen durchführen (3). Darüber hinaus sind die Studierenden in der Lage eigenständig Daten zu analysieren und zu interpretieren (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ausgewählte Prozesse digital zu modellieren, deren Ergebnisse aufzubereiten und zu beurteilen (2). Auch sind die Studierenden in der Lage, den Lebenszyklusprozess zu erklären und auf Bauprozesse eigenständig anzuwenden (3). Die Studierenden verfügen über Diskussionsvermögen und Teamfähigkeit (3). Sie sind in der Lage konstruktive Kritik zu entwickeln und Ergebnisse vor Gruppen zu präsentieren (2). Die Studierenden verfügen über Begründungsfähigkeit in Bezug auf Entscheidungen und Handlungsalternativen (3).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Vorlagedaten, E-Learning-Plattform

Lehrmedien

Multimediale Vorlesung per Zoom bzw. Screencast als Webvideo

Literatur

Weitere Informationen zur Lehrveranstaltung

Veranstaltung wird im Rahmen der „Regensburg School of Digital Sciences (RSDS)“ durchgeführt.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modul-KzBez. oder Nr.</th>
<th>39 Parametrisches und modellorientiertes Arbeiten (39 Parametric and Model Driven Design)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Mathias Obergrießer</td>
</tr>
<tr>
<td>Fakultät</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>39.1 Grundlagen der Parametrik und des modellorientierten Arbeitens</td>
<td>1 SWS</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>39.2 BIM-Workflow in der Bauplanung anhand eines Hochbauprojektes</td>
<td>1.5 SWS</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>39.3 Parametrische Modellierung Brückenbau</td>
<td>1.5 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 39 Parametrisches und modellorientiertes Arbeiten

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.1 Grundlagen der Parametrik und des modellorientierten Arbeiten (39.1 Principals of Parametric and Model Based Design)</td>
<td>39.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./2./3.Semester</td>
<td>1 SWS</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>22,5 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienbegleitender Leistungsnachweis: gemeinsame digitale, schriftliche Klausur am PC (90 Min.) der Lehrveranstaltungen 39.1, 39.2 und 39.3.

Inhalte

Parametrik:
- Definition, Grundlagen
- Methoden, 2D-skizzenbasiert Constraints, 3D-Assemblyconstraints
- Strukturierung und Deklaration
- Geometrisch-assoziative Objekt- Bauteilkopplung
- parameter-assoziative Objekt- Bauteilkopplung
- parametrische Verzweigungskopplungen (Abbildung von Ingenieurwissen)

modellorientiertes Arbeiten:
- Beschreibung und Anwendung verschiedener Modellierungsstrategien
- prozessorientierter Modellaufbau und Modellstruktur
- Bauteildeklaration
- Bauteil Attributierung
- Erstellen von parametrierten Skizzen- und Bauteilbibliothekenmodelldatenbasierte Datenintegration

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg Seite 175
Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• Methoden/Grundlagen der geometrischen Modellierung vermitteln (2)
• Methoden/Grundlagen der parametrisch-assoziativen Modellierung anwenden (2)
• constraint-basierte Techniken/Algorithmen und Solver verstehen und erklären (2)
• fachliche Fragen stellen (2)
• fachliche Fragen angemessen beantworten (2)
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2)
• fachorientierte Lösungsstrategien und Ansätze liefern und vermitteln (3)

zu können.

Angebotene Lehrunterlagen

Vorlesungsskriptum, Vorlagedaten, Schulungsunterlagen, E-Learning-Plattform

Lehrmedien

Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>39.2 BIM-Workflow in der Bauplanung anhand eines Hochbauprojektes (39.2 BIM-Workflow in Building Construction)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
<th>Prof. Dr. Mathias Obergrießer</th>
<th>nur im Wintersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Seminaristischer Unterricht mit Übungen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./2./3. Semester</td>
<td>1.5 SWS</td>
<td>deutsch</td>
<td>2 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>22,5 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>34 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienbegleitender Leistungsnachweis: gemeinsame digitale, schriftliche Klausur am PC (90 Min.) der Lehrveranstaltungen 39.1, 39.2 und 39.3.

Inhalte

Abbildung eines hochbauspezifischen BIM-Projektes mithilfe von modellorientierten Arbeitsweisen

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Techniken zur Erzeugung und Anwendung generischer Bauteilbibliotheken anwenden (2)
- parametrische Ansätze zur Modellierung von Bauteilen konzipieren und einsetzen (3)
- Gebäudestrukturen zur BIM-basierten Modellkopplung generieren (2)
- assoziative Kopplungen zur Gebäuderaster, -ebenen und -bauteilen ableiten und herstellen (3)
- digitale Werkzeuge zur parametrischen Modellierung von Gebäuden einsetzen (3)
- fachliche Fragen stellen und angemessen beantworten (2)
- fachorientierte Lösungsstrategien und Ansätze liefern und vermitteln (3)

zu können

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>Modulname: 39 Parametrisches und modellorientiertes Arbeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.3 Parametrische Modellierung Brückenbau
(39.3 Parametric Modeling in Bridge Design)</td>
<td>39.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
<td></td>
</tr>
</tbody>
</table>

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./2./3. Semester</td>
<td>1.5 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>22,5 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>34 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienbegleitender Leistungsnachweis: gemeinsame digitale, schriftliche Klausur am PC (90 Min.) der Lehrveranstaltungen 39.1, 39.2 und 39.3.
Inhalte

Einarbeitung in Modellierungssystem:
- Vorstellung von verschiedenen Modellierungssystemen, die zur Umsetzung einer parametrischen Brückenmodellierung geeignet sind (z.B. Siemens NX, Nemetschek Allplan, Autodesk Revit; Stand 2018)
- Auswahl eines geeigneten Systems (Pro- und Contra Diskussion)

Strukturierung:
- Definition und Erzeugen einer geeigneten Bauteilhierarchie

Datenintegration:
- manuelles erstellen bzw. automatisiertes einlesen von Trassenobjekten
- Generierung räumlicher Leitkurven (B-Splins)
- Anwenden von Skizzenbibliotheken

Modellierung der Brückenbauteile:
- Skizzenkopplungstechniken
- Parametrisieren der Querschnitt
- Einsatz verschiedener Modellierungsverfahren
- Anwendung verschiedener assoziativen Kopplungstechniken
- Bauteilattributierung
- Ableitung von Zeichnungen

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, historienbasierte Modellierungstechniken anwenden (2)
- parametrische Ansätze zur Brückenmodellierung konzipieren und einsetzen (3)
- bauteilorientierte Strukturen zur BIM-basierten Modellkopplung generieren (3)
- assoziative Kopplungen zur Trassen-Brückenmodelladaption ableiten und herstellen (3)
- verschiedene Modellierungskonzepte zur dynamisch-adaptiven Brückenmodellierung verstehen, vermitteln und benutzen (3)
- digitale Werkzeuge zur parametrisch-adaptiven Brückenmodellierung einsetzen (3)
- fachliche Fragen stellen und angemessen beantworten (2)
• fachorientierte Lösungsstrategien und Ansätze liefern und vermitteln (3)

tzu können.

Angebotene Lehrunterlagen
Vorlesungsskriptum, Vorlagedaten, Schulungsunterlagen, E-Learning-Plattform

Lehrmedien
Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 BIM in der Planung und Entwurf von geotechnischen und Infrastrukturbauwerken</td>
<td>40</td>
</tr>
<tr>
<td>(40 BIM in Planning and Design for Geo Technical and Infrastructure Works in Construction)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./2./3.Semester</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 40 BIM in der Planung und Entwurf von geotechnischen und Infrastrukturbauwerken

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 BIM in der Planung und Entwurf von geotechnischen und Infrastrukturbauwerken (40 BIM in Planning and Design for Geo Technical and Infrastructure Works in Construction)</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen und Exkursionen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1./2./3.Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienbegleitender Leistungsnachweis: digitale, schriftliche Klausur am PC (90 Min.)</td>
</tr>
</tbody>
</table>
Inhalte

Strukturierung und Prozessbeschreibung:
- Definition und Umsetzung eines geeigneten Prozessplans
- Ermittlung und Strukturierung des Informationsflusses

Digitale Werkzeuge:
- Vorstellung und Anwendung verschiedener Softwaresysteme, die sich zur Umsetzung eines Infrastrukturprojektes unter Anwendung der BIM-Methode einsetzen lassen

Datenintegration und Vernetzung:
- Schnittstellen
- manuelles erstellen bzw. automatisiertes einlesen von bereits erstellten Planungsdaten
- Generierung räumlicher Leitkurven (B-Splins) etc.

Modellierung der spezifischen Teilmodelle:
- geotechnisches Baugrundmodell
- infrastruktur-spezifisches Trassenmodell
- Leitungsmodelle

Ressourcensimulation:
- Simulation von Abläufen zur optimalen Kosten- und Ressourcenplanung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, einen Überblick über die verschiedenen Ansätze und Methoden zu erhalten, mithilfe deren sich geotechnische und tiefbauspezifische Bauprojekte modellorientiert entwerfen und planen lassen. Hierzu werden verschiedene integrierte und vernetzte Ansätze und digitale Werkzeuge aufgezeigt, die eine prozessübergreifende Planung des Infrastrukturbauwerks erlaubt. Als Ergebnis soll der Studierende spezielle Fähigkeiten erlangen, mithilfe deren sich strategische, technische und prozessuale Konzepte entwickeln und praxisgerecht einsetzen lassen, sodass eine BIM orientierte Planung von Infrastrukturbauwerken möglich ist.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundlagen und Methoden von BIM im Infrastrukturbereich vermitteln (2)
- Unterschiede und Herausforderungen zwischen BIM im Hochbau und Ingenieurbau erkennen und einordnen (2)
- den strukturellen und organisatorischen Aufbau eines Infrastrukturmodells darstellen (2)
- Chancen und Problem bei dem Einsatz von digitalen Werkzeuge zur modellbasierten Umsetzung eines Infrastrukturprojekts einstufen (2)
• Verschieden traditionelle und BIM-spezifische Interoperabilitätsansätze im Bereich des Infrastrukturbaus verstehen und deren Einsatz abwägen (2)
• CAD-spezifische Interaktionspotenziale zu anderen Planungsprozessen identifizieren und umsetzen (3)
• einen integrierten und modellbasierten Planungsansatz über die verschiedenen digitalen Planungstools hinweg anwenden (3)
• Methoden und Ansätze zur 3D-Baugrundmodellierung nutzen (2)
• 3D-Baugrubenmodelle inkl. 3D-Baugrundschichtenmodelle mithilfe von digitalen Werkzeugen erzeugen und zur modellbasierten Kalkulation und Ausschreibung nutzen (3)
• 3D-Trassenbaugrundmodell mithilfe von digitalen Werkzeugen zur modellbasierten Kostenkalkulation und Ausschreibung realisieren (3)
• eine Koordination von Trassenfachmodellen und Ingenieurbauwerksmodellen zur Kollisionsprüfung durchführen (2)
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2)
• fachspezifische Fragen stellen und beantworten (2)
• fachorientierte Lösungsstrategien und Ansätze liefern und vermitteln (3)
zu können.

Angebotene Lehrunterlagen
Vorlesungsskriptum, Vorlagedaten, Schulungsunterlagen, E-Learning-Plattform

Lehrmedien
Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 Workflows für strukturmechanische Modelle; Assoziative Kopplung von Planungs- und Tragwerksmodellen (41 Workflows for Structural Mechanics; Associative Linking of Design and Mechanical Models)</td>
<td>41</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Studiensemester gemäß Studienplan</td>
<td>Studienabschnitt</td>
</tr>
<tr>
<td>1./2./3. Semester</td>
<td></td>
</tr>
</tbody>
</table>

| Verpflichtende Voraussetzungen |
| Keine |

<p>| Zugeordnete Teilmodule: |</p>
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>41 Workflows für strukturmechanische Modelle; Assoziative Kopplung von Planungs- und Tragwerksmodellen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 Workflows für strukturmechanische Modelle; Assoziative Kopplung von Planungs- und Tragwerksmodellen</td>
<td>41 Workflows for Structural Mechanics; Associative Linking of Design and Mechanical Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verantwortliche/r</td>
<td>Fakultät</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>Bauingenieurwesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Mathias Obergrießer</td>
<td>nur im Sommersemester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studiensemester gemäß Studienplan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrumfang [SWS oder UE]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrsprache [ECTS-Credits]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1./2./3. Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 60 Stunden seminaristischer Unterricht (Präsenz)
- Eigenstudium: 90 Stunden eigenverantwortliches Lernen (Eigenstudium)

Studien- und Prüfungsleistung
Studienbegleitender Leistungsnachweis: digitale, schriftliche Klausur am PC (90 Min.)
Inhalte

Strukturierung und Prozessbeschreibung:
- Grundlagenbeschreibung
- Definition und Umsetzung eines geeigneten Prozessplans
- Ermittlung und Strukturierung des Informationsflusses

Anwendung digitaler Werkzeuge:
- Vorstellung und Anwendung verschiedener Softwaresysteme, die sich zur Umsetzung eines assoziativ gekoppelten Planungs-Analysemodells einsetzen lassen

Umsetzung des Planungsmodells:
- Einsatz verschiedener Modellierungsverfahren
- Anwendung verschiedener assoziativen Kopplungstechniken
- Bauteilattributierung mit dem Fokus zur Tragwerksanalyse

Datenintegration und Vernetzung:
- Bidirektionaler Datenaustauschprozess

Ableitung des Tragwerksmodeells aus dem Planungsmodells:
- Eingabe von Lasten und Lastfallkombinationen
- Analyse
- Auswertung und Handhabung der Analyseergebnisse

Modelladaption der Analyseergebnisse:
- Anpassung der Bauteilgeometrie
- 3D-Bewehrungsintegration
- Ableitung von Plänen (Entwurf / Ausführung)
- Iteration des Prozesses

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Techniken zur Idealisierung von Bauteilen zur digitalen Tragwerksanalyse verstehen und ableiten (2)
- einen tragwerksspezifischen Planungsprozess aufstellen (2)
- digitale Werkzeuge zur FEM- und Stabwerksanalyse einsetzen (3)
- notwendige geometrische und alphanumerische Daten zur integrierten und modellbasierten Tragwerksanalyse im Architekturmodell definieren (2)
- digitale Werkzeuge zur Erstellung eines Architekturmodells durchführen (3)
- BIM-spezifische Interoperabilitätsansätze (closed vs. open BIM) einordnen und anwenden (3)
- digitale Werkzeuge zur Ableitung eines Tragwerksplanungsmodell aus dem Architekturmodell erstellen (3)
- bidirektionale Kopplung zwischen Architektur- und Tragwerkplanungsmodell erstellen (2)
- Generierung und Anpassung des Tragwerksanalysermodells aus dem Tragwerksplanungsmodell herstellen (3)
- digitale Werkzeuge zur Erstellung von 3D-Bewehrung im Tragwerksplanungsmodell anhand der digitalen Berechnungsergebnisse generieren (2)
- fachspezifische Fragen stellen und beantworten (2)
- fachorientierte Lösungsstrategien und Ansätze liefern und vermitteln (3)

zu können.

Angebotene Lehrunterlagen

Vorlesungsskriptum, Vorlagedaten, Schulungsunterlagen, E-Learning-Plattform

Lehrmedien

Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

- Fink U.: Durchgängige Ingenieurbauworkflow mit Allplan, , Internetdokument 19.09.2018

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 Projektmanagement (42 Construction Management)</td>
<td>42</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Fakultät
- Prof. Bernhard Denk
- Bauingenieurwesen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
- keine

Empfohlene Vorkenntnisse
- keine

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>42 Projektmanagement</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Bauingenieurwesen (PO:20181)

Modulname: 42 Projektmanagement

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 Projektmanagement</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Bernhard Denk</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
30 Stunden seminaristischer Unterricht (Präsenz) ; 30 Stunden Praktika, Gruppenarbeit

Eigenstudium
90 Stunden eigenverantwortliches Lernen, Studienarbeiten, Praktikumsauswertungen

Studien- und Prüfungsleistung
Prüfungsleistung: Portfolioprüfung

Inhalte
Grundlagen, Begriffsdefinitionen
Projektarten
Aufgaben und Methoden des Projektmanagements
Die Projektbeteiligten, ihre Rollen und Interessen
Projektorganisation
Projektablauf und operatives Prozessmanagement
Qualitätssicherung
Termin- und Kostenplanung und –kontrolle
Kommunikation, Informations- und Dokumentationsmanagement
Risikomanagement und Prävention
Der Mensch im Projekt, Führen und Teambildung
Entscheidungs- und Problemlösungstechniken
Das Projekthandbuch
Einblick Problemlösungstechniken
Arbeitskalkulation
Leistungsmeldung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, (Wissen)
- die Fachbegriffe zu erläutern (1),
- die grundlegenden Aufgaben und Methoden des Projektmanagements zu benennen (1).
• unterschiedliche Projektarten zu klassifizieren (1)
• die wichtigsten Erfolgs- und Misserfolgsfaktoren bei Projekten zu erläutern (1).

(Fertigkeiten)

• ein kleineres Projekt nach diesen Methoden abzuwickeln (2).
• Projektziele hinsichtlich Kosten, Termine und Qualitäten zu definieren zu kontrollieren und umzusetzen (2).
• die Projektbeteiligten, ihre Rollen und Interessen zu beschreiben (1) und in Form einer Stakeholderanalyse die Auswirkungen auf das Projekt zu beurteilen (2) und geeignete Maßnahmen zu planen (3).
• die Projektorganisation zu beschreiben (2), den Projektablauf zu planen (2) und in Form eines Projekthandbuchs zu dokumentieren (1).
• aus einer Vielzahl von Projektmanagement-Werkzeugen für die jeweilige Situation geeignete Tools auszuwählen und einzusetzen (2).
• ein einfaches System der Qualitäts-, Kosten- und Terminkontrolle zu implementieren (3).
• Risiken zu erkennen, zu bewerten und geeignete Gegenmaßnahmen zu planen (2).
• ein Kommunikations-, Informations- und Dokumentenmanagement zu planen und zu organisieren (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, (Sozialkompetenz)
• sich im Team zu organisieren, zu strukturieren und zu kommunizieren (2).
• gemeinsam Ziele zu formulieren und dazu geeignete Methoden einzusetzen (3).
• eine Projektorganisation zu beschreiben und den Teammitgliedern Kompetenzen zuzuweisen (2).
• Entscheidungs- und Problemlösungstechniken anzuwenden (2).
• sich mit den Ansichten unterschiedlicher Stakeholder analytisch auseinander zu setzen (3).
• sich mit unterschiedlichen Ansichten und Kritiken konstruktiv auseinander zu setzen (3).

(Selbständigkeit)

• ihre zeitlichen und finanziellen Ressourcen zu planen und zu kontrollieren (2).
• Ihre Leistungen zu planen, zu kontrollieren und sich gegenüber ihren Auftraggebern zu verantworten (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Vorlesung mit Beamerunterstützung, Gruppenarbeiten mit Flipcharts, Moderationstafeln
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochendörfer, Liebchen, Viering - „Bau-Projektmanagement“, Vieweg+Teubner</td>
</tr>
<tr>
<td>Greiner, Mayer, Stark – „Baubetriebslehre – Projektmanagement“, Vieweg</td>
</tr>
<tr>
<td>Kalusche – „Projektmanagement für Bauherren und Planer“, Oldenbourg</td>
</tr>
<tr>
<td>Ahrens, Bastian, Muchowski – „Handbuch Projektsteuerung – Baumanagement“, Fraunhofer</td>
</tr>
<tr>
<td>Gareis – „Happy Projekts“, Luchterhand, Manz</td>
</tr>
<tr>
<td>Schelle, Ottmann, Pfeiffer – „ProjektManager“, DGPM</td>
</tr>
<tr>
<td>Jeweils neuste Auflagen</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>43 Facility Management (43 Facility Management)</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Karl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Verständnis für technische Einrichtungen in Immobilien und Verständnis für die kostenrelevanten Aspekte der Baukonstruktion

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>43.1 Praktische und theoretische Grundaspekte des Facility-Managements</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>43.2 Facility Management im gewerblichen und industriellen Sektor</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Stand: 26. 10. 2020
Ostbayerische Technische Hochschule Regensburg Seite 194
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.1 Praktische und theoretische Grundaspekte des Facility-Managements</td>
<td>43.1</td>
</tr>
</tbody>
</table>

Verantwortliche/r	Fakultät
Prof. Bernhard Karl | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Marc Feil (LB) | nur im Wintersemester

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>2 SWS</td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine
Prüfungsleistung: Klausur (Dauer 60 Min.)

Inhalte

Technische Aspekte:
Überblick über die relevanten technischen Aspekte und Normen

Wirtschaftliche Aspekte:
Vermittlung der Grundzüge des wirtschaftlichen Wertemanagements während des Lebenszyklus einer Immobilie

Rechtliche Aspekte:
Überblick über die relevanten rechtlichen Aspekte und Normen

Schnittstellen des Facility Managements:
Schnittstellen des Facility Managements zur Projektentwicklungs-, Planungs-, Bau-, Immobilienbewirtschaftungs-, Finanz- und Investitionswirtschaft

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die grundlegenden Aspekte des Facility Managements in rechtlicher, technischer und wirtschaftlicher Sicht anzuwenden (2). Die Studierenden werden in die Lage versetzt im Rahmen von Praxisbeispielen und Fallstudien die erlernten Kenntnisse unmittelbar auf Beispiele zu übertragen (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, grundlegende Tätigkeiten eines FM-Managers in der Praxis auszuüben (3).

Angebotene Lehrunterlagen

- Vorlesungsskriptum

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>43.2 Facility Management im gewerblichen und industriellen Sektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-Kurzbezeichnung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Karl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marc Feil (LB)</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5 ECTS-Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: keine</td>
</tr>
<tr>
<td>Prüfungsleistung: Klausur (Dauer 60 Min.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unter Hinzuziehung von Praxisbeispielen werden dem Studierenden weiterführende Kenntnisse in der Kosten- und Prozessoptimierung im Nutzungszzeitraum einer Immobilie gegeben:</td>
</tr>
<tr>
<td>Planungsphase: Steuerungs-, Kosten- und Prozessoptimierungsmöglichkeiten während der Planungsphase unter Betrachtung der konkreten Schnittstellen zum Planungssektor</td>
</tr>
<tr>
<td>Bauphase: Steuerungs-, Kosten- und Prozessoptimierungsmöglichkeiten während der Bauphase unter Betrachtung der konkreten Schnittstellen zum Bausektor</td>
</tr>
<tr>
<td>Bewirtschaftungsphase: Steuerungs-, Kosten- und Prozessoptimierungsmöglichkeiten während der Bewirtschaftungsphase der Immobilie unter Betrachtung der konkreten Schnittstellen zum Bewirtschaftungssektor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die grundlegenden Vorgänge für die Optimierung von technischen und wirtschaftlichen Thematiken bezogen auf das Facility Management zu verstehen und anzuwenden (2). Die Studierenden werden in die Lage versetzt im Rahmen von Praxisbeispielen und Fallstudien die erlernten Kenntnisse unmittelbar auf Beispiele zu übertragen (3).</td>
</tr>
</tbody>
</table>
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, weiterführende Tätigkeiten eines FM-Managers in der Praxis auszuüben (3).

Angebotene Lehrunterlagen

Vorlesungsskriptum

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 Digitaler Workflow für die Planung von Membranbauten (44 Digital workflow in design of membrane structures)</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Florian Weininger</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>44 Digitaler Workflow für die Planung von Membranbauten</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Master Bauingenieurwesen (PO:20181)

Modulname:
44 Digitaler Workflow für die Planung von Membranbauten (44 Digital workflow in design of membrane structures)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 Digitaler Workflow für die Planung von Membranbauten</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Florian Weininger</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Florian Weininger</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4 SWS</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden</td>
<td>20 Stunden eigenverantwortliches Lernen; 40 Stunden Studienarbeiten und Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- Studienleistung: anerkannte Studienarbeit
- Prüfungsleistung: digitale & schriftliche Klausur, Dauer 90 Minuten

Inhalte

- Grundlagen für den Entwurf und die konstruktive Durchbildung von Membrantragwerken.
- Digitalen Formfindungsprozesse für den Membranbau
- Workflowoptimierung zwischen Strukturanalyse und 3d Geometriemodell
- Ponding Analysen unter Schnee und Regenlasten und Darstellung im 3d Geometriemodell
- Kollisionsdetektion
- Verformungsgerechte Detaillierung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundlagen im planerischen Umgang mit Membranbauten zu verstehen. (2)
- Die Programmsysteme Dlubal RFEM, Autodesk Revit und dessen Schnittstelle spezifisch anzuwenden. (3)
- Praktische Erfahrungen bei einer Projektarbeit zu sammeln (3):
 - Bei der Übergabe in BIM-fähige Planungssoftware werden die für den Membranbau spezifischen Problematiken wie Wasser- und Schneesackbildung (Ponding), Schwingungen etc. mit der notwendigen Kollisions-Detektion in Zusammenhang gebracht.
- notwendiges konstruktives und materialspezifisches Wissen zu kennen und anzuwenden (3)
- Eine Exkursion zu ausgewählten Bauwerken stellt den Bezug zur gebauten Umwelt her und
 erzeugt Verständnis für die theoretischen Inhalte der Veranstaltung. (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die gelernten Arbeitstechniken entsprechend einer geforderten Aufgabe zielgerichtet und
 effektiv anzuwenden. (3)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- die eigene fachliche Kompetenzentwicklung auf Basis von Grundlagenwissen zielgerichtet
 voranzutreiben. (2)
- Fachbegriffe im Dialog mit anderen Planern anzuwenden (2)

Angebotene Lehrunterlagen

Vorlesungsskripten, Planungsbeispiele, Materialmuster

Lehrmedien

- Multimediale Vortragsvorlesung (PowerPoint, Videos, etc.),
- Tutorials und Lehrsoftware
- Skriptum
- Exkursion

Literatur

- Prof. Dr. Ing. Rosemarie WAGNER - Bauen mit Seilen und Membranen - Bauwerk Beuth Verlag
- Frei OTTO - Mitteilungen des Instituts für Flächentragwerke - div.- SFB 64 #
- DIV. - Atlas Kunststoff - Membranen: Werkstoffe und Halbzeuge, Formfindung und Konstruktion – DETAIL #
- Michael SEIDEL - Textile Hüllen, Bauen mit biegeweichen Tragelementen - Materialien, Konstruktion, Montage – Ernst Wilhelm und Sohn

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden