Modulhandbuch

für den Bachelorstudiengang

Bauingenieurwesen
(B.Eng.)

SPO-Version ab: Sommersemester 2016

Sommersemester 2021
erstellt am 30.03.2021
von Prof. Andreas Ottl

Fakultät Bauingenieurwesen
Hinweise:

1. Die Angaben zum Arbeitsaufwand in der Form von ECTS-Credits in einem Modul in diesem Studiengang beruhen auf folgender Basis:

 1 ECTS-Credit entspricht in der Summe aus Präsenz und Selbststudium einer durchschnittlichen Arbeitsbelastung von 30 Stunden (45 Minuten Lehrveranstaltung werden als 1 Zeitstunde gerechnet).

2. Erläuterungen zum Aufbau des Modulhandbuchs

 Die Module sind nach Studienabschnitten unterteilt und innerhalb eines Abschnitts alphabetisch sortiert. Jedem Modul sind eine oder mehrere Veranstaltungen zugeordnet. Die Beschreibung der Veranstaltungen folgt jeweils im Anschluss an das Modul. Durch Klicken auf das Modul oder die Veranstaltung im Inhaltsverzeichnis gelangt man direkt auf die jeweilige Beschreibung im Modulhandbuch.

Hinweis für das Sommersemester 2021:

Modulliste

Studienabschnitt 1:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-AWP Allgemeinwissenschaftliches Wahlpflichtmodul</td>
<td>18</td>
</tr>
<tr>
<td>B2-AWP I Allgemeinwissenschaftliches-Fach I</td>
<td>19</td>
</tr>
<tr>
<td>B2-AWP II Allgemeinwissenschaftliches-Fach II</td>
<td>21</td>
</tr>
<tr>
<td>B1-BBB Baustoff und Boden</td>
<td>23</td>
</tr>
<tr>
<td>B1-BSK Baustoffkunde</td>
<td>24</td>
</tr>
<tr>
<td>B1-IGB Bodenmechanik und Ingenieurgeologie</td>
<td>27</td>
</tr>
<tr>
<td>B1-BCP Bauchemie und -physik</td>
<td>30</td>
</tr>
<tr>
<td>B1-BP Bauphysik</td>
<td>31</td>
</tr>
<tr>
<td>B1-BKE/BIM Bauinformatik-Baukonstruktion und Entwurf, BIM</td>
<td>37</td>
</tr>
<tr>
<td>B1-BIM Bauinformatik, BIM</td>
<td>38</td>
</tr>
<tr>
<td>B1-BKE I Baukonstruktion und Entwurf I</td>
<td>40</td>
</tr>
<tr>
<td>B1-BKE II Baukonstruktion und Entwurf II</td>
<td>42</td>
</tr>
<tr>
<td>B1-BTM Bautechnische Mechanik</td>
<td>6</td>
</tr>
<tr>
<td>B1-BTM I Bautechnische Mechanik I</td>
<td>7</td>
</tr>
<tr>
<td>B1-BTM II Bautechnische Mechanik II</td>
<td>9</td>
</tr>
<tr>
<td>B1-MAB Mathematik für Bauingenieure</td>
<td>11</td>
</tr>
<tr>
<td>B1-MAB II Mathematik für Bauingenieure II</td>
<td>12</td>
</tr>
<tr>
<td>B1-MAB I Mathematik für Bauingenieure I</td>
<td>15</td>
</tr>
</tbody>
</table>

Studienabschnitt 2:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-BB Baubetrieb</td>
<td>66</td>
</tr>
<tr>
<td>B2-BB I Baubetrieb I</td>
<td>67</td>
</tr>
<tr>
<td>B2-BB II Baubetrieb II</td>
<td>69</td>
</tr>
<tr>
<td>B2-BI Bauinformatik</td>
<td>72</td>
</tr>
<tr>
<td>B2-CBS Computerorientierte Baustatik</td>
<td>73</td>
</tr>
<tr>
<td>B2-COM I Computerorientierte Methoden I</td>
<td>75</td>
</tr>
<tr>
<td>B2-BS Baustatik</td>
<td>77</td>
</tr>
<tr>
<td>B2-BS I Baustatik I</td>
<td>78</td>
</tr>
<tr>
<td>B2-BS II Baustatik II</td>
<td>80</td>
</tr>
<tr>
<td>B2-GT I Geotechnik I</td>
<td>82</td>
</tr>
<tr>
<td>B2-GT I Geotechnik I</td>
<td>83</td>
</tr>
<tr>
<td>B2-MB Massivbau</td>
<td>86</td>
</tr>
<tr>
<td>B2-MWB Mauerwerksbau</td>
<td>87</td>
</tr>
<tr>
<td>B2-SB II Stahlbetonbau</td>
<td>89</td>
</tr>
<tr>
<td>B2-SB I Stahlbetonbau</td>
<td>91</td>
</tr>
<tr>
<td>B2-PF II Praxisbegleitende Lehrveranstaltungen</td>
<td>44</td>
</tr>
<tr>
<td>B2-PFB Bauschäden</td>
<td>45</td>
</tr>
<tr>
<td>B2-PFCH Praxisfach Baurecht, BGB</td>
<td>47</td>
</tr>
<tr>
<td>B2-PFR I, B2-PFR II Praxisfach Referat I+II</td>
<td>50</td>
</tr>
<tr>
<td>B2-PF I Praktisches Studiensemester</td>
<td>52</td>
</tr>
<tr>
<td>B2-PF1 Praxissemester</td>
<td>53</td>
</tr>
<tr>
<td>B2-SRBN Straßen- und Bahnbau</td>
<td>93</td>
</tr>
<tr>
<td>B2-BN I Bahnbau I</td>
<td>94</td>
</tr>
<tr>
<td>B2-SR I Straßenbau I</td>
<td>97</td>
</tr>
<tr>
<td>B2-STHO Stahlbau und Holzbau</td>
<td>99</td>
</tr>
<tr>
<td>B2-HO I Holzbau I</td>
<td>100</td>
</tr>
<tr>
<td>B2-ST I Stahlbau I</td>
<td>102</td>
</tr>
<tr>
<td>B2-VK Vermessungskunde</td>
<td>55</td>
</tr>
<tr>
<td>B2-VK Vermessungskunde</td>
<td>56</td>
</tr>
</tbody>
</table>
Studienabschnitt 3:

B3-ABS Angewandte Baustatik
B3-ABS Angewandte Baustatik
B3-AIKA Ausgewählte Ingenieurkompetenzen im Ausland
B3-AIKA Ausgewählte Ingenieurkompetenzen im Ausland
B3-BA Bachelorarbeit mit Präsentation
B3-BA Bachelorarbeit mit Präsentation
B3-BMB Bauwerke des Massivbaus
B3-BMB Bauwerke des Massivbaus
B3-BM I Baumanagement I
B3-BM I Baumanagement I
B3-BM II Baumanagement II
B3-BM II Baumanagement II
B3-BSB Brandschutz und Brandbemessung
B3-BSB Brandschutz und Brandbemessung
B3-BSP Bauleitplanung, Stadtplanung
B3-BSP Bauleitplanung, Stadtplanung
B3-BVR Baurecht, Bauvertragsrecht
B3-BVR Baurecht, Bauvertragsrecht
B3-CAD IC RIB iTWO civil
B3-CAD IC RIB iTWO civil
B3-COM II Computerorientierte Methoden II
B3-COM II Computerorientierte Methoden II
B3-FE Finite Elemente
B3-FE Finite Elemente
B3-FTB Fertigteilbau
B3-FTB Fertigteilbau
B3-GGT Gebäudetechnik und Bauphysik II
B3-GGT Gebäudetechnik und Bauphysik II
B3-GDB Grundlagen der Baudynamik
B3-GDB Grundlagen der Baudynamik
B3-GIS Geoinformationssysteme GIS
B3-GIS Geoinformationssysteme (GIS)
B3-GNB Grundlagen des nachhaltigen Bauens
B3-GNB Grundlagen des nachhaltigen Bauens
B3-GT II Geotechnik II
B3-GT II Geotechnik II
B3-HOAI Grundlagen der HOAI
B3-HOAI Grundlagen der HOAI
B3-HO II Holzbau II
B3-HO II Holzbau II
B3-IS Bautenschutz und Instandsetzung
B3-IS Bautenschutz und Instandsetzung
B3-ITWO Planen und Bauen mit RIB iTWO
B3-ITWO Planen und Bauen mit RIB iTWO
B3-MESS Zustandsbewertung bautechnischer Strukturen - Strategien und Methoden
B3-MESS Zustandsbewertung bautechnischer Strukturen - Strategien und Methoden
B3-NHB Nachhaltigkeit von Baustoffen
B3-NHB Nachhaltigkeit von Baustoffen
B3-PAB II Projektarbeit angewandter Betonbau II
B3-PAB II Projektarbeit angewandter Betonbau II
B3-PAB I Projektarbeit angewandter Betonbau I
B3-PAB I Projektarbeit angewandter Betonbau I
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-BTM Bautechnische Mechanik (Basic Mechanics)</td>
<td>B1-BTM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2.</td>
<td>1</td>
<td>Pflicht</td>
<td>14</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B1-BTM I Bautechnische Mechanik I</td>
<td>8 SWS</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>B1-BTM II Bautechnische Mechanik II</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B1-BTM Bautechnische Mechanik

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-BTM I Bautechnische Mechanik I (Basic Mechanics I)</td>
<td>B1-BTM I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dimitris Diamantidis</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

| Lehrform | Seminaristischer Unterricht mit Übungen und Praktikum |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>8 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Stunden seminaristischer Unterricht</td>
<td>120 Stunden eigenverantwortliches Lernen, Studienarbeiten, Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: anerkannte Studienarbeiten
Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten

Inhalte

Einleitung, Allgemeines:
Bedeutung, Aufbau und Zielsetzung der Baustatik, Sicherheitsbegriff, Grundbegriffe und Einheiten, Aufbau einer statischen Berechnung

Kräfte und Momente:
Zusammensetzung und Zerlegen von Kräften und Momenten, Beherrschung der Gleichgewichtsbedingungen, Gleichgewicht von Kräften und Momenten in der Ebene Kenntnis der an Bauwerken angreifenden Lasten, Lastarten, Lastannahmen

Auflagerreaktionen ebener Tragwerke (statisch bestimmte Systeme):
Begriff des Trägers, Tragwerksformen und ihre Idealisierung

Schnittgrößen ebener Tragwerke (statisch bestimmte Systeme):
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • die wichtigsten Elemente und Tragwerke der Statik zu erkennen (1).
 • mit diesen Elementen und Tragwerken umzugehen (2).
 • das Schnittprinzip und die Gleichgewichtsbedingungen sicher anzuwenden (3).
 • Auflagerkräfte und Schnittkraftlinien an statisch bestimmten Systemen zu ermitteln (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • statische Aufgabenstellungen zu erfassen (1).
 • mechanische Zusammenhänge zu erkennen und anzuwenden (3).
 • fachliche Fragen zu stellen (2).
 • fachliche Fragen angemessen zu beantworten (2).
 • ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

Hirschfeld K.: Baustatik. Springer-Verlag, Berlin

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-BTM II Bautechnische Mechanik II</td>
<td>B1-BTM II</td>
</tr>
<tr>
<td>(Basic Mechanics II)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Ursula Albertin-Hummel</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Finckh</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- 90 Stunden seminaristischer Unterricht (Präsenz)
- 90 Stunden eigenverantwortliches Lernen, Studienarbeiten, Prüfungsvorbereitung (Eigenstudium)

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: anerkannte Studienarbeiten</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schnittrößen ebener Tragwerke (statisch bestimmte Systeme):</td>
</tr>
<tr>
<td>Ermittlung von Schnittrößen an gemischten Systemen</td>
</tr>
<tr>
<td>Ermittlung der Lastannahmen auf Tragwerke</td>
</tr>
</tbody>
</table>

Grundlagen der Festigkeitslehre:
Zusammenhang zwischen Art Ermittlung der Lastannahmen auf Tragwerke
Berechnung der Querschnittskennwerte (Flächenträgheitsmomente), Schwerpunktberechnung, zusammengesetzte Querschnitte
Biegebeanspruchung, Biegung mit Längskraft, Doppelbiegung und schiefe Biegung, Querschnittskern, Querschnitt mit versagender Zugzone
Differentielle Zusammenhänge zwischen Verformungen, Schnittrößen und äußeren Belastungen
Verformungsberechnung (mittels Tabellenwerken/Superpositionsprinzip und mittels Differentialgleichungsbeziehungen)
Schubspannungen aus Querkraftbeanspruchung
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Bedeutung der unterschiedlichen Lastannahmen zu kennen (1).
- auf Bauwerke einwirkende Lasten zu erkennen und zu ermitteln (2).
- ihre Behandlung im Rahmen des Sicherheitskonzeptes anzuwenden (3).
- die wichtigsten Elemente und Kenngrößen der Festigkeitslehre zu erkennen und mit ihnen umzugehen (1).
- diese Kenngrößen und ihre Bedeutung für die Mechanik einzuordnen (2).
- grundlegende Querschnittswerte zuverlässig zu ermitteln (2).
- Spannungs- und Verformungsberechnungen zuverlässig durchzuführen (2).
- bemessungsbestimmende Kriterien zu erkennen und mit ihrer Kenntnis die Bemessung durchzuführen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- statische Aufgabenstellungen von der Ermittlung der Lasten bis hin zur Querschnittsbemessung zu erfassen (1).
- mechanische Zusammenhänge zu erkennen und anzuwenden (3).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Berechnungsbeispiele, Bemessungstabellen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

Hirschfeld K.: Baustatik. Springer-Verlag, Berlin
Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse:
Lehrveranstaltungen B1-BTM I

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-MAB Mathematik für Bauingenieure</td>
<td>B1-MAB</td>
</tr>
<tr>
<td>(B1-MAB Mathematics for Civil Engineers)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fachrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Susanne Rockinger</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2.</td>
<td>1</td>
<td>Pflicht</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematische Grundkenntnisse im Umfang der allgemeinen Hochschulreife bzw. der Fachhochschulreife</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>Teilmodul</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>B1-MAB II Mathematik für Bauingenieure II (B1-MAB II Mathematics for Civil Engineers II)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Susanne Rockinger</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Susanne Rockinger</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristische Lehrveranstaltungen</td>
<td>60 Stunden eigenverantwortliches Lernen, Tutorien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Schriftliche Prüfung, Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>
Inhalte

Die Studierenden haben grundlegende Kenntnisse in den Bereichen:
- Differential- und Integralrechnung von Funktionen mehrerer Veränderlicher
- Lineare Algebra
- Komplexe Zahlen
- Differentialgleichungen

Differential- und Integralrechnung von Funktionen mehrerer Veränderlicher:
Definition einer Funktion mehrerer Veränderlicher, graphische Darstellung, Differentiation (partielle Ableitungen 1. Ordnung, partielle Ableitungen höherer Ordnung, Tangentialebene, totales Differential, Anwendungen: lokale Extremwerte und Sattelpunkte, Extremwertaufgaben), Mehrfachintegrale (Doppelintegrale, Dreifachintegrale, Anwendungen: Volumen, Schwerpunkt, Momente)

Lineare Algebra:
Matrizen (Definitionen, Beispiele, Rechenoperationen), Determinanten, Rang einer Matrix, lineare Gleichungssysteme (Gaußscher Algorithmus, Lösungsverhalten linearer Gleichungssysteme, Anwendungen), Eigenwerte und Eigenvektoren

Komplexe Zahlen:
Definitionen, Darstellung in der Gaußschen Zahlenebene, Rechnen mit komplexen Zahlen, algebraische Gleichungen im Komplexen: Fundamentalsatz der Algebra

Differentialgleichungen:
Grundbegriffe (Definitionen, Beispiele, Anfangswert- und Randwertprobleme), Differentialgleichungen 1. Ordnung (homogene und inhomogene lineare Differentialgleichungen mit konstanten Koeffizienten), Differentialgleichungen 2. Ordnung (homogene und inhomogene lineare Differentialgleichungen mit konstanten Koeffizienten, Anwendung: mechanische Schwingungen), Ausblick: Differentialgleichungen höherer Ordnung, numerische Integration einer Differentialgleichung (Eulerverfahren, Runge-Kutta-Verfahren)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, aus ihrem späteren Tätigkeitsfeld erwachsende mathematische Probleme als solche zu erkennen, sie korrekt zu formulieren und nach Wahl eines geeigneten Verfahrens zu lösen. Dies bedeutet insbesondere, dass die Studierenden in der Lage sind
- im Bereich der komplexen Zahlen sicher zu arbeiten (2)
- Fertigkeiten und Methoden der Differential- und Integralrechnung mehrerer Veränderlicher bei Aufgabenstellungen aus dem Bauingenieurwesen anzuwenden (2)
- das Lösungsverhalten linearer Gleichungssysteme zu beurteilen (2)
- lineare Gleichungssysteme in mehreren Unbekannten zu lösen (2)
- Eigenwerte und Eigenvektoren von quadratischen Matrizen zu berechnen (2)
- Differentialgleichungen aus dem Bauingenieurwesen zu analysieren (2)
- Lineare Differentialgleichungen analytisch zu lösen
- Differentialgleichungen durch geeignete numerische Verfahren approximativ zu lösen (2)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mathematische Aufgabenstellungen zu erfassen (2)
- mathematische Zusammenhänge in korrekter Fachsprache wiederzugeben (2)
- fachliche Fragen zu stellen (2)
- fachliche Fragen angemessen zu beantworten (2)
- fachliche Inhalte in Lerngruppen zu diskutieren (2)
- mathematische Aufgabenstellungen eigenständig oder in einer Lerngruppe zu lösen (3)

Angebotene Lehrunterlagen

Skript zur Vorlesung, Umfangreiche Sammlung von Übungsaufgaben mit detaillierten Lösungswege, Probeklausuren mit Lösungen

Lehrmedien

Multimediale Vortragsvorlesung (Simulationen mit MAPLE, Visualizer, Beamer, Tafelanschrieb)

Literatur

Skript zur Vorlesung:
Sussanne Rockinger: Mathematik für Bauingenieure, Teil II, Laufwerk K:/Roc/Mathematik für Bauingenieure/MABII

Lehrbücher:
Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg-Verlag
Kerstin Rjasanowa: Mathematik für Bauingenieure, Carl Hanser Verlag
Peter Stingl: Mathematik für Fachhochschulen, Hanser-Verlag
Thomas Rießinger: Mathematik für Ingenieure, Springer-Verlag
Thomas Westermann: Mathematik für Ingenieure mit MAPLE, Springer-Verlag
Meyberg, Vachenauer: Höhere Mathematik 2, Springer-Verlag
Formelsammlungen:
Lothar Papula: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg-Verlag
Barth, Mühlbauer, Nikol, Wörle: Mathematische Formeln und Definitionen, Bayerischer Schulbuch-Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-MAB I Mathematik für Bauingenieure I</td>
<td>B1-MAB I</td>
</tr>
<tr>
<td>(B1-MAB I Mathematics for Civil Engineers I)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantworte/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Susanne Rockinger</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Susanne Rockinger</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>seminaristischer Unterricht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Stunden seminaristische Lehrveranstaltungen</td>
<td>90 Stunden eigenverantwortliches Lernen, Tutorien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Schriftliche Prüfung, Dauer: 90 Minuten</td>
<td></td>
</tr>
</tbody>
</table>
Inhalte

Die Studierenden haben grundlegende Kenntnisse in den Bereichen:

- Reelle Zahlen
- Gleichungen und Ungleichungen
- Funktionen und Kurven
- Differentialrechnung von Funktionen einer Veränderlichen
- Integralrechnung von Funktionen einer Veränderlichen
- Potenzreihenentwicklung

Allgemeine Grundlagen:
die Menge der reellen Zahlen, Gleichungen, Ungleichungen, binomischer Lehrsatz

Funktionen und Kurven:
Definition und Darstellung einer Funktion, allgemeine Funktionseigenschaften (Nullstellen, Symmetrie, Monotonie), Grenzwerte von Folgen und Funktionen, Stetigkeit einer Funktion, Polynome, Potenz- und Wurzelfunktionen, trigonometrische Funktionen, Exponentialfunktionen, Logarithmusfunktionen

Differentialrechnung von Funktionen einer Veränderlichen:
Differenzierbarkeit einer Funktion, Ableitungsregeln (Summenregel, Produktregel, Quotientenregel, Kettenregel), logarithmische Ableitung, höhere Ableitungen, Anwendungen der Differentialrechnung (Tangente und Normale, Linearisierung einer Funktion, Mittelwertsatz der Differentialrechnung, Kurvendiskussion, Extremwertaufgaben, Tangentenverfahren von Newton)

Integralrechnung von Funktionen einer Veränderlichen:
die Stammfunktion, bestimmtes und unbestimmtes Integral, Fundamentalsatz der Differential- und Integralrechnung, Grundintegrale, Berechnung bestimmter Integrale unter Verwendung einer Stammfunktion, elementare Integrationsregeln, Integrationstechniken (Substitution, partielle Integration, Partialbruchzerlegung), numerische Integration (Trapezformel, Simpson-Formel), Anwendungen der Integralrechnung (Flächenberechnungen, Bogenlänge einer ebenen Kurve, Volumen, Schwerpunkt und Massenträgheitsmoment eines Rotationskörpers)

Potenzreihenentwicklung:
Unendliche Reihen (Grundbegriffe, Konvergenzkriterien), Potenzreihen (Definitionen, Konvergenzverhalten, Eigenschaften), Taylorreihen (Herleitung der Taylorapproximation, Satz von Taylor, Anwendungsbeispiele, Integration durch Potenzreihenentwicklung, Grenzwertregel von L’Hospital)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, aus ihrem späteren Tätigkeitsfeld erwachsende mathematische Probleme als solche zu erkennen, sie korrekt zu formulieren und nach Wahl eines geeigneten Verfahrens zu lösen. Dies bedeutet insbesondere, dass die Studierenden in der Lage sind

- im Bereich der reellen Zahlen sicher zu arbeiten (2)
- Gleichungen und Ungleichungen in einer Unbekannten zu lösen (2)
- die im Bauingenieurwesen häufig auftretenden Funktionstypen zu erkennen (1)
- Fertigkeiten und Methoden der Differential- und Integralrechnung einer Veränderlichen bei Aufgabenstellungen aus dem Bauingenieurwesen anzuwenden (2)
- Problemstellungen aus dem Bereich der Differential- und Integralrechnung durch numerische Verfahren zu lösen (2)
Anwendungsbereiche und Grenzen der Polynomapproximation durch Taylorentwicklung zu beurteilen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• mathematische Aufgabenstellungen zu erfassen (2)
• mathematische Zusammenhänge in korrekter Fachsprache wiederzugeben (2)
• fachliche Fragen zu stellen (2)
• fachliche Fragen angemessen zu beantworten (2)
• fachliche Inhalte in Lerngruppen zu diskutieren (2)
• mathematische Aufgabenstellungen eigenständig oder in einer Lerngruppe zu lösen (3)

Angebotene Lehrunterlagen

Skript zur Vorlesung, Umfangreiche Sammlung von Übungsaufgaben mit detaillierten Lösungswegen, Probeklausuren mit Lösungen

Lehrmedien

Multimediale Vortragsvorlesung (Simulationen mit MAPLE, Visualizer, Beamer, Tafelanschrieb)

Literatur

Skript zur Vorlesung:
Susanne Rockinger: Mathematik für Bauingenieure, Teil I, Laufwerk K:/Roc/Mathematik für Bauingenieure/MABI

Lehrbücher:
Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Band 1, Vieweg-Verlag
Kerstin Rjasanowa: Mathematik für Bauingenieure, Carl Hanser Verlag
Peter Stingl: Mathematik für Fachhochschulen, Hanser-Verlag
Thomas Rießinger: Mathematik für Ingenieure, Springer-Verlag
Thomas Westermann: Mathematik für Ingenieure mit MAPLE, Springer-Verlag
Meyberg, Vachenauer: Höhere Mathematik 1, Springer-Verlag
Formelsammlungen:
Lothar Papula: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg-Verlag
Barth, Mühlbauer, Nikol, Wörle: Mathematische Formeln und Definitionen, Bayerischer Schulbuch-Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-AWP Allgemeinwissenschaftliches Wahlpflichtmodul (Mandatory General Studies Elective Module)</td>
<td>B1-AWP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2. 1. Pflicht</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-AWP I Allgemeinwissenschaftliches-Fach I</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>B2-AWP II Allgemeinwissenschaftliches-Fach II</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2-AWP I Allgemeinwissenschaftliches-Fach I (Mandatory General Studies elective Module I)</td>
<td>B2-AWP I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bzw. 2.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2 ECTS-Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>- 30 Stunden seminaristischer Unterricht (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mündlicher Leistungsnachweis und/oder Klausur und/oder Studienarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Veranstaltung</td>
</tr>
</tbody>
</table>

Die Studierenden haben die Möglichkeit, aus einem breit gefächerten Veranstaltungskatalog auszuwählen. Der Katalog wird jeweils rechtzeitig vor Semesterbeginn von der Hochschule veröffentlicht.

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Veranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Veranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebote Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Veranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Veranstaltung (Tafel, Flipchart, Overhead, Beamer, Metaplanwand)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Veranstaltung</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 19
Weitere Informationen zur Lehrveranstaltung

Kenntnisse: Die Studierenden erwerben Wissen über allgemeinwissenschaftliche Themen – in den Bereichen Schlüsselqualifikationen / Sprachen / Orientierungswissen wie z. B. BWL, Recht, Naturwissenschaften, Technik

Fertigkeiten und Kompetenzen: Die Studierenden sind in der Lage, dieses theoretische Wissen in praktischen Situationen (Studium, Beruf) anzuwenden

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul
TM-Kurzbezeichnung

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-AWP II Allgemeinwissenschaftliches-Fach II (Mandatory General Studies Elective Module II)</td>
<td>B2-AWP II</td>
</tr>
</tbody>
</table>

Verantwortliche/r
Fakultät

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r
Angebotsfrequenz

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

Studiensemester
Lehrumfang
Lehrsprache
Arbeitsaufwand

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bzw. 2</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>- 30 Stunden eigenverantwortliches Lernen (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Mündlicher Leistungsnachweis und/oder Klausur und/oder Studienarbeit</th>
</tr>
</thead>
</table>

Inhalte

<table>
<thead>
<tr>
<th>Je nach Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden haben die Möglichkeit, aus einem breit gefächerten Veranstaltungskatalog auszuwählen. Der Katalog wird jeweils rechtzeitig vor Semesterbeginn von der Hochschule veröffentlicht.</td>
</tr>
</tbody>
</table>

Lernziele: Fachkompetenz

| Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, |
| Je nach Veranstaltung |

Lernziele: Persönliche Kompetenz

| Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, |
| Je nach Veranstaltung |

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Je nach Veranstaltung</th>
</tr>
</thead>
</table>

Lehrmedien

<table>
<thead>
<tr>
<th>Je nach Veranstaltung (Tafel, Flipchart, Overhead, Beamer, Metaplanwand)</th>
</tr>
</thead>
</table>

Literatur

<table>
<thead>
<tr>
<th>Je nach Veranstaltung</th>
</tr>
</thead>
</table>

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 21
Weitere Informationen zur Lehrveranstaltung

Kenntnisse: Die Studierenden erwerben Wissen über allgemeinwissenschaftliche Themen – in den Bereichen Schlüsselqualifikationen / Sprachen / Orientierungskenntnisse wie z.B. BWL, Recht, Naturwissenschaften, Technik

Fertigkeiten und Kompetenzen: Die Studierenden sind in der Lage, dieses theoretische Wissen in praktischen Situationen (Studium, Beruf) anzuwenden

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B1-BBB Baustoff und Boden

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-BBB Baustoff und Boden (Construction materials and soil Engineering)</td>
<td>B1-BBB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Charlotte Thiel</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>11</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B1-BSK Baustoffkunde</td>
<td>7 SWS</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>B1-IGB Bodenmechanik und Ingenieurgeologie</td>
<td>3 SWS</td>
<td>3</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1-BSK Baustoffkunde (Material Science)</td>
<td>B1-BSK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Charlotte Thiel</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Appelt</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Charlotte Thiel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen und Praktika</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.+2.</td>
<td>7 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 Stunden seminaristische Lehrveranstaltungen 26 Stunden Praktika</td>
<td>163 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung:
- erfolgreiche Teilnahme am Praktikum und anerkannter Praktikumsbericht
- erfolgreiche Bearbeitung der Studienarbeiten mit Abgabe der bearbeiteten Studienarbeit
- Besuch der Exkursionen und Vorträge

Prüfungsleistung: schriftliche Prüfung, Dauer: 120 Minuten
Inhalte

Baustoffkundliches Grundlagenwissen

Allgemeinen Grundlagen
Systematik, Dichte, Gefügekenngrößen, Porigkeit, Feuchte, Verarbeitungskennwerte
Mechanische Kennwerte
Festigkeit und Verformungsverhalten (reversible, irreversible, spannungsabhängige und
spannungsunabhängige Verformungen). Dauerhaftigkeit
Wasserbeständigkeit, Frostbeständigkeit, chemische Angriffe, Korrosion,
Brandbeständigkeit Sicherheitsbegriff
Beanspruchung und Beanspruchbarkeit

Naturstein und Gesteinskörnung für Beton
Beurteilung der Gesteinsbeschaffenheit und Einsatz von Natursteinplatten, Aufbereitung für den
Einsatz als Zuschlagstoff in Beton und Mörtel. Ton im Bauwesen

Mineralische Bindemittel
Zement, Kalk, Gips, sonstige Bindemittel, Hochofenschlacke

Beton
Herstellung, Einbau und Nachbehandlung, Mischungsberechnung, Beanspruchung und daraus
folgende Grenzwerte der Zusammensetzung, Frisch- und Festbetonprüfungen, Zusatzmittel und
Zusatzstoffe, Sonderbetone

Mörtel und Estriche
Putz und Mauerfliesen, Estriche für Hoch- und Industriebau

Mauersteine
Keramische Ziegel, Kalksandstein, Porenbeton, Beton- und
Leichtbetonsteine

Fe- Metalle
Gusswerkstoffe, Baustähle, Beton- und Spannstähle; Herstellung, Gefüge,
Beeinflussungsmöglichkeiten, Schweißen, Spezielle
Prüfungen Nichteisenmetalle

Überblick Aluminium, Kupfer, Korrosionsproblematik Holz
Aufbau, Technologische Eigenschaften, Einflüsse auf Festigkeit und Verformung, Sortierkriterien,
Holzschutz

Der Überblick über Kunststoffe im Bauwesen

Überblick über Dämmstoffe

Überblick über den Baustoff Glas

Fähigkeit zur Ausführung von ausgewählten Baustoffprüfungen
Praktische Übungen im Labor: Grundlagen
Dauerhaftigkeit Bindemittel, Festigkeiten
Beton im Bestand, Gesteinskunde, Dämmstoffe Frisch- und Festbeton
Bitumen und Asphalt Exkursionen: Zementwerk

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Die Studierenden
• kennen in die baustoffwissenschaftlichen Grundlagen um Baustoffe beurteilen, richtig
auswählen und anwenden zu können (1).
• verstehen die Stoffgesetze, Modellannahmen und Beanspruchungen (3).
• haben einen Überblick über die Baustoffe des konstruktiven Ingenieurbaus bezüglich
ihrer Herstellung, Beeinflussbarkeit, technologischen Eigenschaften und sinnvollen
Anwendungsgebiete (2).

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
• sind fähig im Rahmen von Übungen die erlernten Kenntnisse unmittelbar auf kleine Beispiele zu übertragen (3).
• sind in der Lage selbständig grundlegende Entscheidungen zur Baustoffwahl zu treffen oder selbstständig Informationen zu Baustoffen zu beurteilen (2).
• können bei der Bauausführung baustoffspezifische Maßnahmen ergreifen (2)
• sind in der Lage fundamentale Ursachen von Bauschäden zu erkennen. (2)
• Sie verfügen somit über fundierte Grundlagenkenntnisse zur weitgehenden Beantwortung der baustoffspezifischen Fragestellungen im Kontext des Entwurfs und der Ausführung von Bauwerken sowie zu deren Dauerhaftigkeit. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• baustoffkundliche Aufgabenstellungen zu erfassen (2).
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• fachliche Fragen zu stellen (3).
• fachliche Fragen angemessen zu beantworten (2).
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum, Praktikumsunterlagen

Lehrmedien
Multimediale Vortragsvorlesung mit Tafelanschrieb
Exkursionen, Praktikum, Exponate

Literatur

• Scholz, Hiese: Baustoffkenntnis. Werner Verlag.
• Umdruck zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-IGB Bodenmechanik und Ingenieurgeologie (Soil mechanics and geology for civil engineers)</td>
<td>B1-IGB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roland Gömmel (LB)</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen und Praktika</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30 Stunden seminaristischer Unterricht; 7 Praktika (Präsenz); 2 Studienarbeiten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: anerkannte Ausarbeitung zu den Praktika, anerkannte Studienarbeiten</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung, Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021
Inhalte

Geologische Grundlagen:
Einführung in die Geologie, Gesteine, Fels, Gebirge, Verwitterung und Verkarstung, Abtrag, Transport, Sedimentation, Diagenese, Geologische Karten, Natursteine - Nutzung und Lagerstätten

Bodeneigenschaften und Bodenklassifizierung:
Bodenbenennung und –beschreibung, Dichten, Wichten, Wasser und Kalkgehalt, Plastizitätsgrenzen, Lagerungsdichte, Bodenklassifizierung, Durchlässigkeit (Darcy), Last-Verformungsverhalten (Steifigkeit, Ersatzmoduli); Reibungswinkel und Kohäsion (Scherfestigkeit nach Mohr-Coulomb),

Erdbau:
Gewinnung von Boden- und Felsklassen, Homogenbereiche, Frostempfindlichkeit, Frostschatzschichten, Einbau, Verdichtung, Proctorversuch, Verdichtungskontrollen u. a. Lastplattenversuch, Durchlässigkeitsermittlung

Baugrunderkundung:
Schürfe, Sondier- und Bohrverfahren, Probenahme, Korrelationen, Auswertung und Interpretation

Wasser im Boden: Einfluss, Grundlagen der Entwässerung von Böden und Wasserhaltung

Wasserhaltung: Arten und Dimensionierung

Spannungen im Boden: Prinzip der totalen und effektiven Spannungen im Halbraum

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Locker- u. Festgesteine entsprechend deren Genese ingenieurgeologisch zu zuordnen (1)
- die natürlicher Baustoffe Boden und Fels zu benennen und zu klassifizieren (2)
- die wichtigsten Eigenschaften und Kennwerte zu ermitteln und zu interpretieren (3)
- Baugrunderkundungsverfahren aufgabenspezifisch auszuwählen (3)
- die Wirkung von Wasser im Boden zu erfassen (3)
- das Prinzip der totalen und effektiven Spannungen im Halbraum anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- weiterführenden Vorlesungen im Rahmen der Ausbildung mit einem besseren Grundverständnis zu folgen (2)
- ingenieurtechnische Zusammenhänge bei geotechnischen Fragestellungen zwischen Erkundung, Planung und Ausführung wahrzunehmen (1-2)
- weitere Verständnisfrage im Rahmen der interdisziplinäre Ausbildung zum Bauingenieur zu formulieren (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele
Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Exkursionen, Praktika

Literatur

- Normen, Richtlinien und Merkblätter
- Skript zur Vorlesung (mit weiteren Literaturangaben)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-BCP Bauchemie und -physik (Construction Chemistry and Physics)</td>
<td>B1-BCP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Studiensem. (B1-BP); 2. Studiensem. (B1-BC)</td>
<td>1.</td>
<td>Pflicht</td>
<td>9</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Brückenkurs Chemie

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>Teilmodul</td>
</tr>
<tr>
<td>---------------------------------------</td>
</tr>
<tr>
<td>B1-BC Bauchemie</td>
</tr>
<tr>
<td>(B1-BC Chemistry for Civil Engineers)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christine Rieger (LBA)</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christine Rieger (LBA)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen sowie Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>3 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>30 Stunden seminaristischer Unterricht; 12 Stunden Bauchemie-Praktikum (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: erfolgreiche Teilnahme am Praktikum</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
</tr>
</tbody>
</table>
Inhalte

- Berechnungen in der Chemie
- Wässrige Lösungen
- Chemische Gleichgewichte
- Säure-Base-Reaktionen
- Redoxreaktionen
- Elektrochemische Prozesse
- Metallkorrosion, Korrosionsschutz
- Silicatchemie
- Erhärtungsreaktionen
- Baustoffkorrosion
- Organische Verbindungen im Bauwesen
- Kunststoffe
- Klebstoffe
- Bautenschutz
- Bitumen, Teer, Asphalt
- Holz, Holzschutz
- Schadstoffe in Innenräumen

- Praktikumsversuche zu folgenden Themen:
 halbquantitative Analyse von Bauwasser in Bezug auf betonangreifende Inhaltsstoffe,
 qualitative chemische Analyse von Mauerausblühungen,
 Korrosionsverhalten und -schutz von Baumetallen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundlagen der anorganischen und organischen Chemie und deren Anwendung auf
 bauchemische Zusammenhänge zu verstehen (3)
- Abläufe chemischer Prozesse im Bauwesen, wie Erhärtungsreaktionen von Bindemitteln
 nachzuvollziehen (2)
- Wirkungsweise von Polymermodifizierungen von Beton, organisch-chemischer Zusatzmittel
 und Oberflächenschutzsystemen zu beschreiben (3)
- Ursachen und Auswirkungen chemischer Schädigungsreaktionen auf zementgebundene
 Baustoffe, von Biokorrosion und Mauerausblühungen zu erkennen und zu beheben (3)
- Bauwasser und dessen mögliche Aggressivität zu beurteilen und entsprechende
 Schutzmaßnahmen für Baumaterialien zu ergreifen (3)
- einfache bauanalytische Untersuchungen vor Ort durchzuführen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- verantwortungsbewusst die Verhaltensregeln in einem Chemielabor stets einzuhalten, um
 sich und andere nicht zu gefährden (3)
- Sicherheitsvorschriften im Umgang mit Chemikalien und Gefahrstoffen pflichtbewusst
 umzusetzen (3)
- eigenständig chemische Versuche durchzuführen (3)
gewonnene analytische Daten und deren Bedeutung in der Gruppe zu diskutieren (3)

Angebotene Lehrunterlagen

- für Vorlesung: Foliensammlung, Aufgabenpool mit Lösungen (online)
- für Praktikum: Praktikumsskriptum, Kontrollaufgaben

Lehrmedien

Multimeditorialer seminaristischer Unterricht mit Tafelschrieb, Fachvorträge

Literatur

- Knoblauch, Harald und Schneider, Ulrich: „Bauchemie“; 7. Auflage; Werner Verlag Düsseldorf 2013
- Praktikums-Skriptum und Foliensätze zur Vorlesung „Bauchemie“, OTH Regensburg
- Riedel, Erwin: „Allgemeine und anorganische Chemie“; 12. Auflage; de Gruyter Verlag Berlin 2018

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>Modulname</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-BP Bauphysik</td>
<td>B1-BP</td>
</tr>
</tbody>
</table>

Verantwortliche/r

| Prof. Dr. Oliver Steffens | Angewandte Natur- und Kulturwissenschaften |

Lehrende/r / Dozierende/r

| Rita Elrod | in jedem Semester |
| Prof. Dr. Christoph Höller | |

Lehrform

Seminaristischer Unterricht mit Übungen und Praktikum

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium

40 Stunden Seminaristischer Unterricht (Präsenz) - 40 Stunden Übungen - 20 Stunden Messungen im Praktikum (Präsenz)

Eigenstudium

80 Stunden eigenverantwortliches Studium, Erstellung der Praktikumsausarbeitungen und Bearbeitung der Übungsblätter

Studien- und Prüfungsleistung

- Studienleistung: Abgabe aller Praktikumsausarbeitungen (mit Testat des Betreuers)
- Prüfungsleistung: Schriftliche Prüfung 120 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

- TR, sämtliche Unterlagen (Skript, Bücher, Aufzeichnungen), Schneider-Bautabellen
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B1-BCP Bauchemie und -physik

Inhalte

WÄRME:

SCHALL:

Ergänzungskapitel: HYDROMECHANIK
Kontinuitätsgleichung, Energieerhaltungssatz, Bernoulli'sche Gleichungen im Wasserbau, Widerstandsbeiwerte.

Begleitend:
Grundpraktikum: 5 physikalische Grundlagen-Versuche

Aufbaupraktikum:
5 Versuche zur bauphysikalischen Messtechnik (Wärme, Akustik, Hydromechanik)

Fehlerrechnung (praktikumsbegleitend): systematische Fehler, zufällige Fehler, Gauß-Verteilung, absolute und relative Fehler, lineare Fehlerfortpflanzung.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Prinzipien des Wärmeleitung zu erklären und die verschiedenen Wärmetransportmechanismen zu benennen (1)
- Den stationären Temperaturverlauf in einem Bauteil und dessen U-Wert zu berechnen (2)
- Die gespeicherte Wärmemenge in Bauteilen sowie Mischungstemperatur und latente Wärme bei Phasenübergängen zu berechnen (2)
- Baustoffe hinsichtlich ihrer Wärmeleitung zu klassifizieren (1)
- Vor- und Nachteile verschiedener Dämmkonstruktionen zu erkennen und je nach Anwendungsfall auszuwählen (3)
- Einen einfachen Energienachweis gemäß EnEV mithilfe eines Computerprogramms zu erstellen (3)
- Die wesentlichen Ziele des Feuchteschutzes im Bauwesen zu benennen (1)
- Aus Tabellen oder durch Formeln den Sättigungsdampfdrucks des Wasserdampfs abhängig von der Temperatur zu ermitteln (1)
- In Verbindung mit der relativen Luftfeuchte einfache Berechnungen im hygrischen Gleichgewicht durchzuführen (3)
- Die Schimmelpilz-Kriterium für die Luftfeuchte zu benennen (1)
- Die Auswirkungen von unterschiedlichen Oberflächentemperaturen auf die relative Luftfeuchte mit konstruktiven Situationen in Verbindung zu bringen und aufeinander abzustimmen (3)
- Die Wasserdampfdiffusionswiderstandszahl verschiedener Baustoffe in Tabellenwerken nachzuschlagen (1)
- Die Wasserdampfdiffusion durch Bauteile zu berechnen und ein Glaserdiagramm auf Basis der diffusionsäquivalenten Luftschichtdicke zu erstellen (3)
- Elementare Bewegungsgleichungen der klassischen Mechanik zu lösen (2)
- Grundbegriffe von Schwingungen und Wellen zu benennen (Frequenz, Wellenlänge, Ausbreitungsgeschwindigkeit) (1)
- Die mathematische Lösung der harmonischen Schwingung mit Dämpfung nachzu vollziehen und anzuwenden (2)
- Die Definition von verschiedenen Schallpegeln aufzuschreiben (1)
- Pegel ineinander umzurechnen (2)
- Die Schallausbreitung im Freien mithilfe des Abstandsgesetzes bzw. die Schallfeldsituation im Diffusfeld eines Raumes zu berechnen (3)
- Schallpegel energetisch zu addieren und einen Beurteilungspegel zu berechnen (2)
- Die Definition der äquivalenten Absorptionsfläche aufzuschreiben und sie für die Berechnung der Nachhallzeit eines Raumes zu nutzen (2)
- Die Messung des Schalldämmmaßes und des Trittschallpegels selbständig durchzuführen und die zugehörigen Einzahlwerte abzuleiten (3)
- Einfache Schallschutzberechnungen auf Basis von Tabellen und des Bergerschen Massagesetzes durchzuführen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Problemstellungen zu strukturieren und zu analysieren sowie Lösungsstrategien zu erarbeiten (3)
- Fachliche Fragen klar zu formulieren (1)
- Im Team an einer gemeinsamen Aufgabenstellung zu arbeiten (2)
- Im wissenschaftlichen Experiment kritisch zu diskutieren und seine Ergebnisse zu reflektieren (3)
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Praktikumsanleitungen, Kontrollaufgaben, Foliensammlung (Vorlesung)

Lehrmedien
Tafel, Beamer, Computersimulationen, Demonstrationsversuche, Vorlesungsskript & Übungsblätter

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
## Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
B1-BKE/BIM Bauinformatik-Baukonstruktion und Entwurf, BIM (IT in Civil Engineering-Design of Building Elements) | B1-BKE/BIM

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Prof. Florian Weininger</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2</td>
<td>1.</td>
<td>Pflicht</td>
<td>12</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B1-BIM Bauinformatik, BIM</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>B1-BKE I Baukonstruktion und Entwurf I</td>
<td>5 SWS</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>B1-BKE II Baukonstruktion und Entwurf II</td>
<td>5 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B1-BKE/BIM Bauinformatik-Baukonstruktion und Entwurf, BIM

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-BIM Bauinformatik, BIM (IT in Civil Engineering, BIM)</td>
<td>B 1-BIM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

| 1. | 2 SWS | deutsch | 2 |

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstundum</td>
</tr>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Klausur; Dauer: 60 Minuten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung: Verfügbarkheit von bauspezifischer CAD-Software an der OTH-Regensburg</td>
</tr>
<tr>
<td>Software-und Hardwareguide für das Studium: Welchen Rechner und welche Software sollte ich zur Verfügung haben?</td>
</tr>
<tr>
<td>geometrische, topologische, semantische Basismodelle</td>
</tr>
<tr>
<td>Bauwerksinformationsmodelle</td>
</tr>
<tr>
<td>Gesamtansicht CAD-Software für das Bauwesen, Verbreitung, Einsatzmöglichkeiten, Vor- und Nachteile der Systeme</td>
</tr>
<tr>
<td>CAD / BIM (Building Information Modelling): Einführung in computergestütztes Modellieren und Entwerfen</td>
</tr>
<tr>
<td>CAD-Grundbegriffe</td>
</tr>
<tr>
<td>Draht-, Flächen-, Volumenmodelle</td>
</tr>
<tr>
<td>Modellierungstechniken 2D- / 2,5D- / 3D- / 4D- und 5D-Modelle</td>
</tr>
<tr>
<td>modellorientiertes Arbeiten</td>
</tr>
<tr>
<td>parametrisches Modellieren</td>
</tr>
<tr>
<td>objektorientiertes Modellieren</td>
</tr>
<tr>
<td>Vor- und Nachteile, Ineinandergreifen verschiedener Systeme / Techniken</td>
</tr>
<tr>
<td>Datenaustausch, Schnittstellen</td>
</tr>
<tr>
<td>die Inhalte werden an mindestens zwei, i.d.R. drei verschiedenen CAD-Systemen vermittelt.</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg

Seite 38
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den Markt und die Möglichkeiten, CAD-Software im Bauwesen einzusetzen grob zu überblicken (2)
- mit mindestens zwei verbreiteten Modellierungssystemen einfache Bauwerke zu modellieren (2)
- nach einer Einführung die Methodik des Building Information Modeling (BIM) die Grundsätze des zeitgemäßen Arbeitens zu verstehen (1)
- parametrisches und bauteilorientiertes Arbeiten grundsätzlich anzuwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- mit mindestens zwei CAD-Systemen bauspezifische Modellierungsaufgaben anzugehen (2)
- die Methodik des modellorientierten Arbeitens als Basis für datenreiche Bauwerks-Informationsmodelle zu überblicken (2)
- eine Entscheidungsgrundlage für Vor- und Nachteile der verschiedenen Modellierungstools und Modellierungsmethoden zu erarbeiten (2)
- nach Anfertigung der Studienarbeit- mindestens ein Modellierungstool praxisnahe und modellierungstechnisch auf dem Stand der Technik anzuwenden (2)

Angebotene Lehrunterlagen

Vorlesungsskripten, Vorlagedaten, Schulungsunterlagen; E-Learning-Plattform

Lehrmedien

Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

Dokumentationen / Onlinehilfen / Workgroups / Usergroups zu den verwendeten CAD-Systemen wie
- Autodesk (AutoCAD / SOFiCAD / Revit / Navis Works)
- Nemetschek Allplan
- Siemens NX
- Tekla Structures

CAD Modellierung im Bauwesen: Integrierte 3D- Planung von Brückenbauwerken, Prof. Dr.-Ing. Th. Euringer (Hrsg.), Fakultät Bauingenieurwesen – Bauinformatik/CAD, Ostbayerische Technische Hochschule Regensburg, 2011

Praxishandbuch Allplan, Markus Philipp, Hanser Verlag, 2015

Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

| B1-BKE I Baukonstruktion und Entwurf I
| (Design of Building Elements I) |

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>B1-BKE I</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Prof. Florian Weininger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakultät</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Florian Weininger</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht, Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>5 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>75 Stunden seminaristischer Unterricht (Präsenz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen: anerkannte Studienarbeit und anerkannte Leistungsnachweise</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung, Dauer 90 Minuten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagen bzgl. der Teilbereiche Baugrund, Gründung, Keller Außenwände, Decken, Steil- und Flachdächer, Aussteifen und Fügen sowie Dämmen und Dichten.</td>
</tr>
<tr>
<td>• Prinzipien und Konstruktionen der Gebäudehülle hinsichtlich ihres Aufbaus, ihrer Wirkungsweise und ihrer Fügetechniken.</td>
</tr>
<tr>
<td>• Verständnis für Tragstrukturen und ihre Materialisierung</td>
</tr>
<tr>
<td>• Grundlegende Funktion und Ausbildung der lastabtragenden Elemente in einem Bauwerk</td>
</tr>
<tr>
<td>• Erkennen von Tragwerken</td>
</tr>
<tr>
<td>• Konstruktive Analyse von Anschlüssen</td>
</tr>
<tr>
<td>• Beiträge zur geschichtlichen Entwicklung der Tragwerke</td>
</tr>
<tr>
<td>• Gesteuerte Umwelt und Baukultur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• Grundlegende Funktionsprinzipien von Gebäuden zu verstehen (2)</td>
</tr>
<tr>
<td>• Außenwand- und Dachkonstruktionen zu benennen. (1)</td>
</tr>
<tr>
<td>• die Aufgaben der Gebäudehülle mit ihren Bestandteilen wie Sonnenschutz, Fenster, Fassade, Dach zu erfassen. (1)</td>
</tr>
<tr>
<td>• die Funktionsweise und die Einbindung des Tragwerks in dem Gesamtzusammenhang eines Bauwerkes zu verstehen. (1)</td>
</tr>
</tbody>
</table>
• Position und die Wirkungsweise tragender Bauteile im Gesamtsystem Gebäude zu identifizieren (1)
• einfache Konstruktive Aufgabenstellungen planerisch umzusetzen. (2)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• konstruktive Zusammenhänge zu erkennen (1).
• Fachbegriffe im Dialog mit anderen Planern anzuwenden (2)
• Kompetenzen und Aufgabenbereiche anderer Fachdisziplinen zuzuordnen. (2)
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
• die eigene fachliche Kompetenzentwicklung auf Basis von Grundlagenwissen zielgerichtet voranzutreiben. (2)

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesungsskripten, Planungsbeispiele, Materialmuster</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimediale Vortragsvorlesung, Videos, Exkursionen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frick, Knöll</td>
</tr>
<tr>
<td>Anton Pech</td>
</tr>
<tr>
<td>Jose L. Moro</td>
</tr>
<tr>
<td>Heino Engel</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B1-BKE/BIM Bauinformatik-Baukonstruktion und Entwurf, BIM

Teilmodul	TM-Kurzbezeichnung
B1-BKE II Baukonstruktion und Entwurf II (Design of Building Elements II) | B1-BKE II

Verantwortliche/r	Fakultät
Prof. Florian Weininger | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Franz Schindlbeck | in jedem Semester

Lehrform
Seminaristischer Unterricht, Übungen

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand	[ECTS-Credits]
gemäß Studienplan | [SWS oder UE] | | | 1. | 5 SWS | deutsch | 5 |

Zeitaufwand:
Präsenzstudium	Eigenstudium
75 Stunden seminaristischer Unterricht (Präsenz) | 25 Stunden eigenverantwortliches Lernen (Eigenstudium) ; 50 Stunden Studienarbeiten und Prüfungsvorbereitung (Eigenstudium)

Studien- und Prüfungsleistung
Studienleistungen: anerkannte Studienarbeit und anerkannte Leistungsnachweise
Prüfungsleistung: schriftliche Prüfung, Dauer 90 bis 180 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis
Keine

Inhalte
- Vertiefende Kenntnisse über Planungsabläufe und Darstellungsmethoden, Maßordnungen und Maßsysteme (Entwurfs-, Werk- und Detailplanung).
- Erlernen und Anwenden von räumlichen Skizzen zur Darstellung von Innen- und Außenräumen (Zentral- und Zweipunktperspektive).
- Die wichtigsten Baustoffe und ihre materialgerechte Verwendung (Schwerpunkt Mauerwerksbau, Ausbau).
- Die wichtigsten Konstruktionselemente, Wand, Dach, Decke, Treppe (Schwerpunkt Massivbau).
- Lastabtragung, statisches System (Mauerwerksbau)
- Gründungssysteme (Massivbau).

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den Kontext zwischen Konstruktion, Funktion und Form eines Gebäudes zu erkennen und
die erworbenen Kenntnisse auf geplante Vorhaben anzuwenden (3).
• Bauaufgaben unter Berücksichtigung der Vorgaben des Auftraggebers, der Umgebung (z.B. der Topographie) und unter Einhaltung der gesetzlichen Rahmenbedingungen (BayBO, BauGB, BauNVO) zu lösen (2).
• Entwurfs-, Eingabe-, und Werkplanungen in den jeweiligen Maßstäben zeichnerisch und inhaltlich richtig zu erstellen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• die wichtigsten beim Bauen verwendeten Entwurfs- und Konstruktionsprinzipien anzuwenden (2)
• geplante Bauaufgaben konzeptionell zu lösen (3)
• durch Zeichnungen und Skizzen ihre räumlichen Ideen darzustellen. (2)
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• ihre Leistungen zu kommunizieren (Präsentationsübungen) (2)

Angebotene Lehrunterlagen
Vorlesungsskripten, Planbeispiele, Probeklausuren, Materialmuster

Lehrmedien
Multimediale Vortragsvorlesung, Tafelanschrieb, Exkursionen

Literatur
• Johannes Kister und Ernst Neufert, Bauentwurfslehre, Springer Vieweg Verlag, 2015
• Jose L. Moro, Baukonstruktion – vom Prinzip zum Detail, 3 Bände, Springer Verlag, 2008
• Frick, Knöll, Baukonstruktionslehre, 2 Bände, Verlag Vieweg und Teubner, 2010
• Dierks, Schneider, Wormuth, Baukonstruktion, Werner Verlag, 2011
• Wendehorst, Bautechnische Zahlentafeln, Springer Vieweg Verlag, 2015 Online Publikationen der Ziegel- und Holzindustrie

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-PF II Praxisbegleitende Lehrveranstaltungen (Internship related Courses)</td>
<td>B2-PF II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3./5. Studiensemester</td>
<td>2</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
- B2-PFR1: Anerkanntes Vorpraktikum
- B2-PFR2: Absolvierung des 18-wöchigen Praktikums
- B2-PFB: Absolvierung des 18-wöchigen Praktikums
- B2-PFÖ: Absolvierung des 18-wöchigen Praktikums

Empfohlene Vorkenntnisse
keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-PFB Bauschäden</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>B2-PFÖ Praxisfach Baurecht, BGB</td>
<td>3 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
B2-PFB Bauschäden (Damage Analysis and Testing Methods) | B2-PFB

Verantwortliche/r	Fakultät
Prof. Wolfgang Stockbauer | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Johannes Flotzinger | in jedem Semester
Wolfgang R. Habel (LB) |

Lehrform

Seminaristischer Unterricht

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>5.</td>
<td>2 SWS</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden Seminar</td>
<td>30 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Klausur 60 Minuten

Inhalte

Zustandsbeurteilung
Untergrundvorbehandlung
Korrosion
Spritzbeton
OS und PCC- Mörtel
Befestigungstechnik
Probobelastung, Durchbiegung, Rissweiten
Aufbeton, Lamellen, Vorspannung
Grundlagen Messtechnik und Sensorik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, elementare Kenntnisse bezüglich der Bemessung, Dauerhaftigkeit und Verstärkung von Stahlbetonbauten vorzuweisen.

Nach der erfolgreichen Absolvierung des Moduls verfügen die Studierenden über grundlegende Kenntnisse zu Dauerhaftigkeitsaspekten, zur Beurteilung, Bewertung und Instandsetzung von Bauschäden am Beispiel des Stahlbetonbaus.

Des Weiteren sind sie mit den Grundlagen der Befestigungstechnik, der Messtechnik und Sensorik vertraut.
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Schäden zu erkennen (2).
- Schadensursachen festzustellen (2).
- Instandsetzungsmaßnahmen zu planen (2).
- Geeignete Messtechnik auszuwählen (2).
- Befestigungstechnik, Injektionen, Betoninstandsetzungsverfahren anzuwenden (2).

Lehrmedien

Seminaristischer Unterricht

Literatur

- Ev. was zu Messtechnik
- Am Laufwerk k bereitgestellte Literatur und Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Baustoffkunde (B1-BO)

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitchunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-PFÖ Praxisfach Baurecht, BGB (Public Building Law)</td>
<td>B2-PFÖ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klaus Bloch (LB)</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Thomas Schreiner (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

- Vorlesung

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. und 5. Semester</td>
<td>3 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

- **Präsenzstudium**
 - 45 Stunden Vorlesung mit integriertem Konversatorium
- **Eigenstudium**
 - 45 Stunden eigenverantwortliche Nachbereitung, Fallübung

Studien- und Prüfungsleistung

- Prüfungsleistung: Klausur; 2 x 45 Minuten

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg
Inhalte

Teil Schreiner: BGB und Bauvertragsrecht (4. Semester)

- Grundzüge und Abgrenzung des BGB-Bauvertragsrechts, insb. der Werkvertrag, der Bauvertrag, der Verbraucherbauvertrag, der Bauvertrag mit einem Verbraucher, der Bauträgervertrag, (der Architekten- und Ingenieurvertrag)
- Vertragsschluss,
- Abnahmeverfahren,
- Gefahrtragung,
- Einseitige Leistungsänderungen und deren Vergütung,
- Widerrufsrechte,
- Rücktritt und Kündigung sowie
- Mängelansprüche

Teil Bloch: Öffentliches Recht (5. Semester)

1. Grundbegriffe + Rechtsquellen
 - Systematische Einordnung des öffentlichen Baurechts in das Rechtssystem, grundlegende Unterschiede zwischen Bauplanungs- und Bauordnungsrecht

2. Bauleitplanung
 - Herausarbeiten der Unterschiede zwischen den Formen der Bauleitplanung (Flächennutzungsplan und Bebauungsplan)
 - Aufstellungsverfahren und materielle Rechtmäßigkeit des Bebauungsplans (inkl. Unterschiedlicher Verfahrensarten)
 - Grundzüge des Rechtsschutzes (Normenkontrollverfahren)

3. Baugenehmigung
 - Voraussetzungen der Baugenehmigung im Hinblick auf Verfahren und Inhalt
 - Hierbei insbesondere verfahrensfreie Vorhaben, Genehmigungsfreistellungsverfahren, vereinfachtes Verfahren
 - Nachbarbeteiligung

4. Recht der Bodennutzung
 - Bauplanungsrechtliche Zulässigkeit nach §§ 29 ff. BauGB
 - Planbereich, Zulässigkeit eines Vorhabens im Bereich eines Bebauungsplans inkl. den Voraussetzungen für Ausnahmen und Befreiung nach § 31 BauGB; inkl. BauNVO; inkl. PlanZVO; Zulässigkeit von Vorhaben während der Aufstellung eines Bebauungsplans (§33 BauGB)
 - Zulässigkeit von Bauvorhaben im Innenbereich (§ 34 BauGB); inkl. Grundzüge Innerbereichsbefreiung
 - Zulässigkeit von Bauvorhaben im Außenbereich (§ 35 BauGB)

5. Bauaufsichtliche Maßnahmen
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Voraussetzungen und inhaltliche Rechtsmäßigkeit von Baueinstellung, Nutzungsuntersagung, Baubeseitigung

6. Baunachbarrecht

- Beteiligung des Nachbarn im Baugenehmigungsverfahren
- Rechtsschutzmöglichkeiten des Nachbarn
- Nachbarschützende Vorschriften

7. Sonderproblem Bestandsschutz (Voraussetzungen, Umfang, Ende) 8. Rechtsschutzfragen

- Grundsätze des verwaltungsgerichtlichen Rechtsschutzes

9. Abstandsflächenrecht

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Grundkenntnisse im öffentlichen Baurecht, insbesondere aus den Bereichen Baugesetzbuch (BauGB), Bayerischer Bauordnung (BayBo) und Baunutzungsverordnung (BauN-VO) zu kennen. (1)
- die Grundkenntnisse verwaltungsrechtlichen Handelns und verwaltungsrechtlicher Strukturen zu kennen, sowie gerichtliche Durchsetzung und Abwehr von Ansprüchen. (1)
- Einfache Fragestellungen des öffentlichen Baurechts zu lösen. (3)
- neue Problemstellungen einzuschätzen und einer Lösung zuzuführen. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Fragen zu stellen. (2)
- fachliche Fragen angemessen zu beantworten. (2)
- den eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen. (2)
- Empfehlungen für das weitere Vorgehen abzugeben. (2)

Lehrmedien
- Vortrag zur Vorlesung mit Tafelanschrieb

Literatur
- Gesetzestexte: Baugesetzbuch, Bayerische Bauordnung, Baunutzungsverordnung
- BGB in einer Fassung ab 2018

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B2-PF II Praxisbegleitende Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-PFR I; B2-PFR II Praxisfach Referat I+II</td>
<td>B2-PFR I; B2-PFR II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorträge und Präsentationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3./5. Studiensemester</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden Präsenz</td>
<td>30 Stunden / Vortrag mit Vorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: jeweils Präsenz bei Vorträgen
Prüfungsleistung: je Referat (20 Minuten)

Inhalte

Erweiterte Vermittlung von Grundlagen der Rhetorik, Kommunikation und moderner Präsentationstechniken.
Fachlicher Kurzvortrag des Studierenden innerhalb einer vorgegebenen Zeit.
Beurteilung des Vortrages durch die teilnehmenden Studierenden und den Dozenten.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• einen selbstgewählten Stoff aus dem Vorpraktikum und dem Praxissemester innerhalb einer vorgegebenen Zeit frei vorzutragen (2).
• komplexe Abläufe aus dem Baubereich strukturiert und gebündelt den Zuhörern zu vermitteln (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• sich vor einem größeren Zuhörerkreis zu präsentieren und frei zu sprechen (2).
• technische Zusammenhänge in korrekter Fachsprache wiedzugeben (2).
• moderne Präsentationstechniken zielgerichtet einzusetzen (2).
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentation mit Powerpoint</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
</tbody>
</table>
Modulbezeichnung (ggf. englische Bezeichnung) | **Modul-KzBez. oder Nr.**
---|---
B2-PF I Praktisches Studiensemester (Intership) | B2-PF I

Modulverantwortliche/r	**Fakultät**
Prof. Wolfgang Stockbauer | Bauingenieurwesen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Semester</td>
<td>2</td>
<td>Pflicht</td>
<td>23</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Nach § 8 der SPO darf in das praktische Studiensemester nur eintreten, wer bis zu diesem Zeitpunkt mindestens 80 ECTS-Punkte erreicht hat.

An der Praktikumsstelle muss ein Betreuer mit der Qualifikation Dipl.-Ing. oder B.Eng./M.Eng. für die Betreuung des Studierenden zur Verfügung stehen.

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-PF1 Praxissemester</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>B2-PF1 Praxissemester</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Praktikum, 18 Wochen Vollzeit im Betrieb / Ingenieurbüro

Studiensemester

<table>
<thead>
<tr>
<th>gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Semester</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung

Abgabe eines Praktikumsberichtes nach Vorgabe des Praxisbeauftragten mit Anerkennung durch das Praktikumsunternehmen und des Praxisbeauftragten (siehe Hinweise auf der Homepage OTH Regensburg)

Inhalte

Mitwirken bei der konstruktiven Planung, bei Ausschreibung, Vergabe und Abrechnung (AVA) sowie Begleitung des Gesamtprozesses Bauen (Kalkulation, Ablaufplanung, Arbeitsvorbereitung, Disposition, Betriebstechnik, Schalungseinsatz, Personalführung, Bauleitung, Maschineneinsatz, Abrechnung, Ingenieurvermessung, Aufmaß, Bauüberwachung, Bauabnahme)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
planerische, konstruktive und betriebliche Abläufe in der Bauindustrie, in Ingenieurbüros und in der öffentlichen Verwaltung richtig einzuschätzen und zu bewerten (1).

Sie erhalten Einblicke in technische und organisatorische Details im Bauwesen (1). Die Studierenden sind in der Lage die in der bisherigen Ausbildung erworbenen theoretischen Kenntnisse in der Praxis zu vertiefen (2).

Stand: 30.03.2021
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, technische, logistische und organisatorische Abläufe im Bauwesen zu bewerten (2).

Der Studierende lernt im Praxissemester den Umgang mit unterschiedlichsten Personenstrukturen kennen und gewinnt erste Erfahrungen im Bereich Teamarbeit, Kommunikation und Mitarbeiterführung (1).

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-VK Vermessungskunde (Surveying)</td>
<td>B2-VK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. oder 4. Semester</td>
<td>2</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

erfolgreiche Teilnahme am Praktikum und Abgabe der Ausarbeitungen

Empfohlene Vorkenntnisse

keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-VK Vermessungskunde</td>
<td>5 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg

Seite 55
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-VK Vermessungskunde</td>
<td>B2-VK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
- 3 SWS Seminaristischer Unterricht
- 2 SWS Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. oder 4. Semester</td>
<td>5 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium
 - 45 Stunden seminaristischer Unterricht (Präsenz);
 - 30 Stunden Praktikum (Präsenz)
- Eigenstudium
 - 75 Stunden eigenverantwortliches Lernen, Studienarbeiten

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: erfolgreiche Teilnahme am Praktikum und Abgabe der Ausarbeitungen</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung Dauer: 120 Minuten</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B2-VK Vermessungskunde

Inhalte

Tachymetrischen Lage- und Höhenmessung:
Einarbeitung in verschiedene Theodolit und Tachymetersysteme; Horizontal-und Vertikalwinkelmessungen; Tachymetrische Messung von Polygonzügen; Tachymetrische Geländeaufnahme und Absteckungen;
Verfahren der Höhenmessung:
Nivellierinstrumente, Nivellierverfahren; Liniennivellment; Flächennivellement, Profilmessungen;
Koordinatenerrechnung:
Koordinatensysteme, einfache Koordinatenberechnungen, Polygonierung, Einschneideverfahren; REB – konforme Flächen und Mengenermittlung:
REB-Konforme Datenarten; Mengen zwischen Horizonten;
Digitale Geländemodelle in der Planung, Ausführung und Abrechnung:
Anwendung von Digitalen Geländemodellen in der Ingenieurvermessung; Einsatz von CAD-Systemen im Strassen-und Tiefbau in der Theorie und Praxis; Visualisierungsmethoden;

Digitale Bestandsplanerstellung:
Erstellung von Bestandsplänen im Baubereich, Einführung in Geoinformationssysteme
Grundlagen der Überwachungsmessung:
Messmethoden im Bauwerks-Monitoring
GNSS – gestützte Vermessungsmethoden:
Grundlagen und Einsatz von Satellitenavigation in der Theorie und Praxis, Aufnahme und Absteckung; Maschinensteuerung mit GNSS
Moderne Aufnahmeverfahren in der Ingenieurvermessung:
Terrestrisches Laserscanning und photogrammetrische Aufnahmeverfahren, Digitale Bildverarbeitung, Luftbildphotogrammetrie, UAV – autonom fliegende Multicopter;

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die in der geodätischen Bestandsaufnahme und Absteckung vorkommenden Messtechnologien zu kennen (1).
- Problemstellungen in der Ingenieurvermessung einzuschätzen (2).
- Analoge und Digitale Messmethoden eigenständig anzuwenden (2).
- Durch die erworbene Methodenkompetenz eigenständige Messprogramme zu entwickeln (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Vermessungstechnische Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Lehrmedien

- Vortragsvorlesung Multimedial
- Praktische Übungen; Präsentation von Meßsensorik über Emulationen

Literatur

- DIN – Normen (Ingenieurvermessung DIN 18710)
- Resnik/Bill: Vermessungskunde für den Planungs-, Bau- und Umweltbereich
- Möser/Müller/Schlemmer/Werner u.a.: Handbücher Ingenieurgeodäsie
- Matthews/Vermessungskunde ½
- Vorlesungsskript, Vorträge (pdf-Dateien) und Umdruckmaterialien u.a.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
B2-WU Wasser und Umwelt *(Hydraulic and Environmental Engineering)* | B2-WU

### Modulverantwortliche/r	Fakultät
Prof. Andreas Ottl | Bauingenieurwesen

### Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. und 4. Studiensemester | 2 | Pflicht | 8

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-SWG I Siedlungswasserwirtschaft I</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>B2-WB I Wasserbau I</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B2-WU Wasser und Umwelt

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-SWG I Siedlungswasserwirtschaft I (Water supply and Sanitary Engineering I)</td>
<td>B2-SWG I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Ottl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerald Angermair (LB)</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Andreas Ottl</td>
<td></td>
</tr>
<tr>
<td>Dionys Stelzenberger (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen und Praktikum

Studiensemester gemäß Studienplan | Lehrumfang | Lehrsprache | Arbeitsaufwand |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Studiensemester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeiten und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung:
- Teilnahme am Praktikum (freiwillig)

Prüfungsleistung:
- schriftliche Prüfung Dauer: 120 Minuten

Inhalte
- Überblick über die Systematik der öffentlichen und betrieblichen Wasserversorgung
- Grundlegende Kenntnisse in den Bereichen Wasserbedarf, Wasservorkommen, Wassergewinnung, Wasseraufbereitung, Wasserförderung, Wasserspeicherung und Wasserverteilung
- Grundlagen des Baus und Unterhalts von Wasserversorgungs- und Abwasserleitungssystemen
- Überblick über die Systematik der öffentlichen und betrieblichen Abwasserbeseitigung und Entwässerungssysteme
- Ermittlung der maßgebenden Abwassermengen und der Abwasserzusammensetzung
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Alle wesentlichen Zusammenhänge aus der Geschichte der Wasserversorgung, der Hydrogeologie, der Wassergewinnung aus Grundwasser und Oberflächengewässer, der hydraulischen Maschinen, der Wasseraufbereitung und dem Bau von Speicheranlagen anzugeben (1)
- eine Wasserbedarfsermittlung, den Aufbau und die Dimensionierung eines Verkalkfilterbohrbrunnens sowie die Bemessung von Speicheranlagen und Leitungssystemen auszuführen und die Bauwerke zu entwerfen (3)
- Laboranalysen der relevanten Trinkwasserinhaltsstoffe durchzuführen und die Ergebnisse zu benutzen (2)
- eine Wasseraufbereitung zu konstruieren und bemessen (2)
- die Trassierung und dem Bau von Leitungssystemen zu planen (2)
- Die Abwasserarten auszuwählen und die Abwassermengen zu bestimmen (2)
- Die Bauwerke der Entwässerungsnetze grundlegend zu nennen (1).
- EDV-gestützte Rechenprogramme zur Rohrnetzberechnung anzugeben (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich im Team zu organisieren (1)
- konstruktive Aufgabenstellungen zu erfassen und eigenständig zu lösen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb
Exkursionen, Praktikum

Literatur

- Deutsche Vereinigung des Gas- und Wasserfaches (DVGW); Bonn: Regelwerk.
- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); Hennef: Regelwerk.
- Mutschmann/Stimmelmayer: Taschenbuch der Wasserversorgung, jeweils aktuelle Auflage; Vieweg Verlag.
- Imhof: Taschenbuch der Stadtentwässerung. Oldenbourg.
- Hosang/Bischof: Abwassertechnik, jeweils aktuelle Auflage; Teubner Verlag.
- Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 61
Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
B2-WB I Wasserbau I (Hydraulic Engineering I) | B2-WB I

Verantwortliche/r	Fakultät
Prof. Dr. Mathias Müller | Bauingenieurwesen

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Dr. Mathias Müller | in jedem Semester

Lehrform
Seminariuster Unterricht mit Übungen und Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Studiensemester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca. 62 Stunden, davon 56 Stunden seminarisitischer Unterricht und 6 Stunden Laborpraktikum (fakultativ)</td>
<td>Ca. 58 Stunden, davon 14 Stunden Vor- und Nachbereitung der Vorlesung, 2 Stunden Auswertung der Praktika sowie Berichte verfassen, 12 Stunden Übungsrechnungen (ggf. Tutorium), 4 Stunden eigenständige Recherche sowie Studium vertiefender Literatur, 8 Stunden Bearbeitung der Semester-Hausübung, 16 Stunden Prüfungsvorbereitung und 2 Stunden Prüfung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung:
- erfolgreiche Teilnahme am Praktikum (fakultativ) und anerkannter Praktikumsbericht
- erfolgreiche Teilnahme an der Semester-Hausübung mit Abgabe der bearbeiteten Hausübung

Prüfungsleistung:
- schriftliche Prüfung Dauer: 120 Minuten
Inhalte

- Für den Ingenieurbau wesentliche physikalische Eigenschaften des Wassers
- Grundlegende gewässerkundliche Zusammenhänge: Wasserkreislauf, Hydrologie, Wasserbewirtschaftung, Gewässermorphologie
- Grundlegende Einführung in den Gewässerausbau: Feststoffe im Fluss, Bauwerke im Gewässer, Naturnaher Wasserbau, Hochwasserschutz
- Fähigkeit, hydraulische Berechnungen grundsätzlich zu verstehen und einfache Berechnungen im Bereich der Hydrostatik (Hydrostatische Kräfte, Druck auf ebene Flächen, Auftrieb) und Hydrodynamik (Stationäre Abflüsse in Druckrohren und in offenen Gerinnen mit Berechnung der Fließzustände, Überfall und Ausfluss) auszuführen.
- Grundsätzliche Fähigkeit, Einsatzgebiete und Leistungsbereiche von Pumpen beurteilen zu können.
- Die Studierenden fördern durch die gruppenorientierte Erarbeitung von Studienarbeiten und Praktikumsausarbeitungen die sozialen Fähigkeiten.

Eine detaillierte Beschreibung der Lehrinhalte und der erwarteten Lernergebnisse wird auf der Lernplattform MOODLE bereitgestellt.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- werden mit den physikalischen Eigenschaften des Wassers sowie mit den grundlegenden hydrologischen Zusammenhängen vertraut gemacht (1)
- werden mit hydraulischen Berechnungsverfahren vertraut gemacht (2)
- Die Studierenden sind in der Lage im Rahmen von Übungen die erlernten Kenntnisse unmittelbar auf kleine Beispiele zu übertragen. (2)
- Die Studierenden sind in der Lage selbständig grundlegende Berechnungen der Hydrostatik, der Rohrhydraulik und der Freispiegelhydraulik durchzuführen. Sie werden mit den hydrologischen und ingenieurbauotechnischen Grundlagen des Fachs vertraut gemacht. (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- erfahren eine Einführung in die wasserbauliche Berufspraxis mit Ingenieurbauwerken des Wasserbaus, Hochwasserschutz und Naturnahem Wasserbau. (1)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Praktikum, Exponate
Vorlesungsbegleitende Materialien werden auf der Lernplattform MOODLE bereitgestellt.
Literatur

- Bollrich, Gerhard: „Technische Hydromechanik 1, Grundlagen“; 7. Auflage; Verlag Bauwesen; Berlin 2013
- Schneider: „Bautabellen für Ingenieure“, 20. Auflage, Kapitel 13A; Werner Verlag, Düsseldorf 2012
- Schröder, Wolfgang: „Grundlagen des Wasserbaus“; 4. Auflage; Werner Verlag; Düsseldorf 1999
- Lattermann, Eberhard: „Wasserbau-Praxis“; 3. Auflage; Bauwerk-Verlag GmbH, Berlin 2010
- Skriptum und Foliensätze zur Vorlesung und zum Praktikum „Wasserbau und Hydromechanik I“, OTH Regensburg (mit weiteren Literaturhinweisen)

Eine ausführlichere Liste mit Literaturempfehlungen findet sich im Moodle-Kurs online

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-BB Baubetrieb</td>
<td>B2-BB</td>
</tr>
<tr>
<td>(Project Management)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Klaus Hager</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-BB I Baubetrieb I</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>B2-BB II Baubetrieb II</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B2-BB Baubetrieb

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-BB I Baubetrieb I</td>
<td>B2-BB I</td>
</tr>
<tr>
<td>(Project Management I)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Klaus Hager</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrenform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen und Praktikum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache deutsch</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz) und Praktikum</td>
<td>60 Stunden eigenverantwortliches Lernen (Eigenstudium) und praktische Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine Einführung in Baubetrieb</td>
<td></td>
</tr>
<tr>
<td>Aufgaben des Bauleiters</td>
<td></td>
</tr>
<tr>
<td>Rechte, Pflichten und Verantwortung des Bauleiters</td>
<td></td>
</tr>
<tr>
<td>Einführung in VOB</td>
<td></td>
</tr>
<tr>
<td>Vertragsarten</td>
<td></td>
</tr>
<tr>
<td>Schalung und Rüstung: Lastannahmen und Bemessung</td>
<td></td>
</tr>
<tr>
<td>Betonarbeiten aus baubetrieblicher Sicht</td>
<td></td>
</tr>
<tr>
<td>Ausschreibung und Leistungsbeschreibung</td>
<td></td>
</tr>
<tr>
<td>Verdeutlichung des Lehrinhalts durch praktische Übungen und Exkursionen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
<td></td>
</tr>
<tr>
<td>• Einsatz von Schalung und Rüstung zu planen und zu bemessen (2)</td>
<td></td>
</tr>
<tr>
<td>• Die im Bauwesen vorkommende Verträge zu kennen, zu unterscheiden und auf verschiedene Projekte anzuwenden (2)</td>
<td></td>
</tr>
<tr>
<td>• Die Grundzüge der VOB zu kennen und anzuwenden (1)</td>
<td></td>
</tr>
<tr>
<td>• Ausschreibungen zu erstellen (2)</td>
<td></td>
</tr>
<tr>
<td>• Bauhilfsprodukte kennen und richtig anzuwenden (2)</td>
<td></td>
</tr>
<tr>
<td>• Verwendbarkeitsnachweise für Baustoffe zu prüfen (1)</td>
<td></td>
</tr>
<tr>
<td>• Aufgaben und Verantwortlichkeiten des Bauleiters -auch in der Abgrenzung zu den Planern- zu kennen (2)</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Die Besonderheiten des Bauablaufs und der Bauindustrie wiederzugeben (3)
- Den Baufachlichen Terminus in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen und zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- Leistungsverzeichnisse auf ihre Sinnhaftigkeit zu prüfen (1)

Angebote Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb
Exkursionen, Exponate

Literatur

VOB, BGB in der aktuellen Fassung. VOB Teil A,B und C
Grundlagen der Baubetriebslehre, Berner, Kochendörfer, Springer, Vieweg Verlag
Baubetrieb in Beispielen, Kohl, Gerster, Werner Verlag
Scripium und Foliensätze zur Vorlesung und zum Praktikum „Baubetrieb“, OTH Regensburg
(with weiteren Literaturhinweisen)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-BB II Baubetrieb II</td>
<td>B2-BB II</td>
</tr>
<tr>
<td>(Project Management II)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Klaus Hager</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Bernhard Denk</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Klaus Hager</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen und Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz) und praktische Übungen</td>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeiten und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: Praktikumsauswertung

Prüfungsleistung: schriftliche Prüfung Dauer: 120 Minuten

Inhalte

Grundlagen der Kalkulation
Kalkulationsarten
Begriffe und Definitionen
Kosten- und Mengenansätze
Einzelkosten der Teilleistung
Gemeinkosten der Baustelle
Allgemeine Geschäftskosten
Wagnis und Gewinn
Angewandte Baukalkulation
Elemente der BE, Besetzung der Baustelle mit Geräten, Gebäuden der BE, Lager- und Verkehrsflächen; Erschließung der Baustelle
Gestaltung der Baustelleninfrastruktur, Einteilung der Baustelle
Baustelleinrichtungsplan
Grundzüge der Terminplanung
Verdeutlichung des Lehrinhalts durch praktische Übungen und Exkursionen
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Teil Prof. Denk:

(Wissen)

- die grundlegenden Begriffe und Definitionen aus dem Bereich der Kalkulation zu benennen (1).
- die wichtigsten Kalkulationsarten aufzuzählen (1).
- die Kostenbestandteile einer Baukalkulation anzugeben (1).

(Fertigkeiten)

- Kostenverläufe zu analysieren und Kostenvergleiche durchzuführen (3).
- Einzelkosten der Teilleistungen getrennt nach Kostenarten zu kalkulieren (2).
- Gemeinkosten der Baustelle systematisch zu erfassen und zu kalkulieren (2).
- mit Hilfe von Formblättern die Einzelkosten, die Angebotssumme und die Einheitspreise anhand von vorgegebenen Ausschreibungsunterlagen zu ermitteln (2).

Teil Prof. Hager:

- Unterschiedliche Elemente der Baustelleneinrichtung richtig anzuwenden (2).
- Eine Baustelleneinrichtung in Ihren Grundzügen zu planen (3)
- Den Einsatz von Baugeräten insbesondere Kran und Bagger zu planen (2)
- Spielzeiten von Baugeräten zu berechnen (2)
- Leistungsstörungen bei Baugeräten zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Teil Prof. Denk:

(Sozialkompetenz)

- strukturiert an die Kalkulationsaufgabe heran zu gehen (3).
- kalkulatorische Konsequenzen aus einem Bauvertrag abzuleiten und finanziell zu bewerten (2).
- die Zusammenhänge der Baukalkulation zu verstehen und sie als Teamaufgabe zu begreifen (2).

(Selbstständigkeit)

- selbstständig die Preisbildung von kleineren, einfachen Bauvorhaben durchzuführen (3).
- sich mit Hilfe von Kostenvergleichen zwischen verschiedenen Bauweisen zu entscheiden (3).
- Sich anhand von Lernvideos selbstständig neuen Stoff anzueignen (3)

Teil Prof. Hager:

- konstruktive Aufgabenstellungen zu erfassen (2).
- Baustelleneinrichtung auf Ihre Funktionsfähigkeit hin zu beurteilen (3)
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161) Modulname: B2-BB Baubetrieb

- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen und angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- Den Einsatz von Baugeräten realistisch zu planen (1)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Vorlesung Kalkulation als Screencast in Moodle,
Exkursionen

Literatur

Grundlagen der Kalkulation

Drees, Paul: Kalkulation von Baupreisen, neueste Auflage, Beuth-Verlag
Vergabe- und Vertragsordnung von Bauleistungen VOB, Beuth-Verlag
Baugeräteliste, Hauptverband der Deutschen Bauindustrie, Bau-Verlag
Berner, Kochendörfer, Schach: Grundlagen der Baubetriebslehre Teil 1 und 2; Teubner Verlag
Stark: Baubetriebslehre – Grundlagen, Vieweg
Hoffmann: Beispiele für die Baubetriebspraxis; Teubner Verlag
StLB Bau, Dynamische Baudaten;
VOB/B und C
Musterleistungsverzeichnisse
Hoffmann: Zahlentafeln für den Baubetrieb
Technische Daten von Großgeräten der Hersteller
Brecheler, Hilmer, Weiß; Baubetriebslehre, Vieweg-Verlag
Plümecke, Baupreisermittlung, Müller Verlag

Jeweils neueste Auflagen.. s. ach BB I

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-BI Bauinformatik (IT in Civil Engineering)</td>
<td>B2-BI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Susanne Hüttner (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
B2-COM I: Mathematik für Bauingenieure (B1-MAB), Bautechnische Mechanik (B1-BTM)
B2-CBS: Lehrveranstaltungen B1-BTM, B2-BS

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-CBS Computerorientierte Baustatik</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>B2-COM I Computerorientierte Methoden I</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2-CBS Computerorientierte Baustatik</td>
<td>B2-CBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Computer Oriented Structural Designs)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susanne Hüttner (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susanne Hüttner (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehramt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4.</td>
<td>2 SWS</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium
 - 30 Stunden seminaristischer Unterricht (Präsenz)
 - 30 Stunden eigenverantwortliches Lernen

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: erfolgreiche Teilnahme an den Übungen</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung; Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>

Inhalte
- Grundlagen der Berechnung von statischen Systemen mit einem FE-Programm, Fehlerquellen
- Grundlagen der System-Modellierung
- Lastermittlung nach aktueller Norm und Lastmodellierung
- Berechnung der Einzellastfälle, Lastfallkombinationen und Bemessungsschnittgrößen
- Berechnung von nichtlinearen Systemen (Fachwerkstäbe, Seile), iterative Berechnung
- Berechnung statisch unbestimmter Systeme mit Änderungen in den Steifigkeitsverhältnissen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- mit Hilfe eines FE-Programms verschiedene Probleme der Stabstatik zu berechnen (2).
- Recherche im Bereich der Normen selbstständig durchzuführen (2).
- Berechnungsergebnisse eines FE-Programms zu überprüfen und kritisch zu interpretieren (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- sorgfältig und konzentriert am Computer zu arbeiten (2).
- fachliche Fragen zu stellen und zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Handbuch des FE-Programmes

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Arbeit am PC

Literatur

- Hartmann, Katz: Statik mit finiten Elementen, Springer Vieweg, Berlin 2019
- Werkle: Finite Elemente in der Baustatik, Vieweg+Teubner Verlag, 2008

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B2-BI Bauinformatik

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-COM I Computerorientierte Methoden I (Computer-Oriented Methods I)</td>
<td>B2-COM I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform: Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeit aufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>10 Stunden eigenverantwortliches Lernen (Eigenstudium) ; 20 Stunden Studienarbeiten und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Klausur; Dauer: 90 Minuten

Inhalte

Einführung:
Überblick computerorientierter Methoden
Prozesse
Modelle
im Bauwesen
Tabellenkalkulation:
Lösung einfacher bauspezifischer, tabellenorientierter Probleme
Datenaufbereitung
VBA in Excel: Makrorekorder, Funktionen und Module
Computeralgebrasystem:
Symbolische und numerische Lösung von ingenieurmathematischen Aufgaben
iterative Methoden
numerische Methoden
graphische Darstellung
Programmierung
Konstrukte einer Programmiersprache
Programmtechnische Umsetzung und Implementierung e Algorithmen
Überblick SW-Engineering

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Methodik des Building Information Modeling und des parametrischen Modellierens in Grundzügen anzuwenden (2)
- Tabellenkalkulationssoftware für bauingenieurspezifische Anwendungen sinnvoll einzusetzen (2)
- mit einem Computer algebra system mathematisch-technische Aufgabenstellungen zu bearbeiten (2)
- einfache Algorithmen zu implementieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- aktuelle und erwartungsgemäß zukunftsträchtige digitale Methoden in der Planung von Bauwerken auf etwas vertieftem Niveau anzuwenden (2)
- typische mathematisch / numerische Aufgabenstellungen mit Hilfe geeigneter IT-Werkzeuge zu lösen (2)

Angebotene Lehrunterlagen

Vorlesungsskripten, Vorlagedaten, Schulungsunterlagen; E-Learning-Plattform

Lehrmedien

Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

Held, B.: VBA mit Excel, Rheinwerk-Verlag, 2013
Maple, Online Dokumentation
MathCAD, Online Dokumentation
Rjasanowa, K.: Mathematik für Bauingenieure, Hanser Verlag, 2006
Rjasanowa, K.: Mathematische Modelle im Bauwesen, Hanser Verlag, 2010
Sanal, Z.: Mathematik für Bauingenieure mit Maple und C++, 1. Auflage, Teubner Verlag, 2004
Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-BS Baustatik (Structural Analysis)</td>
<td>B2-BS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Lehrveranstaltungen</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-BS I Baustatik I</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>B2-BS II Baustatik II</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Teilmodul | **TM-Kurzbezeichnung**
--- | ---
B2-BS I Baustatik I (Structural Analysis I) | B2-BS I

Verantwortliche/r
Prof. Dr. Joachim Gschwind
Bauingenieurwesen

Lehrende/r / Dozierende/r
Prof. Dr. Thomas Bulenda
Prof. Dr. Joachim Gschwind

Angbotsfrequenz
in jedem Semester

Lehrform
Seminaristischer Unterricht ohne Praktikum

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht</td>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: 2 anerkannte Studienarbeiten
Prüfungsleistung: schriftliche Prüfung
Dauer: 90 Minuten

Inhalte

Räumliche Statik: Kräfte und Momente im Raum, Gleichgewicht im Raum, Räumliche Fachwerke, Räumliche Stabwerke, Nachtrag zur Festigkeitslehre: Torsion, Seminaraufgabe

Arbeit: Der Begriff der mechanischen Arbeit, Gleichheit von Verschiebungsarbeit und Rotationsarbeit, Eigenarbeit und Verschiebungsarbeit, Arbeit der inneren Kräfte – Verzerrungsarbeit, Formänderungsarbeit, Arbeitssatz, Verformungsberechnung mit dem Arbeitssatz, Größenverhältnisse der Arbeitsanteile, Satz von Betti, Satz von Maxwell, Äußere Arbeit von Lastkollektiven

Das Prinzip der Virtuellen Kräfte: Herleitung des Prinzips, Integration der Schnittkraftflächen, 4 Grundaufgaben der Formänderung, Beispiel: Räumliches System, Berücksichtigung von Federn im PdVK, Formänderung aus Temperatur

Kraftgrößenverfahren: Einführungsbeispiele, Grad der statischen Unbestimmtheit; Verschieblichkeit von Tragwerken, Aufbaukriterium, Schematisches Vorgehen, Schnittgrößen als statisch Unbestimmte, Berücksichtigung mehrerer Lastfälle, Federn und Zwangslastfälle, Reduktionssatz, Statisch unbestimmtes Grundsystem

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Grundlagen der Torsion zu kennen (1).
- Schubspannungen an offenen und geschlossenen Querschnitten zu berechnen (2).
- dreidimensionale Strukturen zu erkennen und zu analysieren (1).
- auf diese Strukturen das Schnittprinzip anzuwenden (2)
- damit Auflagerreaktionen und Schnittkraftlinien von statisch bestimmten räumlichen Systemen zu ermitteln. (3).
- Einzelverformungen mit Hilfe der Arbeitsprinzipien zu ermitteln (2).
- Auflagerkräfte und Schnittkraftlinien an statisch unbestimmten Systemen mit Hilfe des Kraftgrößenverfahrens zu ermitteln (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- statische Aufgabenstellungen an räumlichen Systemen und statisch unbestimmten Systemen zu erfassen (1).
- Eigenschaften, Wirkungsweise und Zusammenhänge der statischen Unbestimmtheit zu erfassen (2).
- Konsequenzen daraus zu diskutieren (2).
- die Arbeitsverfahren und das Prinzip der virtuellen Kräfte zielgerichtet anzuwenden (3).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum, Musterlösungen alter Prüfungen und Studienarbeiten

Lehrmedien
Vortragsvorlesung mit Tafelanschrieb

Literatur
Dallmann R. Baustatik 2, Hanser-Verlag, Leipzig, 2006
Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Weitere Informationen zur Lehrveranstaltung
Empfohlene Vorkenntnisse:
Lehrveranstaltungen B1-BTM I und II

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-BS II Baustatik II</td>
<td>B2-BS II</td>
</tr>
<tr>
<td>(Structural Analysis II)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
<td>ohne Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: 3 anerkannte Studienarbeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung</td>
<td>Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weggrößenverfahren in Matrizenform:</td>
<td></td>
</tr>
<tr>
<td>Dehnfeder: Steifigkeitsmatrix, Fachwerkstab, Ebenes Fachwerk mit beliebiger Lage der Stäbe, Allgemeines Vorgehen, Stabelemente, Beispiel, Seminaraufgabe</td>
<td></td>
</tr>
<tr>
<td>Stabilitätsprobleme:</td>
<td></td>
</tr>
<tr>
<td>Stabilität von Gleichgewichtslagen, Stabilität elastischer Systeme, Theorie II. Ordnung, Einflusslinien:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
<td></td>
</tr>
<tr>
<td>• die Theoretischen Grundlagen der FE-Methode (Prinzip vom Minimum der Potentiellen Energie; Prinzip der virtuellen Verrückungen; Galerkin-Verfahren) insbesondere als Näherungsverfahren verstehen (3)</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen der FE-Modellierung zu verstehen</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg
Seite 80
• Grundlagen der Scheibentheorie zu verstehen (2)
• Grundlagen der Plattentheorie zu verstehen (2)
• Flächentragwerke zu modellieren unter Berücksichtigung der Einflüsse von Lagerung, Lastaufbringung, Querdehnzahl und Singularitäten (2)
• Fehlerschätzung und Kontrollmöglichkeiten bei der FE-Methode zu verstehen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• die Fachsprache der FE-Programme zu verstehen (2).
• die Ergebnisse und Ausgaben eines FE-Programms zu verstehen (2)
• fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Musterlösungen alter Prüfungen und Studienarbeiten

Lehrmedien

Vortragsvorlesung mit Tafelanschrieb

Literatur

• Dallmann R. Baustatik 2, Hanser-Verlag, Leipzig, 2006
• Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B2-GT I Geotechnik I

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-GT I Geotechnik I (Geotechnics I)</td>
<td>B2-GT I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
B1-IGB Bodenmechanik und Ingenieurgeologie
(Soil mechanics and geology for civil engineers)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-GT I Geotechnik I</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 82
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-GT I Geotechnik I</td>
<td>B2-GT I</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Thomas Wolff</th>
<th>Bauingenieurwesen</th>
</tr>
</thead>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Prof. Dr. Thomas Wolff</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
</table>

Angebotsfrequenz
in jedem Semester

Lehrform
Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 SWS</td>
<td>deutsch</td>
<td>6 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Stunden seminaristische Lehrveranstaltungen</td>
<td>90 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: max. 6 anerkannte Studienarbeiten
Prüfungsleistung: schriftliche Prüfung, Dauer: 150 Minuten

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg
Inhalte

Spannung und Spannungsausbreitung:
Lasten auf der Halbraumoberfläche, Lastausbreitung im Baugrund

Verformungen und Setzungen:
Verformungs- und Setzungsanteile, Annahmen und Vereinfachungen (Linearisierung), direkte und indirekte Setzungsberechnung Sicherheit in der Geotechnik: EC 7-1, DIN 1054

Flachgründungen:

Erddruck:
Erddruhedruck, Aktiver Erddruck, Passiver Erddruck – Erdwiderstand

Flachgegründete Stützbauwerke:
Gewichtsstützmauern; Stützbauwerke mit Erdballast (z.B. Winkelstützwände); Entwurf, Konstruktion und Dimensionierung, Bemessung und Nachweise der Grenzzustände

Wandartige, tiefgegründete Stützbauwerke:
Entwurf, Konstruktion und Dimensionierung von Grabenverbau, Baugrubenwänden und Uferreinassunalzungründungen; Grabenverbau, Spundwände, Bohrpfahlwände, Schlitzwände, Trägerbohlwände; Berechnungsansätze; Erddruckumlagerung; Bemessung und Nachweise der Grenzzustände; Verankerungen, Steifen, Nachweis der tiefen Gleitfuge, hydraulischer Grundbruch

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Spannungsausbreitung im Lockergesteine zu berechnen (3)
- die Sicherheitsphilosophie in der Geotechnik anzuwenden (3)
- die Tragfähig- und Gebrauchstauglichkeit für Einzel- u. Streifenfundamente nachzuweisen (3)
- auf Grund der Kenntnisse die Grundlagen der Erddrucktheorie flach und tiefgegründete Stützbauwerke zu entwerfen, zu dimensionieren und die zugehörigen Nachweise zu führen (2-3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- weiterführenden Vorlesungen im Rahmen der Ausbildung mit einem besseren Grundverständnis zu folgen (2)
- die Erfordernisse ingenieurtechnische Zusammenhänge über die geotechnischen Fragestellungen hinaus zwischen Erkundung, Planung und Ausführung zu erkennen (2)
- weitere Verständnisfrage im Rahmen der interdisziplinäre Ausbildung zum Bauingenieur zu formulieren (2)

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Exkursionen, Exponate, Modelle
Literatur

- Möller, G., Geotechnik Grundbau, 3. Auflage, 2016, Ernst & Sohn
- Türke, H.: Statik im Erdbau; 3. Auflage; Ernst & Sohn (1999)
- Normen und Regelwerke Skript zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
B2-MB Massivbau (Design of Concrete and Masonry Structures) | B2-MB

Modulverantwortliche/r	Fakultät
Prof. Dr. Thomas Fritsche | Bauingenieurwesen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-MWB Mauerwerksbau</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>B2-SB II Stahlbetonbau II</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>B2-SB I Stahlbetonbau I</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B2-MB Massivbau

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-MWB Mauerwerksbau</td>
<td>B2-MWB</td>
</tr>
<tr>
<td>(Masonry Design)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen und Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h</td>
<td>30 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Klausur; Dauer: 60 Minuten</td>
</tr>
</tbody>
</table>

zugelassene Hilfsmittel für Leistungsnachweis
Skript und eigene Mitschriften, Literatur

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Grundlagen der Bemessung und Konstruktion unbewehrter Mauerwerksbauten.</td>
</tr>
<tr>
<td>Baustoffe: Mauersteine, Mauermörtel mit zugehörigen Einsatzgebieten, Festigkeiten und Verformungs eigenschaften</td>
</tr>
<tr>
<td>Ausführung: Maßordnung und konstruktive Durchbildung</td>
</tr>
<tr>
<td>Tragverhalten: Verhalten des Verbundbaustoffes Mauerwerk unter Druck-, Schub-, sowie Zug- und Biegebeanspruchung</td>
</tr>
<tr>
<td>Aussteifung: Anforderungen an die Aussteifung in Bezug auf die Anordnung von Deckenscheiben, Ringankern und -balken</td>
</tr>
<tr>
<td>Grundlagen der Bemessung: Grenzzustände, Nachweisformen und erforderliche Nachweisführungen</td>
</tr>
<tr>
<td>Bemessung nach dem vereinfachten Verfahren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Grundlagen des Verhaltens von unbewehrtem Mauerwerk unter den verschiedenen Einwirkungsarten zu verstehen (2). Dabei sind die Besonderheiten des orthotropen Materials mit fehlender vertikaler Zugfestigkeit einzubeziehen (1).</td>
</tr>
</tbody>
</table>

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, übliche Konstruktionen hinsichtlich des Einsatzes von unbewehrtem Mauerwerk eigenständig zu entwerfen und die möglichen Baustoffe (Stein-Mörtel-Kombination) und Wandaufbauten zu bewerten (3). Die Studenten sind des Weiteren in der Lage, technische Bemessungsaufgaben des Hochbaues in Diskussion fachlich darzustellen, fachliche Fragen zu behandeln und ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebote Lehrunterlagen

- Vorlesungsskriptum, Berechnungsbeispiele
- Multimediale Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb
- Exkursionen, Exponate

Literatur

- Mauerwerkkalender (Verlag Ernst & Sohn, Berlin).
- das Mauerwerk (Zeitschrift im Verlag Ernst & Sohn, Berlin)
- Schneider Bautabellen (Reguvis Verlag, Köln)
- Ständig aktualisiertes Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen)
- Bemessungshilfsmittel

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>Modulname: B2-SB II Stahlbetonbau II (Reinforced Concrete Design II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrform: Seminaristischer Unterricht mit Übungen und Praktikum</td>
</tr>
</tbody>
</table>

Angaben

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

- Präsenzstudium: 30 Stunden seminaristische Lehrveranstaltungen
- Eigenstudium: 30 Stunden eigenverantwortliches Lernen

Studien- und Prüfungsleistung

- Prüfungsleistung: Klausur; Dauer: 90 Minuten

Inhalte

Einführung in die Grundlagen der Bemessung und Konstruktion schlaff bewehrter Tragelemente des Stahlbetonbaues.

Im Detail:

- **Nachweis der Gebrauchstauglichkeit:** Nachweis der Spannungsbegrenzung; Begrenzung der Rissbreite, Rissentwicklung, Eintragungslänge, Rissabstand, Nachweis der Beschränkung der Rissbreite; Begrenzung der Verformung, Verformungen von Stahlbetonbauteilen, Begrenzung der Biegeschlankheit

- **Allgemeine Bewehrungs- und Konstruktionsregeln:** Betondeckung, Umweltbedingungen, Verbund, Brandschutz; Biegerollendurchmesser; Verankerung von Betonstäben; Stöße von Betonstahl; Grenzwerte der Biegezugbewehrung; Zugkraftdeckung; Mindestquerkraftbewehrung und Höchststabstände; Schubkraftdeckung; Bewehrungsführung bei Torsion; Auf- und Einhängbewehrung

- **Tragwerkselemente des Hochbaues:** Balken, Plattenbalken, Unterzüge; einachsig und zweiachsig gespannte Massivplatten, Tragverhalten, Näherungsverfahren für mehrfeldrige Platten; Hochbaustütze, horizontal verschiebliche und unverschiebliche Tragwerke, Modellstützenverfahren; Vorschriften zur konstruktiven Gestaltung.

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • Die im Stahlbetonbau vorkommenden Bemessungsaufgaben des üblichen Hochbaues im
 Grenzzustand der Tragfähigkeit und Gebrauchstauglichkeit zu kennen (1),
 • die wichtigen Zusammenhänge des Zusammenwirkens Beton und Betonstahl zu verstehen
 (2),
 • übliche Bemessungsaufgaben im Grenzzustand der Tragfähigkeit für Biegung,
 Normalkraft, Querkraft und Torsion und auch im Grenzzustand der Gebrauchstauglichkeit
 für die Beschränkungen der Durchbiegung und der Rissbreiten zu verstehen und
 anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • Tragverhalten des Stahlbetonbaues zu kennen und Bemessungsaufgaben zu erfassen (2),
 • Technische Bemessungsaufgaben des Hochbaues in Diskussion fachlich darzustellen (2),
 • Fachliche Fragen zu stellen und auch fachliche Fragen zu beantworten (2) und
 • Ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb
Exkursionen, Exponate

Literatur

Spannbetonbauwerken. Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
mit nationalem Anhang.
Zilch, K.; Zehetmaier, G.: Bemessung im konstruktiven Betonbau nach DIN 1045-1 (Fassung
2008) und EN 1992-1-1 (Eurocode 2)
Goris, A.; Richter, G.; Schmitz U.P.: Stahlbeton und Spannbeton nach Eurocode 2. In
(Eurocode 2)
Berlin: Beuth 2012.
Ständig aktualisiertes Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Weitere Informationen zur Lehrveranstaltung

[1] Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine
Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den
Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von
etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 90
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-SB I Stahlbetonbau I (Design of Concrete Structures I)</td>
<td>B2-SB I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fritsche</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Ursula Albertin-Hummel</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Fritsche</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Detleff Schermer</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen und Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristische Lehrveranstaltungen</td>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeit</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Studienleistung: 1 Studienarbeit
Prüfungsleistung: schriftliche Prüfung, Dauer: 120 Minuten

Inhalte
Einführung in die Grundlagen der Bemessung und Konstruktion schlaff bewehrter Tragelemente des Stahlbetonbaues.

Im Detail:
- Überblick über die Grundlagen: Entwicklung, Begriffe, Vorschriften, Literatur
- Baustoffe des Stahlbetons: Bestandteile des Betons, Frischbeton, Festbeton; Betonstahl; Stahlbeton unter Umwelteinflüssen
- Tragwerksidealisation: Tragwerkselemente, Systemfindung, Auflager und Stützweiten; Schnittgrößenermittlung; Bernoulli- und Diskontinuitätsbereiche von Tragwerken
- Grundlagen der Bemessung: Bemessungskonzepte; Grenzzustand der Tragfähigkeit
- Biegebemessung von Stahlbetonbauteilen: Bemessungsmomente, Grenzdehnungen und Dehnungsbereiche, Biegebemessung mit rechteckiger Druckzone für einachsige Biegung, Bemessungshilfen, Biegebemessung von Plattenbalken
- Bemessung für Querkkräfte und Torsionsmomente: Allgemeine Grundlagen und Fachwerkmodell; Bemessungswert der einwirkenden Querkraft; Bauteile ohne Querkraftbewehrung, Bauteile mit Querkraftbewehrung; Bemessungsmodell für reine Torsion; kombinierte Wirkung von Torsion und Querkraft
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die im Stahlbetonbau vorkommenden Bemessungsaufgaben des üblichen Hochbaues im Grenzzustand der Tragfähigkeit zu kennen (1),
- die wichtigen Zusammenhänge des Zusammenwirkens Beton und Betonstahl zu verstehen (2),
- übliche Bemessungsaufgaben im Grenzzustand der Tragfähigkeit für Biegung, Normalkraft und Querkraft zu verstehen und anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Tragverhalten des Stahlbetonbaues zu kennen und Bemessungsaufgaben zu erfassen (2)
- Technische Bemessungsaufgaben des Hochbaues in Diskussion fachlich darzustellen (2),
- Fachliche Fragen zu stellen und auch fachliche Fragen zu beantworten (2) und
- Ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb
Exkursionen, Exponate

Literatur

Ständig aktualisiertes Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B2-SRBN Straßen- und Bahnbau (Road and Railway Design)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-SRBN Straßen- und Bahnbau</td>
<td>B2-SRBN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Appelt</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>B2-BN I Bahnbau I</td>
<td>3 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>B2-SR I Straßenbau I</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Pflichtmodul des zweiten Studienabschnitts im Bachelor-Studiengang Bauingenieurwesen.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-BN I Bahnbau I</td>
<td>B2-BN I</td>
</tr>
<tr>
<td>(Railway Design)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Neidhart</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Maximilian Lerch (LB)</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Jan Petrat (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen, ergänzendes Literaturstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th>Prüfungsleistung: Klausur; Dauer: 90 Minuten</th>
</tr>
</thead>
</table>
Inhalte

Fahrdynamische Grundlagen:
Freie Strecke; Kräftegleichgewicht in Fahrrichtung; Beschleunigung und Bremsvorgänge; Steigungen und Gefälle, Fahrkraftlinien, p.V-Diagramme; Lichtraumprofil

Trassierung auf freier Strecke:
Zusammenhänge Fahrgeschwindigkeit zu Radien und Überhöhungen; ausgleichende Überhöhung, Überhöhungseffektbetrag und – überschuss; Ruckbedingung; Übergangskonstruktionen inkl. der geometrischen Bedingungen

Weichen, Zwangspunkte:
Darstellung von Weichen und Kreuzungen; Grundformen der Weichen, Weichen in Rangierbereichen, Weichen auf freier Strecke

Oberbau:
Kräfte am und Elemente des Oberbaus; Grundlagen der Oberbaubemessung.

Unterbau und Erdbauwerke:
Streckenkategorien, Belastung der Erdbauwerke und des Unterbaus, Statische und dynamische Einwirkungen, Beanspruchung durch Witterung; Planung und Ausführung von Unterbau und Erdbauwerken

Entwässerung:
Aufgaben und Notwendigkeit, Wasserandrang am Bahnkörper, Anlagen zur Ableitung von Oberflächenwasser, Tiefenentwässerung, Vorflutanlagen, Bahnholzentwässerung, Bemessung von Entwässerungsanlagen (Wassermengen, Gräben und Durchlässe, Filter, Tiefenentwässerung etc.) Lärm: Bahn spezifischer Lärm und dessen Minderung am rollenden Material, am Gleis und durchbauliche Maßnahmen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Trassierungselemente der Strecke und der in den Trassierungselementen wirkenden dynamischen Kräfte aus der Fahrsituation. (3)
- Elemente, Kräfte und Bemessung von Ober- und Unterbau sowie von Erdbauwerken (1) (3)
- Bauwerke und Bemessung der Entwässerung des Bahnhökers (1) (3)
- Bahn-spezifischer Lärm und Lärmschutzmaßnahmen (1)

Fertigkeiten:

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Die Besonderheiten des Bahnbaus und der Bemessung wiederzugeben (3)
- Den Baufachlichen Terminus in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen und zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- Trassierung und Bemessung auf ihre Sinnhaftigkeit zu prüfen (1)
<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerPoint-Folien und Übungsaufgaben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vortragsvorlesung mit PowerPoint und Visualizer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichtenberger (2004): Handbuch Gleis; Eurailpress</td>
</tr>
<tr>
<td>Göbel & Lieberenz (2012): Handbuch der Edbauwerke; Eurailpress•EBO, Normen und Regelwerke der DB AGSkript zur Vorlesung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Vorkenntnisse: Technische Mechanik, Mathematik für Bauingenieure</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>B2-SR I Straßenbau I (Road Construction I)</th>
<th>B2-SR I</th>
</tr>
</thead>
</table>

Verantwortliche/r

Prof. Andreas Appelt
Bauingenieurwesen

Lehrende/r / Dozierende/r

Prof. Andreas Appelt
in jedem Semester

Fakultät

Bauingenieurwesen

Angebotsfrequenz

in jedem Semester

Lehrumfang

SWS oder UE

Lehrsprache

deutsch

Arbeitsaufwand

[ECTS-Credits]

3. / 4.

4 SWS

Zeitaufwand:

Präsenzstudium
60 Stunden seminaristischer Unterricht (Präsenz)
60 Stunden eigenverantwortliches Lernen, Studienarbeiten

Eigenstudium

Studiensemester

gemäß Studienplan

Lehrform

Seminaristischer Unterricht ohne Praktikum

Studien- und Prüfungsleistung

Studienleistung: anerkannte Studienarbeit

Prüfungsleistung: schriftliche Prüfung, Dauer: 120 Minuten (Teil A: 20, Teil B: 100 Minuten)

Zugelassene Hilfsmittel für Leistungsnachweis

Teil A: keine

Teil B: Skriptum, eigene Aufzeichnungen, Bücher, programmierbare, nicht kommunikationsfähige Taschenrechner

Inhalte

- Einführung in die Verkehrsentwicklung, Straßennetzgestaltung, rechtliche Grundlagen, Verkehrssicherheit, Unfalluntersuchung, Umweltverträglichkeit und Planungsphasen.
- Grundlegende Kenntnisse in der Linienführung mit Trassierung, Geschwindigkeit, Lageplan, Querschnitt, Höhenplan, Sicht, Verkehrsräume, Querschnittsformen und Wirtschaftlichkeit.
- Bemessung von Straßen und Nachweis der Verkehrsqualität
- Grundformen und Einsatz von plangleichen, teilplangleichen, teilplanfreien und planfreien Knotenpunkten
- Bemessung und Leistungsfähigkeit von Knotenpunkten
- Grundlagen der BIM Methodik in der Straßenplanung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundlagen der Verkehrsplanung sowie Unfallkenngrößen zu kennen (1).
- die wichtigsten Faktoren der verkehrssicheren Straßengestaltung zu kennen und anzuwenden (2).
die Grundlagen der Trassierung von Straßen in Lage-, Höhenplan sowie Querschnitt auf Beispiele zu übertragen, zu verstehen und anzuwenden (3).

die Grundlagen der Knotenpunktformen von Autobahn- und Landstraßenknotenpunkten zu kennen und auf Beispiele anwenden zu können (2)

einfache Nachweise der Verkehrsqualität von Strecken und Knotenpunkten anzuwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• Aufgabenstellungen der Straßenplanung zu erfassen (2).
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).
• teamorientiert und interdisziplinär zu arbeiten und die gefundenen Lösungen fachlich zu vertreten (2)

Angebotene Lehrunterlagen

Skriptum

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung

Literatur

• Bracher/Bösl: Straßenplanung, Bundesanzeiger Verlag
• Richtlinien (z.B. RAA, RAL), Merkblätter, Empfehlungen, Hinweise und Arbeitsanleitungen der Forschungsgesellschaft für Straßen- und Verkehrswesen
• Handbuch für die Bemessung von Straßenverkehrsanlagen, Forschungsgesellschaft für Straßen- und Verkehrswesen
• Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen
• Die Literaturangaben beziehen sich auf die jeweils aktuelle Fassung

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
B2-STHO Stahlbau und Holzbau (Steel Design and Timber Design) | B2-STHO

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B2-HO I Holzbau I</td>
<td>3 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>B2-ST I Stahlbau I</td>
<td>3 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B2-STHO Stahlbau und Holzbau

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-HO I Holzbau I</td>
<td>B2-HO I</td>
</tr>
<tr>
<td>(Timber Design I)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susanne Hüttner (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Studiensemester</td>
<td>3 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>45 Stunden eigenverantwortliches Lernen, Studienarbeiten, Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Studienleistung: keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>

Inhalte

Einführung und Überblick über den Baustoff Holz im Hinblick auf die Bemessung:
Holzarten, Holzwerkstoffe, Begriffe, Bezeichnungen
Holzaufbau, Holzfehler, physik. Eigenschaften, Bedeutung der Holzfeuchte
Sortier-/Festigkeitsklassen
Grundlagen der Bemessung nach EC 5 (DIN EN 1995-1-1):
Einführung in das Bemessungskonzept mit Teilsicherheitsbeiwerten
Bemessungswert der Beanspruchung, Bemessungswert der Beanspruchbarkeit
Tragfähigkeitsnachweise:
Zugstäbe, Biegeträger, Biegung mit Längskraft, Schubspannungsnachweis, Nachweis derAuflagerpressung (Querdruck)
Entwurf, Konstruktion und Nachweis einer Holzbalkendecke
Gebrauchstauglichkeitsnachweise:
Durchbiegungsnachweise, Schwingungsnachweis, Besonderheiten bei Holzbalkendecken
Kontaktanschlüsse
Versätze:
Stirnversatz, Brustversatz, Fersenversatz, Doppelter Versatz

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die wichtigsten Eigenschaften des anisotropen Werkstoffs Holz für eine Bemessung einschätzen zu können (1).
- normgerechte Spannungsnachweise für Biegung, Schub und Auflagerpressung durchzuführen (2).
- die Problemstellung für Kontaktschlüsse zu erkennen (2).
- die Tragfähigkeit für einfache Tragwerke nachzuweisen (3).
- die Bemessung von einfachen Tragwerken durchzuführen (3).
- Gebrauchstauglichkeitsnachweise normenkonform durchzuführen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- mit dem Werkstoff Holz ingenieurtechnisch sinnvoll umzugehen (1).
- eigenständig einfache Entwürfe für dauerhafte und wirtschaftliche Holzkonstruktionen erstellen zu können (2).
- kritische und bemessungsrelevante Bereiche zu identifizieren und nachzuweisen (3).
- Holzkonstruktionen ingenieurtechnisch hinsichtlich Sicherheit und Gebrauchstauglichkeit zu bewerten (3).
- ingenieurtechnische Zusammenhänge zu erkennen und bewerten (3).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

- Berechnungsbeispiele, Bemessungstabellen

Lehrmedien

- Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

- DIN EN 1995-1- Bemessung und Konstruktion von Holzbauten; 2010-12, inkl. zugehörigem Nationalen Anhang.
- Umdrucke zur Lehrveranstaltung (mit weiteren Literaturhinweisen zu Normentexten, Fach- und Handbüchern).

Weitere Informationen zur Lehrveranstaltung

- Empfohlene Vorkenntnisse:
- Lehrveranstaltungen B1-BTM I und II

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2-ST I Stahlbau I (Steel Design I)</td>
<td>B2-ST I</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Lehrendes/r / Dozierende/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SWS</td>
<td>deutsch</td>
<td>3 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 45 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>- 45 Stunden eigenverantwortliches Lernen, Studienarbeiten, Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

| Studienleistung:keine | Prüfungsleistung: schriftliche Prüfung | Dauer: 90 Minuten |

Inhalte

- Grundlagen und Anwendungsgebiete des Stahlbaus
- Stahlerzeugnisse, Baustoffkennwerte, Baustoffprüfungen
- Sicherheitskonzept und elementare Tragsicherheitsnachweise
- Schweißverfahren, Schweißeigenspannungen, Tragverhalten und Nachweise von Schweißverbindungen
- Schrauben und Schraubenwerkstoffe, Tragverhalten und Nachweise von Schraubverbindungen
- Entwurf und Nachweis einfacher Anschlussdetails.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- erworbene grundlegende Kenntnisse über das Werkstoffverhalten des Werkstoffs Stahl anzuwenden und für den jeweiligen Einsatzzweck die erforderlichen Werkstoffkennwerte festzulegen (2).
- die wichtigsten Stahlerzeugnisse und Baustoffprüfungen zu erläutern (1).
- elementare Tragsicherheitsnachweise für einfache Stahlbauteile zu führen (2).
- die wichtigsten Schweißverfahren im Stahlbau zu kennen (1).
- den Einfluss von Schweißeigenspannungen sowie das Tragverhalten von Schweißverbindungen zu verstehen (1).
- Tragsicherheitsnachweise für Schweißverbindungen zu führen (2).
- die Schrauben und Schraubenwerkstoffe im Stahlbau zu kennen (1).
• das Tragverhalten von Schraubenverbindungen zu verstehen und Tragsicherheitsnachweise für Schraubenverbindungen zu führen (2).
• einfache Anschlussdetails im Stahlbau eigenständig zu entwerfen und rechnerisch nachzuweisen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• einfache konstruktive Aufgabenstellungen zu erfassen (1).
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien
Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur
Petersen, C.: Stahlbau, Vieweg-Verlag (jeweils aktuelle Auflage).
Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BSB Brandschutz und Brandbemessung (Fire Safety and Structural Fire Protection)</td>
<td>B3-BSB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kathrin Grewolls</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-BSB Brandschutz und Brandbemessung</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-BSB Brandschutz und Brandbemessung</td>
<td>B3-BSB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kathrin Grewolls</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kathrin Grewolls</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>4 [ECTS-Credits]</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung:</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung, Dauer: 120 Min</td>
</tr>
</tbody>
</table>
Inhalte

Inhalte: Brandschutzfachplanung

- gesetzliche Grundlagen (BayBO, Sonderbauvorschriften, Leitungsanlagenrichtlinie, Schutzfälle und Abweichungen),
- Grundlagen der Verbrennungslehre und der Thermodynamik
- baulicher Brandschutz (Brandverhalten von Baustoffen und Bauteilen, Einheitstemperaturzeitkurve, Abschottungsprinzipien, Rettungswege, Tragwerk),
- abwehrender Brandschutz (Brand- und Löschlehre, Rettungsmaßnahmen, Aufgaben der Feuerwehr),
- technischer, betrieblicher und organisatorischer Brandschutz (BMA, Sprinkler, RWA, Brandschutzordnung, Rettungswegepläne)
- Brandschutz im Bestand und bei der Bauausführung (Verwendbarkeitsnachweise)
- Nachweise mit Ingenieurmethoden (Evakuierungsberechnung und –simulation, Plumeberechnungen und Brandsimulation am Beispiel)
- Übungen zur Erstellung von Brandschutznachweisen

Inhalte:

- gesetzliche Grundlagen (BayBO, Sonderbauvorschriften, Schutzfälle und Abweichungen),
- Grundlagen der Verbrennungslehre und der Thermodynamik
- Brandverhalten von Baustoffen und Bauteilen, Prüfkriterien, Einheitstemperaturzeitkurve,
- Bemessungsverfahren nach DIN 4102 Teil 4 und EUROCODE,
- Nachweise mit Ingenieurmethoden (Evakuierungsberechnung und –simulation, Plumeberechnungen und Brandsimulation)
- Übungen zur Erstellung von Brandsimulationen
- Brandschutznachweis, Bauausführung und Verwendbarkeitsnachweise

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- einfache Brandschutznachweise für Regelbauten zu erstellen (2).
- zu erkennen, welche Maßnahmen zur brandschutztechnischen Bewertung eines Gebäudes erforderlich sind (1).
- den Feuerwiderstand von Bauteilen abschätzen zu können (1).
- Anwendungsmöglichkeiten und Einsatzgrenzen von Ingenieurmethoden (Brand- und Evakuierungssimulation) zu erkennen (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- konstruktive Aufgabenstellungen zu erfassen (2).
- erforderliche Maßnahmen gegenüber Bauherren, Fachplanern und Behörden zu kommunizieren (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen und angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Literatur

BayBO, LAR, BayTB, DIN 4102 Teil 4, vfdb- Leitfaden Ingenieurmethoden des Brandschutzes, Brandschutzatlasis und ausgeteilte Übungen
Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-FE Finite Elemente</td>
<td>B3-FE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. /7. Semester</td>
<td>3</td>
<td>Wahlpflicht</td>
<td>4 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Besuch der Vorlesungen B1-BTM 1I, B1-BTM 2, B2-BS 1, B2-BS 2 und B2-BI

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-FE Finite Elemente</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B3-FE Finite Elemente

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-FE Finite Elemente</td>
<td>B3-FE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Bulenda</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminärstischer Unterricht mit Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. /7. Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Preßenzstudium
60 Stunden seminärstischer Unterricht (Preßenz)

Eigenstudium
60 Stunden eigenverantwortliches Lernen, Studienarbeiten

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: 1 anerkannte Studienarbeit</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung; Dauer: 90 Minuten</td>
</tr>
</tbody>
</table>

Inhalte
- Einführung: Mathematische Grundlagen, Einführungsbeispiele, Literatur.
- Theoretische Grundlagen: Das Prinzip vom Minimum der Potentiellen Energie; Das Prinzip der virtuellen Verrückungen; Arbeit mit Ansatzfunktionen, starke und schwache Form des Gleichgewichts; Überleitung zum FE-Verfahren
- Verschiedene Themen: Matrizendarstellung der maßgebenden Gleichungen; GaußIntegration; Hinweis auf Übertragungsmatrizenverfahren
- Scheiben: Grundlagen der Scheibentheorie; Scheibenelemente; Geometrieapproximation; Hauptspannungen; Singularitäten; Modellierungshinweise
- Platten: Klassische Lösungen; Schnittgrößen und bemessungsrelevante Größen; Querdehnzahl; FE-Formulierungen; Lagerung von Platten; Singularitäten; Modellierungshinweise
- Modellieren mit Finiten Elementen: Normalkraftstäbe: Einfluß von Netzteilung und Art der Schnittkraftermittlung; Beispiele zur Scheibenmodellierung im Vergleich zur analytischen Lösung; Beispiele zur Plattenberechnung im Vergleich mit analytischen Lösungen
- Fehler- und Kontrollmöglichkeiten bei der Finite Element Methode: Fehler in der Modellbildung; Diskretisierungsfehler; Rundungsfehler; Ergebniskontrolle

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-FE Finite Elemente

- die Theoretischen Grundlagen der FE-Methode (Prinzip vom Minimum der Potentiellen Energie; Prinzip der virtuellen Verrückungen; Galerkin-Verfahren) insbesondere als Näherungsverfahren verstehen (3)
- Grundlagen der FE-Modellierung zu verstehen
- Grundlagen der Scheibentheorie zu verstehen (2)
- Grundlagen der Plattentheorie zu verstehen (2)
- Flächentragwerke zu modellieren unter Berücksichtigung der Einflüsse von Lagerung, Lastaufbringung, Querdehnzahl und Singularitäten (2)
- Fehlerschätzung und Kontrollmöglichkeiten bei der FE-Methode zu verstehen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Fachsprache der FE-Programme zu verstehen (2).
- die Ergebnisse und Ausgaben eines FE-Programms zu verstehen (2)
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Lehrmedien
Vortragsvorlesung mit Übungen am PC

Literatur
Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-HO II Holzbau II (Timber Design II)</td>
<td>B3-HO II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Lehrveranstaltungen B1-BTM, B2-BS und B2-HO I

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-HO II Holzbau II</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>Name des Studiengangs:</th>
<th>Bachelor Bauingenieurwesen (PO: 20161)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name des Moduls:</td>
<td>B3-HO II Holzbau II (Timber Design II)</td>
</tr>
<tr>
<td>TM-Kurzbezeichnung</td>
<td>B3-HO II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joachim Gschwind</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrmfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>- 60 Stunden eigenverantwortliches Lernen, Studienarbeiten, Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Studienleistung: keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung; Dauer: 120 Minuten</td>
</tr>
</tbody>
</table>

Inhalte

Kurze Zusammenfassung der Grundlagen des Nachweiskonzeptes des EC 5

Tragfähigkeitsnachweise:
- Zweiachsige Biegung, Kombinierte Beanspruchung Biegung mit Längskraft, Stabilitäsnachweise (Knicken und Kippen), Torsionsnachweis
- Brettschichtholzträger: Pultdachträger, Satteldachträger (mit geradem und gekrümmten unteren Rand), gekrümmte Träger

Dachtragwerke:
- Kurze Übersicht über Dachtragwerke,
- Hausdächer (Konstruktionsprinzipien, statische und konstruktive Besonderheiten), Hallendächer (allgemeine statische Grundsätze, Verbände, Konstruktionsdetails)

Stiftverbindungen:
- Nagelverbindungen, Stabdübelverbindungen, Bolzenverbindungen, Holzschraubenverbindungen
- Klebeverbindungen:
- Keilzinkenverbindung, eingeklebte Stahlstäbe
- Ausklinkungen, Durchbrüche, Verstärkungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die verschiedenen Tragfähigkeitsnachweise für den Holzbau zu kennen (1).
- Nachweise für zweiachsige Biegung, kombinierte Beanspruchung in Form von Biegung mit Längskraft, Stabilitätsnachweise (Knicken und Kippen) sowie Torsionsspannungsnachweise zu führen (2).
- für Pultdachträger, Satteldachträger (mit geradem und gekrümmten unteren Rand) und für gekrümmte Träger eine Bemessung durchzuführen und die zugehörigen Tragfähigkeitsnachweise zu führen (3).
- für unterschiedliche Dachtragwerke die passenden Konstruktionen zu entwerfen, die kritischen Details zu identifizieren und entsprechend zu konstruieren und nachzuweisen. (3).
- die unterschiedlichen und gebräuchlichen Verbindungsmittel im Holzbau zu kennen (1).
- die Eigenschaften dieser Verbindungsmittel zu kennen (1).
- passende Lösungen für Verbindungen zu entwickeln und nachzuweisen (2).
- die spezifischen Eigenheiten der Verbindungsmittel anwendungs- und beanspruchungsgerecht einzusetzen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- räumlich beanspruchte Tragwerke hinsichtlich ihrer Tragfähigkeit zu beurteilen (2).
- deren kritischen und maßgebenden Bereiche zu identifizieren (3).
- Besonderheiten von räumlichen, gekrümmten, im Querschnitt veränderlichen Bauteilen zu erkennen (2) und praxisgerechte Lösungen für deren Standsicherheit zu finden (3).
- selbständig praxistaugliche (Dach-)Tragwerke zu entwerfen und zu konstruieren (2).
- fachliche Fragen zu stellen und zu diskutieren (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Berechnungsbeispiele, Bemessungstabellen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

- DIN EN 1995-1- Bemessung und Konstruktion von Holzbauten; 2010-12, incl. zugehörigem Nationalen Anhang.
- Umdrucke zur Lehrveranstaltung (mit weiteren Literaturhinweisen zu Normentexten, Fach- und Handbüchern).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-ST II Stahlbau II (Steel Design II)</td>
<td>B3-ST II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Lehrveranstaltungen B2-BS und B2-ST I

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-ST II Stahlbau II</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-ST II Stahlbau II

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-ST II</td>
<td>B3-ST II</td>
</tr>
</tbody>
</table>

(Steel Design II)

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeiten, Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine
Prüfungsleistung: schriftliche Prüfung; Dauer: 90 Minuten

Inhalte

Elastische und plastische Nachweisverfahren, Grenzen der Anwendung
Theorie der Wölbkrafttorsion
Nachweise gegen Biegeknicken, Theorie II. Ordnung, Ersatzstabverfahren
Nachweise gegen Biegedrillknicken, Grenzen der Anwendung
Plastische Bemessung, vertiefte Kenntnisse
Ermüdung und Betriebsfestigkeit nachweis

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die grundlegenden Nachweisverfahren für Tragsicherheitsnachweise im Stahlbau, insbesondere auch über die mögliche Ausnutzung plastischer Tragreserven anzuwenden (3).
- Torsionsbeanspruchungen für dünnwandige Stahlbauteile rechnerisch zu ermitteln (3).
- Stabilitätsnachweise für Stahlbauteile zu führen (3).
- die grundlegenden Nachweisverfahren für ermüdungsbeanspruchte Bauteile im Stahlbau anzuwenden (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- komplexe konstruktive Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

Petersen, C.: Stahlbau, Vieweg-Verlag (jeweils aktuelle Auflage).
Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-ABS Angewandte Baustatik (Applied Structural Analysis)</td>
<td>B3-ABS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dimitris Diamantidis</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Sehr gute Englischkenntnisse

Empfohlene Vorkenntnisse
Kenntnisse der Baustatik, Grundkenntnisse des Stahlbetonbaus und des Holzbaus

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>B3-ABS Angewandte Baustatik</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Wahlpflichtmodul des Allgemeinen Hauptstudiums im Bachelor-Studiengang Bauingenieurwesen
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>B3-ABS Angewandte Baustatik</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fachrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht in Englischer Sprache im EDV Raum

Studiensemester

gemäß Studienplan

<table>
<thead>
<tr>
<th>[SWS oder UE]</th>
<th>Lehrrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>englisch</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>[ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
</tr>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
</tr>
<tr>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Ein Vortrag auf Englisch und eine Studienarbeit

Inhalte

- Interpretation von Architektenplänen
- Erstellung von Positionsplänen
- Lastermittlung und Lastabtragung
- Dimensionierung der tragenden Bauteile (Stahlbeton, Mauerwerk, Holz, Stahl)
- Anwendung von Statik Software
- Bemessungsaspekte (Wahl der Querschnittsabmessungen)
- Analyse bekannter Bauwerke in englischer Sprache

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die Grundkenntnisse der Tragwerksplanung praxisorientiert anzuwenden (2)
- Die Statik eines einfachen Gebäudes mit Positionsplänen zu erstellen (1)
- Den Hintergrund der Normenkonzepte insbesondere der DIN-EN 1990 zu kennen (1)
- Das statische Konzept bekannter Bauwerke zu kennen (1)
- und in Englischer Sprache fachgerecht zu präsentieren (2)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- konstruktive Aufgabenstellungen zu erfassen (2).
- in einer kleinen Gruppe zu arbeiten (2)
- in Englischer Sprache zu arbeiten (2)
- Planungskonzepte zu präsentieren und zu diskutieren (2)

Angebotene Lehrunterlagen
Lasteffekte in den Eurocodes, PPP Folien zur Tragwerksplanung, Beispiele

Lehrmedien
Computerunterstützte Vorlesung mit Beamer und Tafel

Literatur
MB- Software, 2013
Eurocodes 1 – 8
Umdruckmaterial zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-AIKA Ausgewählte Ingenieurkompetenzen im Ausland</td>
<td></td>
</tr>
<tr>
<td>(B3-AIKA Selected engineering skills abroad)</td>
<td></td>
</tr>
<tr>
<td>B3-AIKA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dimitris Diamantidis</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hinweise zur Belegungspflicht oder zu Optionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtmodul des Allgemeinen Hauptstudiums im Bachelor-Studiengang Bauingenieurwesen</td>
</tr>
</tbody>
</table>
B3-AIKA Ausgewählte Ingenieurkompetenzen im Ausland
(B3-AIKA Selected engineering skills abroad)

Verantwortliche/r: Prof. Dr. Dimitris Diamantidis
Fakultät: Bauingenieurwesen
Lehrende/r / Dozierende/r: N.N.
Angebotsfrequenz: in jedem Semester
Lehrform: Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>2 SWS</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium: 30 Stunden
Eigenstudium: 30 Stunden

Studien- und Prüfungsleistung
Bestimmt durch die Hochschule im Ausland
Zugelassene Hilfsmittel für Leistungsnachweis
Bestimmt durch die Hochschule im Ausland

Inhalte
Bestimmt durch die Hochschule im Ausland

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Fachkenntnisse im jeweiligen Bereich mit Anwendung (2)
- Fähigkeit zur Problemlösung, Wissensmanagement (1)
- Fachbezogene Interkulturelle Kompetenz (2)
- Förderung des im Inland erworbenen Fachwissens (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Allgemeine interkulturelle Kompetenz, Toleranz, Anpassungsfähigkeit (2)
- Selbstorganisation und –vertrauen (2)
- Rollendistanz / Selbstreflexion im Ausland (2)
- Teamfähigkeit, Empathie, Fähigkeit zur Metakommunikation (1)
- Organisationsfähigkeit, Fremdsprachenkenntnisse (2)
- Förderung des persönlichen Reifeprozesses und Erweiterung des Horizonts (2)
<table>
<thead>
<tr>
<th>Angebote Lehrunterlagen</th>
<th>Bestimmt durch die Hochschule im Ausland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrmedien</td>
<td>Bestimmt durch die Hochschule im Ausland</td>
</tr>
<tr>
<td>Literatur</td>
<td>Bestimmt durch die Hochschule im Ausland</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BA Bachelorarbeit mit Präsentation</td>
<td>B3-BA</td>
</tr>
<tr>
<td>(Bachelor’s Thesis and Presentation)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>12</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreiche Absolvierung des praktischen Studiensemesters

Empfohlene Vorkenntnisse

keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-BA Bachelorarbeit mit Präsentation</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
Teilmodul

| B3-BA Bachelorarbeit mit Präsentation
| (Bachelor`s Thesis and Presentation) |
Verantwortliche/r	Fakultät
Prof. Dr. Othmar Springer	Bauingenieurwesen
Lehrende/r / Dozierende/r	Angebotsfrequenz
N.N.	in jedem Semester

Lehrform
Selbstständige Bearbeitung der Aufgabenstellung mit Betreuung durch den Aufgabensteller

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>12 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>
| | 360 Stunden Gesamtstudieraufwand
| (eigenverantwortliches Arbeiten) |

Studien- und Prüfungsleistung

Prüfungsleistung: keine schriftliche Prüfung

Inhalte

variieren je nach Aufgabenstellung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die im Studium erworbenen Kenntnisse und Fertigkeiten auf komplexere Aufgabenstellungen anzuwenden (3).
- fachliche Zusammenhänge selbstständig zu erarbeiten (3).
- erforderliche Grundlagendaten durch Kontaktaufnahme mit außerschulischen Organisationen extern zu recherchieren (3).
- grundlegende Fertigkeiten einer wissenschaftlichen Arbeitsweise anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- komplexe konstruktive Aufgabenstellungen zu erfassen und sich vertieft damit auseinanderzusetzen (3).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-BA Bachelorarbeit mit Präsentation

- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
<th>entfällt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrmedien</td>
<td>entfällt</td>
</tr>
<tr>
<td>Literatur</td>
<td>Die zur Bearbeitung erforderliche Literatur wird vom jeweiligen Aufgabensteller angegeben.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung) & Modul-KzBez. oder Nr.

| Modulname: | B3-BMB Bauwerke des Massivbaus
| (B3-BMB Concrete Structures) | B3-BMB |

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fritsche</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Baustatik, Technische Mechanik, Stahlbetonbau, Spannbetonbau und Baustoffkunde

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-BMB Bauwerke des Massivbaus</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B3-BMB Bauwerke des Massivbaus

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BMB Bauwerke des Massivbaus (B3-BMB Concrete Structures)</td>
<td>B3-BMB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fritsche</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Fritsche, Prof. Dr. Detleff Schermer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht ohne Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>60 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine
Prüfungsleistung: schriftliche Prüfung; Dauer: 90 Minuten

Inhalte

Einführung in die Tragwerkzkonzepte, Belastungsannahmen, Berechnungsansätze und Konstruktion von typischen Ingenieurbauwerken des Massivbaus

Im Detail:
Massivbrücken: Konstruktions- und Gestaltungskonzepte von Brücken, Einwirkungen auf Brücken, Brückenausstattungen.
Lagerrückstellkräfte, Erddruckansätze, Steifigkeitsberechnungen.
Hochhäuser und Geschossbauten: Anforderungen an das Tragwerk, Aussteifungssysteme
Türme: Anforderungen an das Tragwerk, Aussteifungssysteme, Eigenfrequenzberechnungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Wichtige Fachbegriffe im Ingenieurbau bzw. Brückenbau zu kennen (1),
- Wichtige Grundlagen hinsichtlich Entwurf, Tragkonzepte, Bauverfahren zu kennen und zu verstehen (2),
- Aussteifungskonzepte im Ingenieurbau und Hochhausbau zu kennen und zu verstehen (2) und
- Belastungsansätze für verschiedene Ingenieurbauwerke zu kennen und anzuwenden (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Tragverhalten verschiedenster Bauwerk- bzw. Tragsysteme insbesondere im Brückenbau zu kennen und zu erfassen (2)
- Entwurfsaufgaben auch skizzenartig darzustellen und in Diskussion fachlich zu erläutern (2).
- Fachliche Fragen zu stellen und auch fachliche Fragen zu beantworten (2) und
- Ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb

Literatur

- DIN-Fachbericht 101 - Einwirkungen auf Brücken, Ausgabe 2009
- DIN-Fachbericht 102 - Betonbrücken, Ausgabe 2009
- ZTV-ING - Zusätzliche Technische Vertragsbedingungen und Richtlinien für Ingenieurbauten; Sammlung Brücken- und Ingenieurbau; Bundesanstalt für Straßenwesen

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Stand: 30.07.2019/Fri

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BM I Baumanagement I (Construction Management I)</td>
<td>B3-BM I</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

| 6. oder 7. | 3. | Wahlpflicht | 4 |

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Lehrveranstaltungen B2-BB I und B2-BB II

Inhalte

Zugeordnete Teilmodule

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-BM I Baumanagement I</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B3-BM I Baumanagement I

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kürzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BM I Baumanagement I</td>
<td>B3-BM I</td>
</tr>
<tr>
<td></td>
<td>(Construction Management I)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Klaus Hager</td>
<td></td>
</tr>
<tr>
<td>Christoph Marquardt (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminariistischer Unterricht mit praktischen Übungen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS oder UE</td>
<td>deutsch</td>
<td>4 ECTS-Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehramfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: Studienarbeit
Prüfungsleistung: schriftliche Prüfung; Dauer: 120 Minuten

Inhalte

Arbeitskalkulation und Leistungsmeldung
Terminplanung in Roh- und Ausbau
Einführung in MS Powerproject
Grundlagen Projektmanagement

Gruppe A:
Lean Construction mit dem Schwerpunkt Last Planer®

Gruppe B:
Angewandtes Baumanagement mit ausgewählten Fragen zu Kontrolle alltäglicher Gewerke und zu deren MangelfreiheitFolgen bei Verletzung des Vertragssolls und Bewertungskriterien für Minderwerte DIN 276

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
Teil Prof. Denk:

(Wissen)
- die Definition der Arbeitskalkulation und der Leistungsmeldung zu benennen (1).
die grundlegenden Anforderungen an die Terminplanung im Rahmen des Bauprojektmanagements angeben (1).
• die unterschiedlichen Terminplanarten in Abhängigkeit der jeweiligen Bauphasen zu erläutern (1).
• die Anforderungen an die Planung der Planung, die Planung der Vergaben und die Ausführungsplanung zu benennen (1).

(Fertigkeiten)

• eine Vertragskalkulation in die Arbeitskalkulation zu überführen (2).
• eine Arbeitskalkulation an die aktuellen Gegebenheiten anzupassen und die Konsequenzen für das Baustellenergebnis anzugeben (3).
• eine Leistungsmeldung für ein einfaches Projekt durchzuführen (3).
• einen vernetzten Terminplan nach Vorgaben aufzustellen und zu berechnen (3).
• Aufwandswerte für den Rohbau selbst zu entwickeln (3).
• einen Terminplan für ein einfaches, schlüsselfertiges Bauvorhaben aufzustellen und auf Plausibilität zu prüfen (2).

Teil Prof. Hager:

Gruppe A:
• Können die Grundgedanken des Lean Managements anwenden (2).
• Terminpläne nach Lean Gesichtspunkten (Last Planner) zu erstellen (3).
• Terminpläne Softwaregestützt umsetzen (1).

Gruppe B:

• Die Mangelfreiheit alltäglicher Gewerke zu beurteilen (2).
• Einschlüssige Regelwerke für ausgewählte Gewerke zu identifizieren (2).
• Checklisten für ausgewählte Gewerke zu entwickeln (3).
• Digitale Umsetzung von Checklisten in praxisnahe Apps (1).
• Grundzüge der Terminplanung Softwaregestützt umsetzen (1).
• Die Grundzüge der DIN 276 anzuwenden (1)
• Optische Minderwerte zu beurteilen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Teil Prof. Denk:

(Sozialkompetenz)
• verschiedene Bauabläufe darzustellen und mit anderen Prozessbeteiligten zu diskutieren (2).
• im Dialog mit anderen Fachplanern Termine und Dauern von Vorgängen festzulegen (2).
• zu verstehen, welche Motive bei der Manipulation von Leistungsmeldungen vorliegen können (2).

(Selbstständigkeit)

• selbstständig die Ablaufplanung von kleineren, einfacheren Bauvorhaben durchzuführen (3).
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B3-BM I Baumanagement I

- Risikobewertungen durchzuführen und für die Arbeitskalkulation zu bewerten (2).
- selbstständig Aufwandswerte und Anordnungsbeziehungen zu erarbeiten und in die Terminplanung einzuarbeiten (3).
- Sich anhand von Lernvideos selbstständig neuen Stoff anzueignen (3).

Teil Prof. Hager:

Gruppe A:
- technische Zusammenhänge in eine Lean Planung umzusetzen (3).
- fachliche Fragen zu stellen und angemessen zu beantworten (2).
- Grundgedanken des Leans in die Ablaufplanung einzubringen und digital umzusetzen (2)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (1).

Gruppe B:
- Kostenschätzung nach DIN 276 zu erstellen (1)
- Checklisten zu erstellen und digital umzusetzen (3)
- fachliche Fragen zu stellen und angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (1).
- Optische Minderwerte zu ermitteln (2)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Vorlesung Terminplanung als Screencast in Moodle,
Exkursionen, Praktikum, Gruppe A Villego® (Planspiel)

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 132
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-BM I Baumanagement I

Literatur
- Drees, Paul – Kalkulation von Baupreisen, Bauwerkverlag Berlin
- Vergabe- und Vertragsordnung für Bauleistungen, Beuth-Verlag
- Hoffmann: Zahlentafeln für den Baubetrieb
- Greiner, Mayer, Stark – Baubetriebslehre-Projektmanagement, viehweg-Verlag Hoffmann: Beispiele für die Baubetriebspraxis; Teubner Verlag
- Berner, Kochendörfer, Schach: Grundlagen der Baubetriebslehre 3; Teuber Verlag Kochendörfer, Liebchen, Viering: Bau-Projektmanagement; Teuber-Verlag Honorarordnung für Architekten und Ingenieure, HOAI
- Fiedler, Martin (Hrsg). - Lean Construction – Das Managementhandbuch, Springer Verlag
- Ballard, Herman Glenn - The last Planner System of production control, Doktorarbeit, 2000

Gruppe A:
- Fiedler, Martin (Hrsg). - Lean Construction – Das Managementhandbuch, Springer Verlag
- Ballard, Herman Glenn - The last Planner System of production control, Doktorarbeit, 2000

Gruppe B:
- Normen, Richtlinien, Produktdatenblätter, insbesondere DIN 276, 277, jeweils neueste Ausgabe
- BKI Tabellen, Sirados Baukostenermittlung
- Oswald, Hinzunehmende Unregelmäßigkeiten, Vieweg Verlag

Jeweils neueste Ausgaben

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BM II: Baumanagement II (Construction Management II)</td>
<td>B3-BM II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
B2-BM I; B2-BVR

Empfohlene Vorkenntnisse
B2-BB I; B2-BB II

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-BM II Baumanagement II</td>
<td>2 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B3-BM II: Baumanagement II

<table>
<thead>
<tr>
<th>Teilmmodul</th>
<th>TM–Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BM II Baumanagement II (Construction Management II)</td>
<td>B3-BM II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Klaus Hager</td>
<td></td>
</tr>
<tr>
<td>Prof. Bernhard Karl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betreute Gruppenarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>7</td>
<td>2 SWS</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden betreute Gruppenarbeit</td>
<td>90 Stunden eigenverantwortliches Lernen, Teamwork</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: Siehe Inhalt; Verhandlung als Planspiel mit aktiver Pflichtteilnahme Teamarbeit
Prüfungsleistung: Detaillierte und strukturierte Dokumentation und Vorlage der eigenen Leistung und deren Ergebnisse, Aktive Teilnahme an den Verhandlungen
Nachweis der Sorgfältigkeit der Bearbeitung der Arbeitspakete
Umsetzung der Inhalte gemäß Baumanagement- und Bauvertragsvorlesungen

Inhalte

- Planspiel Bauherr / Auftragnehmer mit folgenden Inhalten
- Erstellung von Ausschreibungsunterlagen auf der Basis einer detaillierten Leistungsbeschreibung
- Ermittlung eines Bauherrnbudgets für das ausgewählte Bauvorhaben
- Vorbereiten von Vertragsunterlagen
- Vorbereiten, organisieren und durchführen von Auftragsverhandlungen
- Erstellung von Baustelleneinrichtungs- und Terminplänen sowie der Kalkulation für das vorgegebene Bauvorhaben
- Ausarbeitung von technischen Detaillösungen
- Verhandlungsführung mit Coaching

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
(Wissen)
- die Abläufe der Bauvergabe von der Ausschreibung bis zur Auftragsvergabe zu beschreiben (1).
• die bisher erlernten baubetrieblichen und baurechtlichen Kenntnisse an einem konkreten Bauvorhaben anzuwenden und umzusetzen (3).
• sich auf Verhandlungen umfänglich vorzubereiten (2).

(Fertigkeiten)

• realitätsgerechte Leistungsbeschreibungen und Vorgaben für eine Angebotskalkulation mit technischer Umsetzbarkeit zu erstellen (3).
• ein Vergabebudget zu erarbeiten und mit verschiedenen Methoden zu überprüfen (3).
• Angebotsunterlagen und Angebote zu analysieren und auszuwerten (3).
• die Preisermittlung für unterschiedliche Bauvorhaben durchzuführen (3).
• Baustelleneinrichtungs- und Bauablaufpläne auf Basis der Bauherrenvorgaben zu erstellen (3).
• unter Berücksichtigung des vorgegebenen Budgets Bauaufträge zu erteilen (3).
• ihre Arbeitsergebnisse in Form eines Projektordners zu dokumentieren (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, (Sozialkompetenz)
• im Team unterschiedliche Rollen zu definieren und zu verteilen (2).
• ein Verständnis für die unterschiedlichen Bedürfnisse und Interessen von Bauherren und Auftragnehmern zu entwickeln und im Rollenspiel umzusetzen (3).
• die erstellten Baustelleneinrichtungs- und Ablaufpläne den Bauherren vorzustellen und zu diskutieren (2).
• die angebotenen Preise zu erläutern und den Bauherren gegenüber zu verteidigen (3).
• sich auf unterschiedliche Verhandlungsabläufe einzustellen (2).
• mit kritische Verhandlungssituationen umzugehen (2).

(Selbstständigkeit)

• selbstständig Vergabeunterlagen zu erstellen (3).
• selbstständig die Vergabeunterlagen auf kostenrelevante Bestandteile zu prüfen (3).
• sich im Team zu organisieren (3).
• sich auf Verhandlungen intensiv vorzubereiten (3).
• sich vorab Verhandlungsziele festzulegen und Alternativen bzw. Ausstiegsszenarien zu entwickeln (3).
• die jeweilige Rolle in den Verhandlungen bewerten und den eigenen Verhandlungsstil kritisch zu hinterfragen und zu bewerten (2).

Angebotene Lehrunterlagen

Vorlesungsskripte der Vorlesungen BB-I, BB-II, BM-I und BVR

Lehrmedien

Planspiel, Gruppenarbeiten, Musterkalkulation

Literatur

• Skripten BBI, BBII und BMI und BVR
• Sonstige Literatur siehe BBI, BBII und BMI und BVR
• VOB/B und C; BGB
• Normen, Richtlinien, Produktmerkblätter, Bauaufsichtliche Zulassungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg Seite 136
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BSP Bauleitplanung, Stadtplanung (Urban Land-use Planning)</td>
<td>B3-BSP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franz Schindlbeck</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6./7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
keine

Inhalte

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-BSP Bauleitplanung, Stadtplanung</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-BSP Bauleitplanung, Stadtplanung (Urban Planning)</td>
<td>B3-BSP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franz Schindlbeck</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Schreiner (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung, Seminaristischer Unterricht, Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6./7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden Vorlesung (Präsenz) - 30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>60 Stunden Studienarbeiten und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen: anerkannte Studienarbeit</td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung, Dauer 90 Minuten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesetzestexte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überblick über Aufgaben der Raumordnung, Landes- und Regionalplanung.</td>
</tr>
<tr>
<td>Gesetzliche Grundlagen der Bauleitplanung, vor allem BauGB, BauNVO, PlanzV in Abgrenzung zur Bauordnung.</td>
</tr>
<tr>
<td>Planungsgrundsätze und Ziele der Bauleitplanung unter besonderer Berücksichtigung aktueller Entwicklungen (Brachen, Siedlungsrückbau, Innenentwicklung).</td>
</tr>
<tr>
<td>Formelle und informelle Instrumente der Planung.</td>
</tr>
<tr>
<td>Analyse und Entwurf von einfachen Flächennutzungs- und Bebauungsplänen.</td>
</tr>
</tbody>
</table>

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
| die wichtigsten Instrumente der Raumordnung, der Landes- und Regionalplanung und der kommunalen Entwicklungsplanung zu erkennen und ihre Mechanismen zu erfassen. (1) |
| haben grundlegende Kenntnisse der Rechtsgrundlagen und aktuellen Leitbildern der Bauleitplanung. (3) |
| die einzelnen Planungsstufen; vom Vorentwurf bis zur Endfassung unter Verwendung der PlanZV, den Vorgaben entsprechend zeichnerisch darstellen. (3) |
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• ihre Kenntnisse unmittelbar auf konkrete Vorhaben (Flächennutzungs- und
 Bebauungspläne) anzuwenden zu übertragen. (3)
• besitzen räumliches Vorstellungsvermögen und sind in der Lage, diese zeichnerisch
 darzustellen (2)
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben. (2)
• ihre Leistungen zu kommunizieren (Präsentationsübungen). (2)

Angebotene Lehrunterlagen
Vorlesungsskripten, Planbeispiele, Probeklausuren, Materialmuster

Lehrmedien
Multimediale Vortragsvorlesung, Tafelanschrieb

Literatur
• Christa Reicher, Städtebauliches Entwerfen, Springer, Vieweg Verlag 2013
• Oberste Baubehörde im Bay. Staatsministerium des Innern, Arbeitsblätter und Materialien
 für die Bauleitplanung, Planungshilfen für die Bauleitplanung
• Hauth: Vom Bauleitplan zur Baugenehmigung, Beck-Rechtsberater im dtv
• Skripten zur Lehrveranstaltung (darin weitere aktuelle Literaturhinweise)
• Gesetzestexte: BauGB, BayBO, BauNVO, PlanzV

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BVR Baurecht, Bauvertragsrecht (Construction Law)</td>
<td>B3-BVR</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Bernhard Karl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-BVR Bauvertragsrecht</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-BVR Bauvertragsrecht</td>
<td>B3- BVR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Construction Law)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Karl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Bernhard Karl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>60 Stunden seminaristischer Unterricht</td>
<td>60 Stunden eigenverantwortliches Lernen,</td>
</tr>
<tr>
<td>(Präsenz)</td>
<td>Studienarbeiten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: keine</td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistung: schriftliche Prüfung;</td>
<td>Dauer: 120 Minuten</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021 Ostbayerische Technische Hochschule Regensburg
Inhalte

1. Der Werkvertrag nach BGB mit besonderer Berücksichtigung der AGB
 Überblick über die VOB/B
 Schwerpunktsbetrachtung von:
 - Vergütung von Leistungen (§ 2 VOB/B)
 - Folgen einer widersprüchlichen, fehlerhaften, ungenauen LB
 - Wirkung von Komplettierungs- und Pauschalierungsklauseln
 - Leistungsstörung im Bauablauf; Behinderung, Verzögerung
 - der Mangelbegriff im Werkvertragsrecht
 - die rechtliche Abnahme von Leistungen

Vergütung von Leistungen (VOB/B § 1, 2 und 15)

2. Nachträge und Nachforderungen
 - Anspruchsgrundlagen
 - Die Angebotskalkulation als Grundlage für die Nachtragsberechnung
 - Ansprüche aus Mengenmehrung und –minderung
 - Ansprüche bei Kündigung/ Teilkündigung
 - Ansprüche bei Änderung oder vertraglich nicht vorgesehenen Leistung
 - Nachforderungen bei Pauschalverträgen
 - Nachfolgeauftrag
 - Ansprüche bei Behinderung und Unterbrechung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Teil Prof. Denk:

(Wissen)
- die Anspruchsgrundlagen für Nachtragsforderungen nach VOB/B zu benennen (1).
- die Unterschiede zwischen geänderten und zusätzlichen Leistungen zu beschreiben (1).

(Fertigkeiten)
- Nachtragsforderungen den richtigen Anspruchsgrundlagen zuzuordnen (2).
- die rechtlichen Anforderungen an die Anmeldung und die Dokumentation von
 Nachtragsforderungen zusammenzustellen (3).
- die Höhe der Forderungen bei Nachträgen infolge Mehr- oder Mindermengen zu
 berechnen (3).
- eine Ausgleichsberechnung durchzuführen (3).
- Nachträge von Nachunternehmern auf Plausibilität zu prüfen (3).

Teil Prof. Karl:

- Überblick über das Werkvertragsrecht (1)
- Kenntnis über die Systematik des Schuldrechtes, der Leistungsstörung, der
 Pflichtverletzung (1)
- Unterschiede zwischen VOB/B und BGB Werkvertragsrecht (1)
• Kenntnis der VOB/B (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Teil Prof. Denk:

(Sozialkompetenz)
• unterschiedliche Sichtweisen und Interessen der beteiligten Vertragspartner zu reflektieren (2).
• ihre Nachtragsforderungen mit Anspruchsgrundlagen und Argumenten zu unterstützen (2)

(Selbstständigkeit)
• Nachtragsforderungen in einfachen Fällen anzuzeigen, zu dokumentieren und durchzusetzen (2).
• Sich anhand von Lernvideos selbstständig neuen Stoff anzueignen (3).

Angebotene Lehrunterlagen
Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien
Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur
Biermann – Der Bauleiter im Bauunternehmen, Verlagsgesellschaft Rudolf Müller
Drees, Paul – Kalkulation von Baupreisen, Bauwerkverlag Berlin
Vergabe- und Vertragsordnung für Bauleistungen, Beuth-Verlag
BGB
VOB/B und VOB/A
Kapellmann/Langen: Einführung in die VOB/B
Vygen/Schubert/Lang: Bauverzögerung und Leistungsänderung
ibr-online
Vorlesungsskripte, Sammlung der Rechtsprechungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-CAD IC RIB iTWO civil</td>
<td>B3-CAD IC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7. Semester</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-CAD IC RIB iTWO civil</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-CAD IC RIB iTWO civil</td>
<td>B3-CAD IC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Michael Giebisch (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
praktisches Arbeiten am System im CIP-POOL

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 Stunden praktisches Arbeiten am System (Präsenz)</td>
<td>75 Stunden eigenverantwortliches Lernen und Üben am System</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- Studienleistung: erfolgreiche Teilnahme am Praktikum am System
- Prüfungsleistung: Klausur am PC (am System), Dauer: 120 Minuten

Inhalte

- **Grundlagen zum Einsatz von RIB iTWO civil / RIB Bausoftware:**
 - Struktur und Handling des Programmsystems
 - Optimierung der Datenstruktur
- **Digitale Geländemodelle in der Planung, Ausführung und Abrechnung:**
 - Anwendung von Digitalen Geländemodellen in der Ingenieurvermessung und der Verkehrswegaufgaben
 - Fähigkeit zur REB – konformen Flächen und Mengenermittlung:
 - REB-Konforme Datenarten; Massen zwischen Horizonten Konstruktion und Abrechnung von Baugruben
- **Digitale Bestandsplanerstellung:**
 - Erstellung von Bestandsplänen, Sachdatenverwaltung und Einführung in Grundlagen von Geoinformationssystemen
- **Digitale Strassenplanung im Grund- und Aufriß:**
 - Konstruktion und Optimierung von Achsen und Gradienten auf der Grundlage eines Digitalen Geländemodells
 - Anwendung und Einsatz des Querprofilassistenten und des Regelquerschnittdesigners RQ-Designer
 - Anwendung von Knotenpunktassistenten
 - Konstruktion von digitalen Schleppkurven

Stand: 30.03.2021
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Die Planungs- und Abrechnungssoftware RIB iTWO civil in ihrem Leistungsumfang zu bewerten (1).
- Auf der Grundlage von Digitalen Geländemodellen Planungen von Verkehrswege und Erdbauwerken sowie den notwendigen Mengenermittlungen eigenständig durchzuführen. (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Komplexe Softwaresysteme zu beurteilen (2).
- Planungsaufgaben im Gesamtkontext der Digitalisierung im Baubereich zu bewerten und einzuschätzen (2).

Lehrmedien
Vorträge und Vorlesungen Multimedial

Literatur
- DIN – Normen (Ingenieurvermessung DIN 18710)
- Resnik/Bill : Vermessungskunde für den Planungs-, Bau- und Umweltbereich
- Möser/Müller/Schlemmer/Werner u. a. : Handbücher Ingenieurgeodäsie
- Matthews/Vermessungskunde ½
- Vorlesungsskript und Umdruckmaterialien aus den Lehrgebieten Vermessungskunde und Strassenbau
- u. a.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B3-COM II Computerorientierte Methoden II

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-COM II Computerorientierte Methoden II</td>
<td>B3-COM II</td>
</tr>
<tr>
<td>(Computer Oriented Methods II)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Computerorientierte Methoden I (B2-COM I)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-COM II Computerorientierte Methoden II</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-COM II Computerorientierte Methoden II (Computer Oriented Methods II)</td>
<td>B3-COM II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Euringer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>20 Stunden eigenverantwortliches Lernen (Eigenstudium) ; 40 Stunden Studienarbeiten und Prüfungsvorbereitung (Eigenstudium)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: schriftliche Prüfung; Dauer: 90 Minuten
Inhalte

Bauwerksinformationsmodelle
Definitionen der Begriffe
modellorientiertes Arbeiten
objektorientierte Modelle
parametrisches Modellieren
computergestütztes Simulieren
digitale Planungsprozesse
BIM in der Infrastrukturplanung
BIM - Schnittstellen, Austauschformate
Forschungsthematik durchgängige Modelle und Prozesse, parametrisches Modellieren in der Infrastrukturplanung (Brücken-, Trassen- und Baugrundmodelle)

Programmieren:
Visual Basic for Applications (VBA)
erweiterte Grundlagen der Programmierung
aufbauend auf den Kenntnissen aus Modul "Computerorientierte Methoden I": Spezifikation, objektorientierte Modellbildung in UML, einfache Daten und Datenstrukturen, Algorithmen, Datei-
IO Probleme
Daten / Datenstrukturen
Datentypen
einfache abgeleitete Datenstrukturen
Datenorganisation
tabellenorientierte Aufbereitung von Daten
Automatisierung von Excel mit VBA
Datei IO
Schnittstellen schreiben, lesen
ausgewählte Standard-Dateiformate: HTML, XML, Land-XML, DXF, STEP, IFC, Graphik-
Formate
Überblick SW-Engineering, professionelle Entwicklungsumgebungen, weitere
Programmiersprachen C++, C#, Java
Tabellenkalkulation
Lösung von tabellenorientierten, bauspezifischen Problemen auf Basis von MS-Excel mit VBA,
Datenimport und -export, Datenaufbereitung über VBA
Datenbanken
Grundlagen Datenmodelle, Relationale DB, DBMS, Datenbankentwurf anhand eines
bauspezifischen Beispiels (MS Access, ADO, DAO, VBA), SQL

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- weiterführende Informationen zum Einsatz spezifischer Planungssoftware für das Bauwesen praxisnahe einzusetzen (2)
- weiterführende theoretische Kenntnisse auf dem Gebiet digitaler Planungsprozesse umzusetzen (2)
- über folgende Inhalte zu diskutieren: (1)
 - BIM in der Infrastrukturplanung / Interoperabilität / verteiltes Arbeiten
 - Forschungsthematik durchgängige Modelle und Prozesse, parametrisches Modellieren in der Infrastrukturplanung (Brücken-, Trassen- und - Baugrundmodelle)
- grundsätzliche Methoden anzuwenden, die das redundanzfreie und hygienische Modellieren von Daten erlauben (1)
- mit Hilfe der erworbenen programmtechnischen Fähigkeiten, einfache Algorithmen und Schnittstellen selbst zu implementieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- weiterführende Themen des Building Information Modeling anwenden (2)
- fachlich und terminologisch die Thematik BIM zu diskutieren (2)
- eine technisch-mathematische Problemstellung in einem Algorithmus zu beschreiben und in ein Programm umzusetzen (2)
- aus Grundkenntnissen über Datenmodelle und Datenhaltung spezifische Problemstellungen versiert anzugehen und Datenimport- und Datenexportprobleme unabhängig von Standardsoftware selbst zu implementieren (2)

Angebotene Lehrunterlagen

Vorlesungsskripten, Vorlagedaten, Schulungsunterlagen; E-Learning-Plattform

Lehrmedien

Multimediale Vorlesung in Rechner-Pools mit Arbeit am Rechner

Literatur

CAD Modellierung im Bauwesen: Integrierte 3D- Planung von Brückenbauwerken, Prof. Dr.-Ing. Th. Euringer (Hrsg.), Fakultät Bauingenieurwesen – Bauinformatik/CAD, Ostbayerische Technische Hochschule Regensburg, 2011
arbeitskreis Bauinformatik. German Association of Computing in Civil Engineering (GACCE).
Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-FTB Fertigteilbau (B3-FTB Precast Concrete Structures)</td>
<td>B3-FTB</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Fakultät
Prof. Wolfgang Stockbauer Bauingenieurwesen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Baustoffkunde (B1-BO), Grundlagen des Stahlbetonbaus (B2-SB I-1,2)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>B3-FTB Fertigteilbau</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Ergänzendes Wahlpflichtmodul des zweiten Studienabschnitts im Bachelorstudiengang Bauingenieurwesen der OTH Regensburg.
Teilmodul	TM-Kurzbezeichnung
B3-FTB Fertigteilbau | B3-FTB

Verantwortliche/r	Fakultät
Prof. Wolfgang Stockbauer | Bauingenieurwesen

Lehrende/r / Dozierende/r	Angebotsfrequenz
Christoph Gruber (LB) |

Lehrform
Seminaristischer Unterricht mit Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Stunden seminaristischer Unterricht (Präsenz); 15 Stunden Praktikum (2 Praxistage Firmengruppe Klebl)</td>
<td>30 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: Anwesenheitspflicht an den Praxistagen, schriftliche Klausur, Dauer: 60 Minuten
Prüfungsleistung: schriftliche Klausur, Dauer: 60 Minuten

Inhalte

- Entwurfs- und Konstruktionsgrundlagen
- Plan- und Qualitätsmanagement im Fertigteilbau
- Bauteile im konstruktiven Fertigteilbau
- Schalung, Bewehrung, Vorspannen von Fertigteilen
- Betontechnologie im Fertigteilbau
- Statische Berechnung und Bemessung konstruktiver Details bei Fertigteilkonstruktionen
- Verwendung von Einbauteilen
- Montage von Fertigteilen
- Faser und textilbewehrter Beton im Fertigteilbau

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den Einsatz von Betonfertigteilen im Industrie – und Gewerbebau im Entwurf und in der Konstruktion zu bewerten. (1)
- den Einsatz von Schalungen, Bewehrung, Vorspannung und Betontechnologie bei konstruktiven Betonfertigteilen einzuschätzen. (1)
- Planungsabläufe und Qualitätssicherung im Fertigteilbau im Kontext Bau einzuordnen. (1)
- Betonfertigteile zu Bemessen. (2)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• die stationäre Fertigung von Betonfertigteilen aus dem Blickwinkel der Planung, der
 Arbeitsvorbereitung, der Baulogistik und der Montage im Gesamtkontext zu örtlichen
 Baustellen zu bewerten und einzusetzen. (2)

Lehrmedien

Vortragsvorlesung mit Beamer-/Tafelunterstützung

Literatur

• Schlaich, Konstruieren im Stahlbetonbau, Betonkalender 2001/I, Verlag Ernst + Sohn
• Betonfertigteile im Geschoss- und Hallenbau – Grundlagen für die Planung,
 Fachvereinigung Deutscher Betonfertigteilbau e.V., 53179 Bonn
• Bindseil, Stahlbetonfertigteile, Werner-Verlag
 Beton- und Stahlbetonbau 103 (2008), Heft 2.
• Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-GBT Gebäudetechnik und Bauphysik II</td>
<td>B3-GBT</td>
</tr>
<tr>
<td>(B3-GBT Facility Management and Building Physics II)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Bauphysik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-GBT Gebäudetechnik und Bauphysik II</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-GBT Gebäudetechnik und Bauphysik II</td>
<td>B3-GBT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Facility Management and Building Physics II)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrian Blödt (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Matthias Trauner (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen und Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teil 1 und Teil 2: 60 Stunden Seminaristischer Unterricht (Präsenz)</td>
<td>Teil 1: 30 Stunden eigenverantwortliches Studium; Teil 2: 30 Stunden eigenverantwortliches Studium, Erstellung der Studienarbeit (mit Recherche, Umsetzung, Programm)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung:
Teil 1 - Gebäudetechnik: Klausur, 90 Minuten
Teil 2 - Bauphysik II: Studienarbeit
Inhalte

Teil 1: Gebäudetechnik
- Einleitung: Zusammengehörigkeit von Energieeffizienz – Energieeinsparung - Erneuerbare Energien und der Einsatz in der Gebäudetechnik
- Einflussfaktoren des Raumklimas und Bezug zur Behaglichkeit
- Wärmeübertragungssysteme und Einsatzmöglichkeiten
- Prinzipien und Strategien der Wärme- und Stromversorgung von Gebäuden mit erneuerbaren Energien. Themen u.a.: Potenziale und typische Kombinationen, ökologische und ökonomische Bewertung der Systeme
- Beispiele anhand verschiedener Gebäudekonzepte
- Nah- und Fernwärmeversorgung: Mögliche Strategien der Nutzung erneuerbarer Energieträger
- Grundlagen der Energiespeicherung
- Wasserversorgung und Abwasserentsorgung in Verbindung mit Dimensionierung der verschiedenen Leitungen
- Erneuerbare-Energien-Gesetz, Energieeinsparungsgesetz

Teil 2: Bauphysik II
1. Sommerlicher Wärmeschutz
 Motivation und Grundlagen (Normen, physikalische Grundlagen und Verfahren)
 DIN 4108-2 - Handrechenverfahren zur Nachweispflichtungs Beispielrechnungen mit Hand und Excel Simulationsmethoden
 Benutzung des Programms „Simulation 3D Plus“

 2. Instationärer, gekoppelter Wärme- und Feuchtetransport
 Theoretische Grundlagen
 Numerische Lösungsverfahren - WUFI („Wärme-und-Feuchte-instationär“)
 Vergleich mit Glaser-Nachweis (DIN 4108-3)
 Normativer Hintergrund
 Programmbedienung
 Beispiele: Holzbau, Schutz vor Pilzbefall

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Teil 1: Gebäudetechnik
- die Zusammenhänge zwischen den Ausführungen der Gebäudehülle, dem Raumklima und den gegebenen Behaglichkeitsanforderungen zu benennen und anzuwenden sowie die klimatischen Einflussfaktoren zu bestimmen (2)
- darüber hinaus sind sie in der Lage mögliche Raumkonditionierungssysteme und Wärmeübertragungstechniken für den jeweiligen Einsatzzweck zu bestimmen und anzuwenden (1)
- Zusammenhänge von der Energieerzeugung bis zur Gebäudeversorgung darstellen und den Einsatz von alternativen Energiequellen und deren Potenziale bewerten zu können (1)
- typische Versorgungskonzepte für Gebäude und Quartiere mit erneuerbaren Energien inkl. Grundlagen zur ökologischen und ökonomischen Bewertung zu konzeptionieren und dazugehörige Speicherkonzepte zu bewerten (1)
- Grundlagen zur Auslegung von Ver- und Entsorgungsleitungen, bauliche Vorgaben und ausführungstechnische Regelwerke anwenden sowie die Trinkwasserbereitung mittels Effizienz- und Hygienekriterien zu bewerten (2)
Inhalte des Erneuerbare-Energien-Gesetzes und des Erneuerbare-Energien-Wärme-Gesetzes anwenden zu können (3)

Teil 2: Bauphysik

- den Sinn und die Notwendigkeit des sommerlichen Wärmeschutzes zu kennen (1)
- einen Nachweis des sommerlichen Wärmeschutzes nach dem Handrechenverfahren durchzuführen (2)
- den Unterschied zwischen leichter, mittlerer und schwerer Bauweise zu erklären (1)
- die Regeln zur Berücksichtigung der wirksamen Wärmespeicherfähigkeit der Gebäudemasse anzuwenden (2)
- zu differenzieren, wann ein sommerlicher Wärmeschutznachweis zu erbringen ist und welche Methoden dafür zur Verfügung stehen (2)
- ein einfaches Gebäudesimulationsprogramm zu bedienen, um anhand eines Gebäudemodells einen simulatorischen Nachweis zu führen (2)
- selbständig ein Gebäudemodell aufzubauen und eine Gebäudesimulation für den sommerlichen Wärmeschutz durchzuführen (3)
- die Problematik der Baustofffeuchte im Holzbau zu erklären (2)
- Verschiedene Feuchtetransportmechanismen in Baustoffen zu benennen (1)
- das Programm WUFI zu bedienen und in 1D- bzw. 2D-Modellen den Feuchtehaushalt zu berechnen (2)
- Maßnahmen zu finden, um feuchtetechnische Probleme zu vermeiden (3)
- selbständig Feuchtesimulationen durchzuführen und mit eigenen Modellen ein konkretes konstruktives Problem zu lösen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Teil 1: Gebäudetechnik
- Gebäudetechnische Fragen und Problemstellungen in Konzeptionierung und Planung analysieren und bewerten zu können (2)
- im Team an einer gemeinsamen Aufgabenstellung zu arbeiten (3)
- fachliche Problemstellungen diskutieren und Lösungen ggf. mittels Recherche zu erarbeiten (3)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2)
- die eigenen Ergebnisse in der Gruppe zu präsentieren (3)

Teil 2: Bauphysik

- Problemstellungen zu strukturieren und zu analysieren sowie Lösungsstrategien zu erarbeiten (3)
- fachliche Fragen klar zu formulieren (1)
- im Team an einer gemeinsamen Aufgabenstellung zu arbeiten (2)
- eigene Ergebnisse aus Simulationsrechnungen kritisch zu hinterfragen (3)
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2)
- fachliche Fragen angemessen zu beantworten (2)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2)
- die eigenen Ergebnisse in der Gruppe zu präsentieren (3)
Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Teil 1: Gebäudetechnik</th>
<th>Unterlagen auf der e-Learning-Plattform (Folien und Handreichungen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Teil 2: Bauphysik</th>
<th>Unterlagen auf der e-Learning-Plattform (Folien und Handreichungen)</th>
</tr>
</thead>
</table>

Lehrmedien

| Teil 1: Gebäudetechnik: Tafel, Beamer, Simulationen, Demonstrationsversuche |
| Teil 2: Bauphysik: Tafel, Beamer, Computersimulationen, Demonstrationsversuche, Vorlesungsskript & Übungsblätter |

Literatur

| Teil 1: Gebäudetechnik | Unterlagen auf der e-Learning-Plattform |

| Teil 2: Bauphysik | Unterlagen auf der e-Learning-Plattform (Folien und Handreichungen) |

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-GDB Grundlagen der Baudynamik (Structural Dynamics)</td>
<td>B3-GDB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2 ECTS-Credits</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Lehrveranstaltung B1-MAB

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-GDB Grundlagen der Baudynamik</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B3-GDB Grundlagen der Baudynamik

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-GDB Grundlagen der Baudynamik (Structural Dynamics)</td>
<td>B3-GDB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Othmar Springer</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>30 Stunden eigenverantwortliches Lernen, Studienarbeiten, Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: schriftliche Klausur; Dauer 60 Minuten
Prüfungsleistung: keine

Inhalte

- Überblick über die Grundlagen
- Bewegungsgleichungen einfacher Systeme
- Bewegungsgleichungen komplexer Systeme
- Auslegung von Maschinenfundamenten
- Erdbebenbemessung
- Maste und Antennentragwerke
- Brücken

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die im Bauwesen vorkommenden dynamischen Aufgabenstellungen zu kennen (1).
- dynamische Problemstellungen im Bauwesen einzuschätzen (2).
- einfache Berechnungsverfahren der Baudynamik anzuwenden (2).
- grundlegende Möglichkeiten zu kennen, um Schäden infolge dynamischer Einwirkungen konstruktiv zu vermeiden (2).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- konstruktive Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien
Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur
Petersen, C.: Dynamik der Baukonstruktionen, Vieweg-Verlag (jeweils aktuelle Ausgabe)
Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-GIS Geoinformationssysteme GIS</td>
<td>B3-GIS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mathias Müller</td>
<td>Bauingenieurwesen</td>
</tr>
<tr>
<td>Prof. Wolfgang Stockbauer</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Lehrveranstaltungen B2-VK

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-GIS Geoinformationssysteme (GIS)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>B3-GIS Geoinformationssysteme (GIS)</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
<th>Prof. Wolfgang Stockbauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Mathias Müller</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
<th>in jedem Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht / workshop / E-Learning Lehrform „Blended Learning“

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehramfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h Vorlesung, GNSS-workshop</td>
<td>142 h Eine detaillierte Abschätzung des Zeitaufwandes für das eigenverantwortliche Studium wird in der Einführungs-veranstaltung erläutert und ist in Moodle zu finden</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Zur Studienleistung gehören (als Eigenkontrolle des Lernfortschritts) zwei Studienarbeiten (Einsendearbeiten) zum vhb-Kurs

Die Prüfungsleistung ist in zwei Teilprüfungen zu erbringen.

Eine Teilprüfung wird in Form einer elektronisch zu erstellenden Einsendearbeit zum vhb-online-Kurs „Einführung Geoinformatik und Geoinformationssysteme“ erbracht; diese Teilprüfung wird durch die Lehrenden der virtuellen Hochschule Bayern (TH Deggendorf, Uni Passau) bewertet.

Die zweite Teilprüfung wird in Form einer Präsenzklausur (90 Minuten Prüfungszeit) an der OTH Regensburg erbracht; diese Teilprüfung wird von den Modulverantwortlichen Dozenten der OTH Regensburg bewertet. Die Note wird aus beiden Teilprüfungen gleichgewichtet gebildet (50% der Note aus Leistungen in der Einsendearbeit, 50% der Note aus Leistungen in der Präsenzklausur).

Zugelassene Hilfsmittel für Leistungsnachweis

Inhalte

Online-Kurs in drei Teilen; Präsenzvorlesungen

Teil 1 Online-Kurs (Grundlagen und Programmanwendung):
- Anwendungsbereiche der Geoinformatik - Eine Einführung
- Grundlagen der Geoinformatik
- Projektion, Symbologie und Visualisierung von Karten
- Speicherung von Geodaten - Datenstrukturen und Datenformate
- Geodatenbanken
- Räumliche Analysen
- Georeferenzieren und Editieren
- Netzinformationssysteme
- WebGIS - Geoinformation im Internet
- Zukunftsthemen der Geoinformatik

Teil 2 Online-Kurs (GIS-Anwendungen für Bauingenieure):
- Schwerpunkt: Geoinformation als Planungs- und Präsentationswerkzeuge für Bauingenieure, z.B.
- Beschaffen von und kritischer Umgang mit Geodaten
- Datengewinnung und -verwaltung für Infrastrukturbauwerke z.B. öffentl. Straßen, kommunale Kanalisation usw.
- Visualisierung von z.B. Hochwasserflächen
- Visualisierung von Planungen des Ingenieurbaus durch z.B. Einpassen von Planungen in Earth-Viewer (z.B. Google Earth)
- Schwerpunkt GNSS Global Navigation Satellite Systems
- Workshop GNSS mit praktischen Übungen

Teil 3 Online-Kurs (Vertiefungsmodul der vhb für Bauingenieure):
- Erarbeiten und Visualisieren einer konkreten Ingenieuraufgabe mit den erlernten Hilfsmitteln der Geoinformatik.

Präsenzvorlesungen:
- Schwerpunkt: Geoinformation als Planungs- und Präsentationswerkzeuge für Bauingenieure
- Schwerpunkt:
 - Moderne Meßsensorik zur Erhebung von Geodaten;
 - GNSS-Anwendungen in der Ingenieurbauvermessung zur Erhebung von Geodaten;
 - Import von Geodaten in ArcGIS / ArcView mit ausgewählten Anwendungsbeispielen;

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, praxisorientiert anhand zahlreicher Anwendungsbeispiele mit einer GIS-Software und öffentlich verfügbaren Geodaten zu arbeiten. (2)

Nach der erfolgreichen Absolvierung des Moduls verfügen die Studierenden über die grundlegenden Kenntnisse im Hinblick auf Geoinformationen, deren Methoden, Techniken und Hintergründe. Hierbei steht der Praxisbezug im Vordergrund. (2)
Grundlage des Kurses bildet die kommerzielle Software ArcGIS/ArcMap der Fa. ESRI. Eine Softwarelizenz wird den Kursteilnehmern zur Verfügung gestellt.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- im Rahmen von Übungen die erlernten Kenntnisse unmittelbar auf kleine Beispiele zu übertragen (2)
- Recherchemöglichkeiten im Bereich der Geoinformationen zu nutzen. (2)
- Geoinformationen in ihrer Qualität beurteilen zu können. Sie werden für den eigenständigen Umgang mit Geoinformationssystemen qualifiziert und erwerben Kompetenz im Umgang mit Geoinformationen für Bauingenieure. (2)

Durch die gruppenorientierte Erarbeitung von Studienarbeiten üben Studierende ihre sozialen Fähigkeiten und Teamfähigkeit. Sie erlernen die gemeinsame Beschaffung von und den Umgang mit Geodaten aus hochschulexternen Quellen (3)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele im E-Learning

Lehrmedien

Präsenzveranstaltung als Einführungskurs;
Online-Kurs (E-Learning) der Virtuellen Hochschule Bayern (vhb) in zwei Teilen plus Vertiefungsmodul Bau
Präsenzveranstaltung GNSS-workshop

Literatur

- Vorlesungsskripte zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-GNB Grundlagen des nachhaltigen Bauens

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-GNB Grundlagen des nachhaltigen Bauens</td>
<td>B3-GNB</td>
</tr>
<tr>
<td>(B3-GNB Basic principles of sustainable building)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susanne Hüttner (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
alle Grundlagenfächer

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-GNB Grundlagen des nachhaltigen Bauens</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Ergänzendes Wahlpflichtmodul des zweiten Studienabschnitts im Bachelorstudiengang Bauingenieurwesen der OTH Regensburg.
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-GNB Grundlagen des nachhaltigen Bauens

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-GNB Grundlagen des nachhaltigen Bauens</td>
<td>B3-GNB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susanne Hüttner (LB)</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susanne Hüttner (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
</tr>
</tbody>
</table>

Durch selbstgesteuertes Lernen und Diskussion wird eine große Wissenstiefe erreicht. Durch Gruppenarbeit und Präsentation wird die soziale Kompetenz gestärkt.

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. /7. Semester</td>
<td>2 SWS</td>
<td>deutsch/englisch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>30 Stunden Vor- und Nachbearbeitung der Vorlesungen, Projektarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolioprüfung</td>
</tr>
</tbody>
</table>

Inhalte

- Relevanz Nachhaltigen Bauens
- Nachhaltigkeitsmodelle (Drei-Säulen-Modell/ Vorrangmodell)
- Nachhaltigkeitsprinzipien (Effizienz, Konsistenz, Suffizienz)
- Ökologische Dimension (Ökobilanzierung)
- Ökonomische Dimension (Lebenszykluskostenanalyse)
- Soziokulturelle Dimension
- Technische Qualität
- Prozessqualität (Planung, Bauausführung, Betrieb)
- Standortqualität
- Bewertungssysteme der Nachhaltigkeit (DGNB, BNB, LEED, BREEAM)
- Cradle-to-cradle/ Circular Economy/ Urban Mining u.ä.
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-GNB Grundlagen des nachhaltigen Bauens

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• Fachbegriffe zu erläutern (1)</td>
</tr>
<tr>
<td>• die grundlegenden Bewertungskriterien des nachhaltigen Bauens zu benennen (1)</td>
</tr>
<tr>
<td>• sich selbst Fachwissen in diesem zukunftsrelevanten Thema zu erarbeiten(3)</td>
</tr>
</tbody>
</table>
| • die komplexen Zusammenhänge der Nachhaltigkeits-Kriterien in Bezug auf ein Projekt zu
 beurteilen (3) |
| • ein Projekt hinsichtlich seiner Nachhaltigkeit zu optimieren (3) |

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• ganzheitlich und interdisziplinär zu denken (3)</td>
</tr>
</tbody>
</table>
| • Einflussfaktoren der Nachhaltigkeit und deren Zusammenwirken in einem Projekt zu
 berücksichtigen (3) |
| • in einem Team zu arbeiten (2) und sich selbst zu organisieren (2) |
| • fachliche Inhalte darzustellen (2) und vor einem Publikum zu präsentieren (1) |
| • mit Fachvertretern/ fachfremden Personen über nachhaltiges Bauen zu diskutieren (2) |

<table>
<thead>
<tr>
<th>Angebote Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesungsunterlagen, Fachliteratur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimedial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>
| DIN EN 15643: Nachhaltigkeit von Bauwerken - Allgemeine Rahmenbedingungen zur
 Bewertung von Gebäuden und Ingenieurbauwerken |
| Leitfaden Nachhaltiges Bauen des Bundesministeriums für Verkehr, Bau und
 Stadtentwicklung |
| Bauer Michael, Mösle Peter, Schwarz Michael: Green Building, Leitfaden für nachhaltiges
| Friedrichsen Stefanie: Nachhaltiges Planen, Bauen und Wohnen : Kriterien für Neubau
 und Bauen im Bestand , Berlin/ Heidelberg: Springer 2018 |
| https://www.nachhaltigesbauen.de/- https://www.dgnb.de |

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitere Informationen erhalten Sie auf Anfrage bei susanne1.huettner@oth-regensburg.de</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg Seite 168
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-GT II Geotechnik II (Geotechnics II)</td>
<td>B3-GT II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Neidhart</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-IGB Bodenmechanik und Ingenieurgeologie (Soil mechanics and geology for civil engineers) sowie Geotechnik I (Geotechnics I)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
B3-GT II Geotechnik II | B3-GT II

Verantwortliche/r	Fakultät
Prof. Dr. Thomas Neidhart | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
---|---
Prof. Dr. Thomas Neidhart | in jedem Semester

Lehrform
Seminaristischer Unterricht mit Übungen auch am Rechner

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

| Zeitauflaufwand: |
|---|---|
| Präsenzstudium | Eigenstudium |
| 60 Stunden seminaristische Lehrveranstaltungen | 90 Stunden eigenverantwortliches Lernen, Studienarbeiten |

Studiien- und Prüfungsleistung

Studienleistung: Anerkannte Studienarbeiten mit Abgabe der bearbeiteten Studienarbeit
Prüfungsleistung: schriftliche Prüfung Dauer: 120 Minuten

Inhalte

- Nachweis der Gesamtstandsicherheit (kreisförmigen Bruchmechanismen, Lamellenverfahren, Starrkörperbruchmechanismen);
- Erde-Verbundkonstruktionen und Hangsicherungen: Einordnung, Definition, Ausbildungen; Bemessung von Erde-Verbundkonstruktionen und Hangsicherungen (Dübel, Anker, Nägel)
- Tiefgründungen: Einordnung, Definition, Ausbildungen, Wirkungsweise von Pfählen; Bemessung von Einzelpfählen (vertikal und horizontal); Negative Mantelreibung, Seitendruck auf Pfähle; Hinweise zur Bemessung und Ausbildung von Pfahlgruppen und Brunnengründungen.
- Tiefe Baugruben: Schlitz- und Bohrpfahlwände, Mixed-in-Place-Verfahren; Mehrlagige Aussteifungen und Verankerungen; Unterwasserbeton und Auftriebssicherung; Wasserdichte Baugruben.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Nachweise der Gesamtstandsicherheit unter Berücksichtigung von Hangsicherungskonstruktionen auch mit Geotechnik-Programmen zu führen (3).
Kennen die Studierenden die Verfahren des Spezialtiefbaus zur Ausbildung von Tiefgründungen, Hang- und Baugrubensicherungen und können deren jeweiligen Anwendungsgrenzen beurteilen (3).

Haben die Studierenden Grundlagenkenntnisse zu den Besonderheiten von tiefen, innerstädtischen Baugruben und daran angepasste Bauverfahren (1).

Können die Studierende alle v. g. die Bauweisen und Bauverfahren überschlägig dimensionieren, so dass diese in Planung, Angebotsbearbeitung und Ausführung berücksichtigt werden können (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• konstruktive Aufgabenstellungen zu erfassen (2).
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2). ihre Fachkenntnisse realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum, Programmhandbücher

Lehrmedien
Multimediale Vortragsvorlesung mit Visualizer, Geotechnik-Software, Exkursionen, Exponate, Modelle

Literatur
• Witt, K. J. (Hrsg.): Grundbau-Taschenbuch. Teile 1 bis 3; 8. Auflage, Ernst & Sohn Verlag, 2017.
• Normen und RegelwerkeSkript zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Weitere Informationen zur Lehrveranstaltung
Siehe Kurs im E-Learning

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B3-HOAI Grundlagen der HOAI

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-HOAI Grundlagen der HOAI</td>
<td>B3-HOAI</td>
</tr>
<tr>
<td>(B3-HOAI Basics of the official scale of fees for services by architects and engineers)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Florian Weininger</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen: keine

Empfohlene Vorkenntnisse: Baubetriebskenntnisse

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-HOAI Grundlagen der HOAI</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-HOAI Grundlagen der HOAI</td>
<td>B3-HOAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B3-HOAI Basics of the official scale of fees for services by architects and engineers)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Florian Weininger</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolfgang Jobst (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit praktischen Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>30 Stunden eigenverantwortliches Lernen, Studienarbeiten, Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: keine
Prüfungsleistung: Klausur; Dauer: 90 Minuten

Inhalte

- Inhalte aus der HOAI
- Honorarberechnungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundkenntnisse der maßgeblichen HOAI (1)
- Erstellung einfacher HOAI-Abrechnungen (2)
- Grundkenntnisse des Vergaberechts für Planungsleistungen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- kontroverse Diskussionen sachlich zu führen und zielorientiert zu beenden (1)
- mit konstruktiver Kritik umgehen zu können (1)
- sich der Folgen ihrer Entscheidungen bewusst zu sein (1)
<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOAI und Kommentare dazu, Skript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOAI und Kommentare dazu</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-IS Bautenschutz und Instandsetzung</td>
<td>B3-IS</td>
</tr>
<tr>
<td>(B3-IS Structural Protection, Maintainance and Repair of Buildings)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Charlotte Thiel</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Anwesenheitspflicht, Präsentation, Prüfung

Empfohlene Vorkenntnisse
Dieses Seminar baut auf den Vorlesungsinhalten des Grundstudiums in Baustoffkunde und Bauchemie auf, vertieft und ergänzt die Inhalte

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-IS Bautenschutz und Instandsetzung</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-IS Bautenschutz und Instandsetzung (B3-IS Structural Protection, Maintainance and Repair of Buildings)</td>
<td>B3-IS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Charlotte Thiel

Fakultät
- Bauingenieurwesen

Lehrende/r / Dozierende/r
- Johannes Flotzinger

Angebotsfrequenz
- in jedem Semester

Lehrform
- Seminar

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden Seminar</td>
<td>30 Stunden eigenverantwortliches Lernen, Präsentationsvorbereitungen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: Anwesenheitspflicht, Präsentation
Prüfungsleistung: Klausur 90 Minuten

Inhalte

Am Beginn des Semesters wird der Schwerpunkt Abdichtung eingeführt. Dann folgen Lerneinheiten zur Instandsetzung:
- Einführung Dauerhaftigkeit von Stahlbeton
- Risse in Stahlbetonbauten, Ursachen, Bewertung, Vermeidung und Instandsetzung
- Schrägdachdeckung und Instandsetzung
- Richtige Putzausführung, Putzschäden und Sanierputze Natursteininstandsetzung im Zuge einer Exkursion zur Dombauhütte (SoSe) bzw. zur Steinernen Brücke (WiSe)

Mit Selbstgesteuertem Lernen:
- Abdichtung Keller mit Bahnenabdichtungen, Beschichtungen sowie als WU-Konstruktionen, Drainagen
- oder wechselnd Abdichtung horizontaler Flächen und Parkgaragen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Studierenden
- haben ausgewählte Kapitel der Instandsetzung vertieft und ein Spezialgebiet auf dem Gebiet der Abdichtung selbst erarbeitet und präsentiert. (3)
- haben Basiskompetenzen zur Bauwerksabdichtung und Bauwerksinstandsetzung (1),
- verstehen die Einwirkungen durch Feuchtigkeit auf das Bauwerk (2),
- sind fähig Abdichtungsmaßnahmen zu planen und die fachgerechte Ausführung zu leiten (3),
- kennen die wichtigsten Abdichtungsmaterialien und deren fachgerechten Einsatz (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Aufgabenstellungen der Instandsetzung und Abdichtung zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (3).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Am Laufwerk k bereitgestellte Literatur und Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Lehrmedien

Seminar, Exkursionen, Präsentationen der Studenten
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-IS Bautenschutz und Instandsetzung

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZTV- ING Teil 7 Brückenbeläge</td>
</tr>
<tr>
<td>ZTV- BEL-B Teil 1 bis 3 teilweise in ZTV-ING enthalten TP- BEL-B Technische Prüfvorschriften</td>
</tr>
<tr>
<td>TL-BEL-B Technische Lieferbedingungen</td>
</tr>
<tr>
<td>DIN 18531 Abdichtung von Dächern sowie von Balkonen, Loggien und Laubengängen</td>
</tr>
<tr>
<td>DIN 18531-1: Nicht genutzte und genutzte Dächer – Anforderungen, Planungs- und Ausführungshinweise</td>
</tr>
<tr>
<td>DIN 18531-2: Nicht genutzte und genutzte Dächer – Stoffe</td>
</tr>
<tr>
<td>DIN 18531-3: Nicht genutzte und genutzte Dächer – Auswahl, Ausführung und Details</td>
</tr>
<tr>
<td>DIN 18531-4: Nicht genutzte und genutzte Dächer – Instandhaltung</td>
</tr>
<tr>
<td>DIN 18531-5: Balkone, Loggien und Laubengänge</td>
</tr>
<tr>
<td>DIN 18532 Abdichtung von befahrbaren Verkehrsflächen aus Beton</td>
</tr>
<tr>
<td>DIN 18532-1: Anforderungen, Planungs- und Ausführungsgrundsätze</td>
</tr>
<tr>
<td>DIN 18532-2: Abdichtung mit einer Lage Polymerbitumen-Schweißbahn und einer Lage Gussasphalt</td>
</tr>
<tr>
<td>DIN 18532-3: Abdichtung mit zwei Lagen Polymerbitumenbahnen</td>
</tr>
<tr>
<td>DIN 18532-4: Abdichtung mit einer Lage Kunststoff- oder Elastomerbahn</td>
</tr>
<tr>
<td>DIN 18532-5: Abdichtung mit einer Lage Polymerbitumenbahn und einer Lage Kunststoff- oder Elastomerbahn</td>
</tr>
<tr>
<td>DIN 18532-6: Abdichtung mit flüssig zu verarbeitenden Abdichtungsstoffen</td>
</tr>
<tr>
<td>DIN 18533-1 Abdichtung von erdberührten Bauteilen – Teil 1: Anforderungen, Planungs- und Ausführungsgrundsätze</td>
</tr>
<tr>
<td>DIN 18533-2 Abdichtung von erdberührten Bauteilen – Teil 2: Abdichtung mit bahnenförmigen Abdichtungsstoffen</td>
</tr>
<tr>
<td>DIN 18533-3 Abdichtung von erdberührten Bauteilen – Teil 3: Abdichtung mit flüssig zu verarbeitenden Abdichtungsstoffen</td>
</tr>
<tr>
<td>DIN 18195 Abdichtung von Bauwerken - Begriffe</td>
</tr>
<tr>
<td>EOTA: ETAG 005 Leitlinie für eine europäische technische Zulassung für flüssig aufzubringende Dachabdichtungen, 2000.</td>
</tr>
<tr>
<td>DIBt: Bauregelliste B Teil 1</td>
</tr>
<tr>
<td>Standardleistungsbuch für das Bauwesen (StLB): Leistungsbereich 021 Dachabdichtungsarbeiten.</td>
</tr>
<tr>
<td>Lufsy – Bauwerksabdichtung, Vieweg + Teubner, 2010</td>
</tr>
<tr>
<td>Ernst, W.: Dachabdichtung, Dachbegrünung. Sonderband Abdichtung. Eigenverlag</td>
</tr>
<tr>
<td>Ernst, W. et. al.: Dachabdichtung, Dachbegrünung. Teil III: Grundlagen und Erkenntnisse zur Konstruktion...IRB, Stuttgart.</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 178
Ernst, W.: Dachabdichtung, Dachbegrünung. Fehler, Band 1, IRB, Stuttgart.
Fix, W. et. al.: Der schadensfreie Hochbau, Grundlagen zur Vermeidung von Bauschäden, Band 1 Rohbau. Rudolf Müller, Köln.
Deutsche Vereinigung für Beton und Bautechnik: Merkblatt Parkdecks und Tiefgaragen.
Haag, A.; Emig, K.-F.: Abdichtung im Gründungsbereich und auf genutzten Deckenflächen, Ernst & Sohn, 2002

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-iTWO Planen und Bauen mit RIB iTWO</td>
<td>B3-iTWO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Bernhard Denk</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Grundlagen des Baubetrieb
Grundlagen der Baukonstruktion

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-iTWO Planen und Bauen mit RIB iTWO</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
B3-iTWO Planen und Bauen mit RIB iTWO | B3-iTWO

Verantwortliche/r	Fakultät
Prof. Bernhard Denk | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
Peter Prison (LB) | in jedem Semester

Lehrform
Vortragsvorlesung mit paralleler Bearbeitung am Computer

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h</td>
<td>30 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Prüfungsleistung: Klausur, Dauer: 60 Minuten

Inhalte
Module:
- Projektaufbau und -verwaltung
- Leistungsverzeichnisse erstellen und bearbeiten
- Massenermittlung per Aufmaß
- Kalkulation
- Abrechnung
- Nachträge anlegen und verwalten
- AVA – Ausschreibung, Vergabe, Abrechnung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Das Programm iTWO der Firma RIB zu bedienen (2)
- Ein Projekt anzulegen und zu verwalten (2)
- Leistungsverzeichnisse zu erstellen und nach den Anforderungen in der Bauindustrie zu verwalten (3)
- Eine Kalkulation aufzubauen incl. deren Zusammenhang mit Einzelansätzen (1)
- Eine Massenermittlung mittels Aufmaßes für die Rechnungsstellung zu erstellen (3)
- Nachtragsangebote anzulegen und verwalten (2)
- Eine Ausschreibung, Vergabe und Abrechnung gegenüber Nachunternehmern anzulegen (1)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Den Zusammenhang zwischen technischen und kaufmännischen Belangen im Baubetrieb zu überblicken (2)
- Die komplexe Kette innerhalb eines Bauunternehmens bei der Projektabwicklung von der Kalkulation bis zur Abrechnung zu überblicken. (1)
- Fachliche Fragestellungen vor dem Hintergrund der Abhängigkeiten innerhalb der Projektabwicklung in größerem Maßstab zu bewerten und zu beantworten. (1)

Angebotene Lehrunterlagen
Vorlesungsskript, Prüfungsvorbereitungskatalog, Übungdateien im GAEB-Format

Lehrmedien
Bearbeitung der Software an den Rechnern des CIP-Pools

Literatur

Weitere Informationen zur Lehrveranstaltung
Bei Teilnahme an 5 von 6 Vorlesungen erhält eines Zertifikats von RIB

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
B3-MESS Zustandsbewertung bautechnischer Strukturen - Strategien und Methoden (B3-MESS Assessment of engineering structures - strategies and methodologies) | B3-MESS

Modulverantwortliche/r	Fakultät
Prof. Charlotte Thiel | Bauingenieurwesen |

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
6. | 3. | Wahlpflicht | 2 |

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Grundlegende Kenntnisse der Physik und der Werkstoffe

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang [SWS o. UE]	Arbeitsaufwand [ECTS-Credits]
1. | B3-MESS Zustandsbewertung bautechnischer Strukturen - Strategien und Methoden | 2 SWS | 2 |

Hinweise zur Belegungspflicht oder zu Optionen
Ergänzendes Wahlpflichtmodul des zweiten Studienabschnitts im Bachelorstudiengang Bauingenieurwesen der OTH Regensburg.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-MESS Zustandsbewertung bautechnischer Strukturen - Strategien und Methoden</td>
<td>B3-MESS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Charlotte Thiel</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolfgang R. Habel (LB)</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. /7. Semester</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Stunden Seminar</td>
<td>28 Stunden eigenverantwortliches Lernen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
</table>

Leistungsnachweis:
1 Prüfungskolloquium (15 Min.) oder Klausur (60 Min.)
optional 1 Referat (20 Min.) oder eigenständige Studienarbeit
Inhalte

Grundlegende Monitoring-Strategien als Bestandteil der Bauwerksdiagnostik.
- Was ist Monitoring? Typische Monitoring-Aufgaben.
- Was sind Ziele des Monitorings; welche Effekte sollen erreicht werden?

Messaufgaben und Anforderungsprofile.
- Typische Messaufgaben und Messgrößen für die Bewertung und Erhaltung der Bausubstanz
- Wie wird eine zuverlässige Messkette strukturiert?
- Behandlung der Messdaten; Identifizierung von Störeinflüssen.

Kriterien für Auswahl und Einsatz von Sensorik.
- Messtechnologische Anforderungen zur Findung der bestens geeigneten Lösung;
- Anforderungen an die Messverfahren und Charakteristik der Messtechnik;
- Bewertung von Sensor-Spezifikationen in Prospekten;
- Fragen der Dauerhaftigkeit messtechnologischer Lösungen; Grundlagen der Validierung der Systemkomponenten und des Sensorverhaltens.

Beispiele des Bauzustandsmonitorings anhand moderner Monitoringverfahren
- Beschreibung von Beispielanwendungen aus unterschiedlichen Bereichen des Bauwesens zur Schadensfrüherkennung bzw. Schadensbewertung;
- Einbeziehung innovativer optischer/faseroptischer Mess- und Monitoringverfahren;

Wichtige Aspekte bei der praktischen Anwendung
- Zuverlässigkeitsaspekte (z. B. Validierung) bei der anwendungsspezifischen Anpassung (Adaption) der Messverfahren für die jeweilige Messaufgabe;
- Aspekte der Applikation bzgl. Langzeitstabilität;
- Nutzung von Standards und Richtlinie für den Sensoreinsatz

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Fachbegriffe des Messens und der Zustandsbewertung von Strukturen zu erläutern und richtig zu benutzen (1),
- die grundlegenden Aufgaben und Methoden des Messens an und der Beobachtung von bautechnischen Strukturen für die Bewertung des Strukturverhaltens zu benennen (1),
- unterschiedliche Projektaufgaben hinsichtlich Messzuverlässigkeit und Dauerhaftigkeit der Ergebnisse zu klassifizieren (2) sowie mögliche Risiken zu erkennen und Alternativen zur Vermeidung von Risiken zu benennen (1),
- die wichtigsten klassischen wie auch neueste Messverfahren zu verstehen und für einen effektiven Einsatz auszuwählen (2),
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)
Modulname: B3-MESS Zustandsbewertung bautechnischer Strukturen - Strategien und Methoden

- aus mehreren Lösungsmöglichkeiten durch Bewertung der Spezifikation die für die jeweilige Mess- bzw. Beobachtungsaufgabe bestmögliche technische und kosteneffiziente Lösung auszuwählen (3),
- messtechnische Lösungen und Systemkomponenten von Anbietern hinsichtlich ihrer Qualität (Stärken und Schwächen) und Zuverlässigkeit der Komponenten zu bewerten (2) und die Interessen aller Projektbeteiligten zu beschreiben (1),
- ggf. Messsysteme an die Bedingungen des praktischen Einsatzes (spezifische Anforderungen) zu adaptieren und vorzubereiten (2),
- mögliche Probleme bei der Anwendung von Messverfahren auf der Baustelle rechtzeitig zu erkennen und somit Einbaufehler zu vermeiden (2),
- die Projektorganisation eines kleineren Projekts nach diesen Kriterien, insbesondere unter Beachtung der Anforderungen hinsichtlich Validierung zu konzipieren (2) und hinsichtlich Bearbeitungsschritten, Qualitätskontrolle, Kostenstruktur zu planen (2) und in einem Projekt handbuch zu dokumentieren (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- sich in einem interdisziplinären Team aus Bauingenieuren, (Mess-)Technikern, Physikern und Ökonomen zu organisieren, zu strukturieren und zu kommunizieren (1),
- wesentliche fachspezifische Ziele zu formulieren und bei der Auswahl geeigneter Methoden wesentlich mitzuwirken (2),
- die Projektorganisation im Team zu planen und bei der Aufgabenverteilung mitzuwirken (1),
- mit Anbietern messtechnischer Lösungen über fachliche Details auf Augenhöhe auseinanderzusetzen, kritische Aspekte zu hinterfragen und angebotene Komponenten hinsichtlich der geeigneten Spezifikation und ihrer Zuverlässigkeit zu bewerten (3),
- zeitliche Abläufe und finanziellen Aufwendungen abzuschätzen (1),
- die ausgewählte Lösung gegenüber dem Auftraggeber zu begründen (2).

Lehrmedien

Seminar mit Beamer-Unterstützung, Overheadprojektor, Tafelanschrieb und Muster-Demonstration, ggf. Online-Veranstaltung
Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
B3-NHB Nachhaltigkeit von Baustoffen
(B3-NHB Sustainability of Building Materials) | B3-NHB

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

- Baustoffkunde
- Empfohlene Vorkenntnisse
- Bauphysik

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-NHB Nachhaltigkeit von Baustoffen</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Ergänzendes Wahlpflichtmodul des zweiten Studienabschnitts im Bachelorstudiengang Bauingenieurwesen der OTH Regensburg.
Angebotsfrequenz: jedes 2. Semester, im Sommersemester
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B3-NHB Nachhaltigkeit von Baustoffen

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-NHB Nachhaltigkeit von Baustoffen</td>
<td>B3-NHB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Charlotte Thiel</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Charlotte Thiel</td>
<td>jedes 2.Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Workshops und Projektarbeiten

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. /7. Semester</td>
<td>2 SWS</td>
<td>deutsch/englisch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
30 h Projektarbeit, Präsentation, Vor- und Nachbearbeitung der Vorlesung

Studien- und Prüfungsleistung
Portfolioprüfung
Zugelassene Hilfsmittel für Leistungsnachweis
alles

Inhalte

Inhalt:
- Einführung Nachhaltigkeit
- Lebenszyklus Baustoffe / Bauwerke
- Inhaltliche und methodische Grundlagen von Ökobilanzen inkl. aktueller Softwaretools und Datenbanken
- CO2-Einsparung durch Anpassung und Neuentwicklung von alternativen Bindemitteln
- Bauen mit nachwachsenden Rohstoffen
- Formen des Recyclings
- Emissionen in die Innenraumluft
- Emissionen in das Grundwasser
- Steigerung der Ressourceneffizienz im Bauwesen
- Präsentationen der Studierenden zu aktuellen Themen

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Lernziele: Fachkompetenz

Im Rahmen einer Projektarbeit üben die Studierenden selbstständiges Erarbeiten von Fachwissen und erlangen methodische Fähigkeiten im Umgang mit Literaturquellen und Informationen (3). Durch eine Präsentation die vorab gemeinsam mit Kommilitonen zu erarbeiten ist, werden zudem Teamarbeit und das schnelle Erlernen von Wissen geübt (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ganzheitlich zu denken und die Idee des Nachhaltigen Bauens in die Praxis umzusetzen (3). Durch positives Feedback der Präsentationen durch die Gruppe, werden Selbstbewusstsein & Ausstrahlung gefördert (3). Die Möglichkeit, Themen selbst auszuwählen und eigene Themen in die Veranstaltung einzubringen, stärkt die Motivation und die Lernbereitschaft (2). Selbstorganisation und Teamarbeit wird durch Kleingruppenarbeiten gefördert (3). In der Veranstaltung werden verschiedene Lese-, Lern und Denktechniken geübt (1).

Angebotene Lehrunterlagen

Vorlesungsunterlagen, Skript, Literatur zu Präsentationsthemen

Lehrmedien

Multimediale Vorträge und Vorlesungen

Literatur

- https://data.oecd.org/germany.htm
- Frischknecht: Lehrbuch der Ökobilanzierung, Springer 2020
- https://www.vdz-online.de/zementindustrie/klimaschutz
- https://kreislaufwirtschaft-bau.rlp.de/de/startseite/

Weitere Informationen zur Lehrveranstaltung

Weitere Informationen erhalten Sie auf Anfrage bei charlotte.thiel@oth-regensburg.de

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-PAB II Projektarbeit angewandter Betonbau II (B3-PAB II Project Applied Concrete Technology II)</td>
<td>B3-PAB II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7. Semester</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Baustoffkunde, Betonbau

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-PAB II Projektarbeit angewandter Betonbau II</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg
Seite 191
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B3-PAB II Projektarbeit angewandter Betonbau II

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-PAB II Projektarbeit angewandter Betonbau II</td>
<td>B3-PAB II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Kusterle</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Maurial (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminar

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7. Semester</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden Seminar</td>
<td>30 Stunden eigenverantwortliches Lernen, Vorbereitungen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienbegleitender Leistungsnachweis durch Erstellung eines Werkstücks, Praxiserprobung und Präsentation für die Fachöffentlichkeit.

Inhalte
- Organisation und Durchführung des Praxiseinsatzes
- Mischungserstellung und Mischungsoptimierung
- Prüfungen an Mörtelproben
- Bau mehrerer Bootskörper
- Erprobung der Boote im Training und WettkampfPräsentation und Pressearbeit
- Präsentation und Pressearbeit

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die konstruktive Struktur aus Tragwerk und Erschließung eines schalenförmigen Textilbetons als räumlich-materielles Ordnungsprinzip und primäres Instrument zur Erzeugung von Form und Raum zu verstehen (2)
- projektgenerierenden konstruktive Einflussfaktoren in ihrer Diversität zu erkennen, zu reflektieren und auf die jeweilige Aufgabe bezogen sinnvoll zu bewerten und zuzuordnen sowie daraus nachhaltige Strategien für den eigenen konstruktiven Ansatz zu entwickeln (1)
analytische und ganzheitliche Betrachtungen anzustellen und daraus alternativen konstruktiven Lösungsszenarien und Schritte begründeter Entscheidungen zu einem belastbaren Gesamtkonzept zusammenzuführen (3)
• eine sinnvolle, angemessene und materialgerechte Struktur eines Betonkleinbootes zu entwickeln und anteilig von der Entwurfs- über Detailplanung planerisch auszuarbeiten und dann zu realisieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• in einem Team zu arbeiten und die Grundprinzipien und Vorzüge einer diskursiven Teamarbeit zu benennen (2)
• fachliche Inhalte darzustellen, vor einem Publikum zu präsentieren und technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2)

Lehrmedien
Seminar, Praktikum, Erprobung in Praxis
<table>
<thead>
<tr>
<th>Literatur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kulas, Ch.: Textile Hochleistungsbewehrungen für dünne und leichte Betonkonstruktionen. BWI 1/2015.</td>
<td></td>
</tr>
<tr>
<td>• Industrievereinigung Chemiefaser: Chemiefasern : Von der Herstellung bis zum Einsatz. Frankfurt.</td>
<td></td>
</tr>
<tr>
<td>• Curos, I.; Liebscher, M.; Mechtcherine, V.; Bellmann, C ; Michel, S.: Tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers. Cement and concrete research 98 (2017), 71 ff.</td>
<td></td>
</tr>
<tr>
<td>• https://arch.rwth-aachen.de/cms/Architektur/Forschung/Verbundforschung/Bauforschung/~cxpf/Textilbeton/</td>
<td></td>
</tr>
<tr>
<td>• http://www.textilbetonzentrum.de</td>
<td></td>
</tr>
<tr>
<td>• http://www.textilbetonzentrum.de/infoberich/dissertationen/</td>
<td></td>
</tr>
<tr>
<td>• http://www.bauen-neu-denken.de</td>
<td></td>
</tr>
</tbody>
</table>

Studium: Bachelor Bauingenieurwesen (PO: 20161)
Modul: B3-PAB II Projektarbeit angewandter Betonbau II
Literatur:
uir:
• Kulas, Ch.: Textile Hochleistungsbewehrungen für dünne und leichte Betonkonstruktionen. BWI 1/2015.
• Industrievereinigung Chemiefaser: Chemiefasern : Von der Herstellung bis zum Einsatz. Frankfurt.
• Curos, I.; Liebscher, M.; Mechtcherine, V.; Bellmann, C ; Michel, S.: Tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers. Cement and concrete research 98 (2017), 71 ff.
• https://arch.rwth-aachen.de/cms/Architektur/Forschung/Verbundforschung/Bauforschung/~cxpf/Textilbeton/
• http://www.textilbetonzentrum.de
• http://www.textilbetonzentrum.de/infoberich/dissertationen/
• http://www.bauen-neu-denken.de

Weitere Informationen zur Lehrveranstaltung
Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B3-PAB I Projektarbeit angewandter Betonbau I

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-PAB I Projektarbeit angewandter Betonbau I (B3-PAB I Project Applied Concrete Technology I)</td>
<td>B3-PAB I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7. Semester</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Baustoffkunde, Betonbau

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-PAB I Projektarbeit angewandter Betonbau I</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 195
Teilmodul

<table>
<thead>
<tr>
<th>Modulname: B3-PAB I Projektarbeit angewandter Betonbau I (B3-PAB I Project Applied Concrete Technology I)</th>
<th>TM-Kurzbezeichnung: B3-PAB I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche/r: Prof. Dr. Thomas Wolff</td>
<td>Fakultät Bauingenieurwesen</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r: Prof. Dr. Wolfgang Kusterle, Prof. Dr. Andreas Maurial (LB)</td>
<td>Angebotsfrequenz: nur im Wintersemester</td>
</tr>
<tr>
<td>Lehrform: Seminar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitaufwand:</td>
<td>Präsenzstudium: 30 Stunden Seminar</td>
<td>Eigenstudium: 30 Stunden eigenverantwortliches Lernen, Vorbereitungen</td>
<td></td>
</tr>
</tbody>
</table>

Inhalte

- Einführung in Textilbeton
- Einführung in die Organisation der Planung, das Fundraising, die Finanzierung, Beschaffung der Ausgangsstoffe, Praxiserprobung und Präsentation des Produktes
- Textile Bewehrung
- UHPC, dichte Packung, Leichtbeton
- Formenfindung und Formenbau, Modellierung
- Mischungserstellung und Mischungsoptimierung
- Prüfungen an Mörtelproben

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Die Studierenden haben die Organisation eines kleinen Textilbetonprojektes anhand eines Betonkanus erlernt. (3) haben Basiskompetenzen zur Formfindung von Kleinbooten aus Beton erworben (1) haben eine Einführung zum Tragverhalten und zur Rumpfgeschwindigkeit eines Betonschale erhalten (1) haben Kompetenzen über Textilbeton, Carbonbeton und UHPC erarbeitet (2)
können eine sinnvolle, angemessene und materialgerechte Struktur eines Betonkleinbootes entwickeln und anteilig von der Entwurfs- über Detailplanung planerisch ausarbeiten und dann realisieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- können Teamarbeit unter großem Druck durchführen (3)
- können ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einschätzen (2)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Lehrmedien
Seminar, Praktikum

Literatur
- Kulas, Ch.: Textile Hochleistungsbewehrungen für dünne und leichte Betonkonstruktionen. BWI 1/2015.
- Industrievereinigung Chemiefaser: Chemiefasern : Von der Herstellung bis zum Einsatz. Frankfurt.
- https://arch.rwth-aachen.de/cms/Architektur/Forschung/Verbundforschung/Bauforschung/~cxfp/Textilbeton/
- http://www.textilbetonzentrum.de
- http://www.textilbetonzentrum.de/infbereich/dissertationen/
- http://www.bauen-neu-denken.de
<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-SB III Stahlbetonbau III (Reinforced Concrete Design III)</td>
<td>B3-SB III</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Finckh</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester, Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7. Semester, 3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Lehrveranstaltungen Stahlbetonbau I (B2-SB I) und Stahlbetonbau II (B2-SB II)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-SB III Stahlbetonbau III</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B3-SB III Stahlbetonbau III

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-SB III Stahlbetonbau III</td>
<td>B3-SB III</td>
</tr>
<tr>
<td>(Reinforced Concrete Design III)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Finckh</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Finckh</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen und Studienarbeit

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7. Semester</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristische</td>
<td>90 Stunden eigenverantwortliches Lernen, Studienarbeit</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Studienleistung: 1 Studienarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung: Kolloquium Dauer: 30 Minuten</td>
</tr>
<tr>
<td>(bei Rückgabe der Studienarbeit)</td>
</tr>
<tr>
<td>Klausur Dauer: 120 Minuten</td>
</tr>
</tbody>
</table>

Inhalte

Bemessung und Konstruktion typischer Tragelemente von schlaffbewehrten Stahlbetonbauwerken im Detail:

- Tragwerksidealisation: Gebäudeaussteifung, Translations- und Rotationssteifigkeit mit aussteifenden Bauteilen, Unverschieblichkeit von Einzelbauteilen
- Massivplatten: punktgestützte Platten, Bemessung gegen Durchstanzen
- Druckglieder und Stabilität: Einteilung der Druckglieder, Einfluß der Verformungen, horizontal verschiebliche und unschiebbliche Tragwerke; Modellstützenverfahren; Einzeldruckglied und Rahmentragwerke; Stabilitätsnachweis am Einzelstab bei einachsiger Knickgefahr; Einzelstab bei zweiachsiger Knickgefahr; Vorschriften zur konstruktiven Gestaltung
- Wände: Definition und konstruktive Grundlagen, Bemessung von bewehrten und unbewehrten Wänden, Teilfertigung
- Fundamente: Baugrund und Bemessungswerte der Beanspruchung, unbewehrte Fundamente, bewehrte Einzelfundamente, Streifenfundamente
- Stabwerkmodelle: Diskontinuitätsbereiche; Einführung in die Entwicklung und Bemessung von Stabwerkmodellen; einfache Anwendungen: Konsole, ausgeklinkter Träger, Köcherfundament
- Studienarbeit: Statische Berechnung eines typischen Hochbaus inklusive Bemessung der Tragelemente, Nachweislänge, konstruktiver Durchbildung von Details und zeichnerischer Darstellung der Bewehrung in Plänen

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg Seite 200
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- mit vertieften Kenntnissen das Tragverhalten (2) der verschiedenen Elemente von Stahlbetonbauwerken zu beurteilen (3),
- die erworbenen spezialisierten Fertigkeiten zur Bemessung, Nachweisführung und konstruktiven Durchbildung durch Biegung- und Normalkraft beanspruchter Bauteile anzuwenden (3)
- sowie selbständig besondere Problemstellungen des Stahlbetonbaues zu behandeln (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- konstruktive Aufgabenstellungen des Stahlbetonbaus zu erfassen (2).
- technische Zusammenhänge des Stahlbetonbaus in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, zusätzliches ständig aktualisiertes Umdruckmaterial, alte Klausuren zur Vorbereitung

Lehrmedien

Vortragsvorlesung mit Unterstützung von Beamer, Overheadprojektor und Tafelanschrieb

Literatur

- Ständig aktualisiertes Umdruckmaterial zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Weitere Informationen zur Lehrveranstaltung

[1] Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-SGB Sicherheit und Gesundheitsschutz auf Baustellen (B3-SGB Health and Safety Protection at Construction Sites)</td>
<td>B3-SGB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Klaus Hager</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

keine

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-SGB Sicherheit und Gesundheitsschutz auf Baustellen</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Anwesenheitspflicht
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-SGB Sicherheit und Gesundheitsschutz auf Baustellen (B3-TUN Tunneling)</td>
<td>B3-SGB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Klaus Hager</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans Wirth (LB)</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Multimediale Vortragsvorlesung mit Tafelanschrieb

Lehrumfang

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>30 Stunden eigenverantwortliches Lernen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- **Studienleistung:** Anwesenheitspflicht
- **Prüfungsleistung:** Klausur, Dauer: 60 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

keine
Inhalte

Arbeitsschutzfachliche Kenntnisse gem. Anlage B zur RAB 30

1 Arbeitsschutzrecht und Arbeitsschutzsystem
- Europarechtliche Anforderungen
- Gliederung des deutschen Arbeitsschutzsystems
- Grundpflichten des Arbeitgebers/Unternehmers
- Arbeitsmedizinische und sicherheitstechnische Betreuung im Baubereich

1.1 Inhalte des Arbeitsschutzgesetzes

- Rechtliche Stellung des Arbeitsschutzgesetzes
- Adressaten und ihre Schutzverpflichtungen
- Allgemeine Grundsätze nach § 4 ArbSchG
- Beurteilung der Arbeitsbedingungen und zu treffende Schutzmaßnahmen
- Verpflichtung zur Zusammenarbeit mehrerer Arbeitgeber

1.2 Grundzüge der Rechtsverordnungen nach dem ArbSchG

- Baustellenverordnung
- Arbeitsstättenverordnung
- Arbeitsmittelbenutzungsverordnung
- PSA-Benutzungsverordnung
- Lastenhandhabungsverordnung
- Betriebssicherheitsverordnung

1.3 Vorschriften der Unfallversicherungsträger

2 Baustellenspezifische Unfall- und Gesundheitsgefährdungen und erforderliche Schutzmaßnahmen

2.1 Maßnahmen zur Sicherheit bei Erd- und Tiefbauarbeiten

- Einflüsse auf die Standsicherheit des Bodens
- Sicherungsanforderungen nach UVV und DIN 4124
- Gebäudesicherung im Bereich von Ausschachtungen, Gründungen und Unterfangungen (DIN 4123)
- Erdverlegten Leitungen und Anlagen

2.2 Gefährdung durch Absturz

- Absturzsicherungen
- Auffangeinrichtungen
- Arten, technische Ausführung und Absturzhöhen
- Persönliche Schutzausrüstungen gegen Absturz

2.3 Sicherer Einsatz von Gerüsten

- Gerüstarten und Einsatzbedingungen
- Arbeits- und Schutzgerüste (DIN 4420)
- Verantwortlichkeiten bei Aufbau und Nutzung von Gerüsten
- Brauchbarkeitsnachweis
2.4 Sicherer Einsatz von Leitern, Fahrgerüsten und Hebebühnen

2.5 Gefährdungen durch Elektrizität
- Schutzmaßnahmen gegen gefährliche Körperströme (Schutz gegen direktes und indirektes Berühren)
- Errichtung, Instandhaltung und Prüfungen elektrischer Anlagen und Betriebsmittel
- Sicherheit und Erkennbarkeit von Stromleitungen

2.6 Betrieblicher Brand- und Explosionsschutz
- Grundlagen der Brandentstehung
- Umgang mit explosions- und feuergefährlichen Stoffen
- Brandschutz- und Sicherheitskennzeichnung
- Bekämpfung von Entstehungsbränden

2.7 Gefährdungen durch Gefahrstoffe
- Grundzüge gefahrstoffrechtlicher Vorschriften (ChemG, GefStoffV, TRGS)
- Kennzeichnung, Lagerung und Entsorgung
- Grenzwerte
- Gefahrstoffinformationssysteme

2.8 Maßnahmen zur Sicherheit bei Montagearbeiten
- Allgemeine Grundsätze und Montageanweisung
- Fertigteiletransport, Lagerung und Lastförderung
- Standsicherheit, Zwischenbauzustände und Gefährdungen durch Absturz

2.9 Maßnahmen zur Sicherheit bei Abbruch- und Sanierungsarbeiten

2.10 Sicherer Personen- und Fahrzeugverkehr, sichere Baustellentransporte und Lagerung
- Arbeitsplätze und Verkehrswge
- Witterungseinflüsse (Winterbauverordnung)

2.11 Sicherer Einsatz von Maschinen und Geräten
- Arten und Einsatzbereiche von Maschinen und Geräten
- Prüfungen und Prüffristen für technische Arbeitsmittel

2.12 Schutzmaßnahmen bei Lärm und Vibration

3 Einrichtungen der Ersten Hilfe
- Vorsorgemaßnahmen
- Rettungskette
- Sanitätsräume

4 Tagesunterkünfte, Waschräume, Toiletten und sonstige Einrichtungen

5 Persönliche Schutzausrüstungen
- Bewertung und Auswahl
- Bereitstellungs- und Benutzungspflicht
6 Arbeitszeitregelungen

- Rechtliche Regelungen (Arbeitszeitgesetz und tarifliche Regelungen zur Arbeitszeit)
- Ausnahmemöglichkeiten für Baubetriebe

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Arbeitssicherheit und den Gesundheitsschutz auf Baustellen zu beurteilen. (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die geltenden Arbeitsschutzvorschriften auf Baustellen situationsgerecht umzusetzen. (3)

Angebotene Lehrunterlagen

Foliensammlung (Vorlesung)

Lehrmedien

Beamer, Tafel, Materialmuster, Exkursion, Experimentalvortrag

Literatur

Online Publikationen der BG BAU

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
B3-SP Spannbetonbau (Prestressed Concrete Design) | B3-SP

Modulverantwortliche/r / Fakultät
- Prof. Dr. Thomas Fritsche / Bauingenieurwesen

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>4 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
- Modul 13 (Massivbau)

Empfohlene Vorkenntnisse
- Baustatik, Technische Mechanik, Stahlbetonbau, Spannbetonbau und Baustoffkunde

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-SP Spannbetonbau</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Teilmodul	TM-Kurzbezeichnung
B3-SP Spannbetonbau (Prestressed Concrete Design) | B3-SP

Verantwortliche/r	Fakultät
Prof. Dr. Thomas Fritsche | Bauingenieurwesen

Lehrende/r / Dozierende/r	Angebotsfrequenz
Christian Gläser (LB) | in jedem Semester
Stefan Hentschinski (LB)

Lehrform: Seminaristischer Unterricht mit Übungen und Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>60 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung: Klausur; Dauer: 90 Minuten

Inhalte

- Grundlagen der Spannbetonbauweise, Arten der Vorspannung und deren Anwendung
- Wirkungsweise der Vorspannung und Ermittlung der zugehörigen Schnittgrößen
- sofortige Spannkraftverluste infolge Reibung und Keilschlupf, Langzeitverluste infolge Kriechen, Schwinden und Relaxation
- Tragsicherheitsnachweise, Bemessung unter Biegung und Normalkraft, Querkraft und Torsion
- Gebrauchstauglichkeitsnachweise, Bauteilspannungen, Dekompression, Rissbreitenbegrenzung
- Bewehrungsführung in Spannbetonbauteilen
- Einleitung der Vorspannkräfte, Ankerelemente, Koppelfugen
- Besonderheiten im Bauablauf, Segmentbauweise, Freivorbau, Taktschieben)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Wichtige Fachbegriffe im Spannbetonbau zu kennen (1),
- Wichtige Grundlagen hinsichtlich Einwirkung aus Vorspannung, Materialverhalten und Vorspannarten zu kennen und zu verstehen (2),
- übliche Bemessungsaufgaben des Spannbetonbaus im Grenzzustand der Tragfähigkeit und im Grenzzustand der Gebrauchstauglichkeit zu verstehen und anzuwenden (3) und
den Entwurf und die konstruktive Durchbildung von Spannbetonbauteilen zu kennen und zu verstehen (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Tragverhalten von Spannbetonbauteilen im Hochbau und im Brückenbau zu kennen und zu erfassen (2),
• aus dem Spannbetonbau fachliche Fragen zu stellen und auch fachliche Fragen zu beantworten (2) und
• Ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen
Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien
Vortragsvorlesung mit Beamer-/Tafelunterstützung

Literatur
DIN-Fachbericht 102 - Betonbrücken, Ausgabe 2009
Rossner, Graubner, Spannbetonbauwerke, Verlag Ernst + Sohn,
Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-SR II Straßenbau II (Road Construction II)</td>
<td>B3-SR II</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Andreas Appelt</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Lehrveranstaltungen B2-SR I

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-SR II Straßenbau II</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Wahlpflichtmodul des zweiten Studienabschnitts im Bachelor-Studiengang Bauingenieurwesen.
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulname: B3-SR II Straßenaufbau II

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-SR II Straßenaufbau II (Road Construction II)</td>
<td>B3-SR II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Appelt</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Andreas Appelt</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht ohne Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>90 Stunden eigenverantwortliches Lernen, Studienarbeiten, Praktikum (Präsenz)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung: anerkannte Studienarbeit
Prüfungsleistung: schriftliche Prüfung, Dauer: 120 Minuten (Teil A: 20, Teil B: 100 Minuten)

Zugelassene Hilfsmittel für Leistungsnachweis

Teil A: keine
Teil B: Skriptum, eigene Aufzeichnungen, Bücher, programmierbare, nicht kommunikationsfähige Taschenrechner

Inhalte

- Nutzungsansprüche innerörtlicher Straßen und Lösungen für typische Entwurfssituationen
- Grundlagen der Berücksichtigung der Barrierefreiheit in der Planung
- Beanspruchung des Straßenoberbaus
- Vermittlung von Kenntnissen zur Erfassung von Aufgabenstellungen bei der Bemessung des Straßenoberbaus
- Kenntnissen zur Beurteilung des Baugrundes hinsichtlich Einbaufähigkeit und Tragfähigkeit sowie Maßnahmen zur Sicherung und Stabilisierung von Dämmen und Einschnitten
- Grundlagen der Straßenaufwassерung
- Grundlagen zur Beurteilung der Eigenschaften von Straßenbaustoffen
- Bau von Straßen mit Asphalt-, Beton- und Pflasterdecken
- Grundlagen der Lärmberatung bei Verkehrsanlagen

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg Seite 211
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Aufgabenstellungen in der Verkehrsplanung von innerörtlichen Straßen zu kennen und auf konkrete Beispiele anzuwenden (2).
• Die Grundlagen der barrierefreien Straßenplanung zu kennen (1).
• theoretische Ansätze zur Bemessung des Straßenoberbaus zu kennen (1).
• die standardisierte Oberbaumessung auf konkrete Aufgabenstellungen anzuwenden (3).
• die Anforderungen an dauerhaft standsichere und tragfähige Erdbauwerke zu kennen und diese Kenntnisse anzuwenden (2).
• die Grundlagen der Straßentwässerung zu kennen (1)
• die Anforderungen an den Bau von Straßen mit Asphalt- Beton- und Pflasterdecken zu kennen und den richtigen Materialeinsatz anwenden zu können (3).
• die Grundlagen der Lärmberechnung bei Straßenverkehrsanlagen zu kennen und auf einfache Beispiele anwenden zu können (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Aufgabenstellungen der Stadtstraßenplanung zu erfassen (2).
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
• fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).
• teamorientiert und interdisziplinär zu arbeiten und die gefundenen Lösungen fachlich zu vertreten (2)

Angebotene Lehrunterlagen
Skriptum, Berechnungsbeispiele

Lehrmedien
Vortragsvorlesung mit Beamerunterstützung

Literatur
• Die Literaturangaben beziehen sich auf die jeweils aktuelle Fassung Velske/Mentlein/ Eymon: Straßenbautechnik, Werner-Verlag
• Hutschenreuther/Wörner: Asphalt im Straßenbau, Verlag im Bauwesen
• Floss: Kommentar mit Kompendium Erd- und Felsbau, Kirschbaum-Verlag
• Richtlinien (z.B. RAST, RStO, ZTV E, R EwS, RLS 19), Merkblätter, Empfehlungen, Hinweise und Arbeitsanleitungen der Forschungsgesellschaft für Straßen- und Verkehrsweisen
• Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen
• Die Literaturangaben beziehen sich auf die jeweils aktuelle Fassung

Weitere Informationen zur Lehrveranstaltung
Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-SWG II Siedlungswasserwirtschaft II (Sanitary Engineering II)</td>
<td>B3-SWG II</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Andreas Ottl</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

Lehrveranstaltungen B2-SWG I und B2-WB I

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-SWG II Siedlungswasserwirtschaft II</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>TM-Kürzbezeichnung</th>
<th>B3-SWG II Siedlungswasserwirtschaft II (Sanitary Engineering II)</th>
</tr>
</thead>
</table>

Verantwortliche/r
- Prof. Andreas Ottl
- Bauingenieurwesen

Lehrende/r / Dozierende/r
- Johann Andorfer (LB)
- Prof. Andreas Ottl
- Dr. Tosca Zech (LB)

Verantwortliche/r
- in jedem Semester

Lehrform
- Seminaristischer Unterricht mit Übungen und Praktikum

Studiensemester
- gemäß Studienplan

Lehrumfang
- [SWS oder UE]
- 6. oder 7.
- 4 SWS

Lehrsprache
- deutsch

Arbeitsaufwand
- [ECTS-Credits]
- 5

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Stunden seminaristischer Unterricht (Präsenz)</td>
<td>90 Stunden eigenverantwortliches Lernen, Studienarbeiten, Praktikumsauswertungen</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- Freiwillige Studienleistung: erfolgreiche Teilnahme am Praktikum und anerkannter Leistungsnachweis
- Prüfungsleistung: schriftliche Prüfung; Dauer: 120 Minuten

Inhalte

- Vertiefter Einblick in die Systematik der öffentlichen und betrieblichen Abwasserableitung und -behandlung
- Grundlegende Kenntnisse in den Bereichen Abwassersammlung, Abwassertransport, Regenwasserbehandlung, Unterhalt und Betrieb der Kanalisation
- Aufbau, Zusammenwirken und Bemessung der Bestandteile einer mechanisch-biologisch-chemisch wirkenden Abwasserreinigungsanlage
- Grundsätzliche Fähigkeit zur Auswahl von Verfahrenskombinationen in der Siedlungswasserwirtschaft
- Einführung in Kanalnetzberechnungsprogramme und geografische Informationssysteme
- Einführung in Wassergesetzgebung und in das Abwasserabgabegesetz einschließlich der dafür relevanten Schadstoff-Parameter, deren Beurteilung und Schädlichkeitspotentiale in der aquatechnischen Umwelt
- Verdeutlichung des Lehrinhalts durch Praktika und Exkursionen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die Geschichte der Abwasserreinigung zu kennen und die Umweltrelevanz der Abwasserthermatik zu nennen (1)
• eine Abwassermengenermittlung zu erstellen und die Bedarfsgrößen für die Bemessung der Abwasserableitungs- und -reinigungsbauwerke auszuwählen (2)
• die Bauwerke der Misch- und Trennentwässerungssysteme zu entwickeln und deren Wirksamkeit zu beurteilen (3)
• eine hydraulische Berechnung der Ableitungssysteme auszuarbeiten, Bemessungsspielräume zu erkennen und diese zu nutzen (2)
• EDV-gestützte Rechenprogramme zur hydrodynamischen Rohrnetzberechnung zu handhaben (2)
• Geeignete Methoden zur Versickerung von Niederschlagswasser auszuwählen und erforderliche Bauwerke zu entwerfen (2)
• Das mikroskopische Bild des Klärschlammms anzugeben (1)
• Schlamm- und Abwasseruntersuchungen im Labor durchzuführen, Werte zu analysieren und die Ergebnisse zu werten (3)
• Alle einschlägigen Abwasserreinigungsmöglichkeiten auszuwählen und zu dimensionieren (2)
• bestehende Einrichtungen zur Abwassersammlung und –reinigung zu analysieren und zu bewerten (3).
• Die Maßnahmen zur Schlammbehandlung und –verwertung anzugeben (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• sich im Team zu organisieren und Strukturen aufzubauen (2)
• eine fachliche Literaturrecherche durchzuführen (2)
• konstruktive Aufgabenstellungen zu erfassen und eigenständig zu lösen (2).
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3).
• fachliche Fragen zu stellen (2).
• fachliche Fragen angemessen zu beantworten (2).
• ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
• sich mit unterschiedlichen Lösungsmöglichkeiten konstruktiv auseinander zu setzen (3)

Angebotene Lehrunterlagen
Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien
Multimediale Vortragsvorlesung mit Tafelanschrieb
Exkursionen, Praktikum

Literatur
• Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); Hennef: Regelwerk.Karger/Cord-Landwehr/Hoffmann: Wasserversorgung, jeweils aktuelle Auflage; Vieweg/Teubner Verlag.
• Imhof: Taschenbuch der Stadtentwässerung. Oldenbourg.
• Hosang/Bischof: Abwassertechnik, jeweils aktuelle Auflage; Teubner Verlag.
• Baumgart, H.-C./Fischer M./Loy H.: Handbuch für umwelttechnische Berufe, Band 3 (Abwassertechnik), jeweils aktuelle Auflage; F. Hirthammer Verlag.
• Vorlesungsskript zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Bachelor Bauingenieurwesen (PO: 20161)

Modulname:
B3-TUN Tunnelbau

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3-TUN Tunnelbau (B3-TUN Tunneling)</td>
<td>B3-TUN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Wolff</td>
<td>Bauingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse

- B1-IGB Bodenmechanik und Ingenieurgeologie; (Soil mechanics and geology for civil engineers)
- B2-GT I Geotechnik I; (Geotechnics I)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-TUN Tunnelbau</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Stand: 30.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 216
Teilmodul	TM-Kurzbezeichnung
B3-TUN Tunnelbau (B3-TUN Tunneling) | B3-TUN

Verantwortliche/r	Fakultät
Prof. Dr. Thomas Wolff | Bauingenieurwesen
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Dr. Thomas Wolff | nur im Wintersemester

Lehrform

seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Stunden seminaristische Lehrveranstaltungen</td>
<td>30 Stunden eigenverantwortliches Lernen, Studienarbeiten</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung:

Prüfungsleistung: Klausur, Dauer: 60 Minuten

Inhalte

Historisches und Vision:
historische Entwicklung im Tunnelbau und bautechnische Herausforderungen der Zukunft

Bezeichnung und Begriffserklärung:
Begriffserklärungen im Tunnel- und Stollenbau

Planung:
geotechnische Voruntersuchungen im Fest- u. Lockergestein, Einwirkungen auf Tunnelbauwerke, Querschnittsgestaltung, Grundlagen der Statik von Tunnelbauwerken

Ausführung:
Erläuterung der unterschiedlichen Herstellungsmethoden und der verschiedenen Bauweisen, Sicherungsmaßnahmen, Ausbau und Ausrüstung

Unterhaltung und Sanierung:
Sanierung von Tunnelbauwerken im Hinblick auf deren Bauweise und Nutzung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- basierend auf der Kenntnis der historischen Entwicklung des Tunnel- u. Bergbaus verschiedene Bauweisen zu unterscheiden (2)
- Tunnelbau spezifische Terminologie sicher anzuwenden (2)
- für unterschiedliche Bauweisen und Herstellmethoden Besonderheiten und Bauabläufe widerzugeben (2-3)

Stand: 30.03.2021

Ostbayerische Technische Hochschule Regensburg
die zugehörigen geologischen Voruntersuchungen und Klassifikationen abzuleiten (2)
Belastungssituationen überschläglich abzuschätzen (2)
in Abhängigkeit der verkehrstechnischen Anforderungen Tunnelquerschnitte zu zuordnen bzw. zu dimensionieren (2-3)
unterschiedliche herstellungsbedingte Sicherungsmaßnahmen und Ausbauten wiederzugeben (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
weiterführenden Vorlesungen im Rahmen der Ausbildung mit einem besseren Grundverständnis zu folgen (2)
die Erfordernisse ingenieurtechnische Zusammenhänge über die geotechnischen Fragestellungen hinaus zwischen Erkundung, Planung und Ausführung zu erkennen (2)
weitere Verständnisfragen im Rahmen der interdisziplinäre Ausbildung zum Bauingenieur zu formulieren (2)

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, ggf. Exkursionen

Literatur

- Kastner, Statik des Tunnel- u. Stollenbaues, (1962)
- Herzog, Elementare Tunnelbemessung, (1999), Werner Verlag
- Prinz u. Strauß, Ingenieurgeologie, 5. Auflage (2011)
- Betonkalender 2005 u. 2014
- Normen und Regelwerke
- Skript zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20161)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
B3-WB II Wasserbau II (Hydraulic Engineering II) | B3-WB II

Modulverantwortliche/r	Fakultät
Prof. Dr. Mathias Müller | Bauingenieurwesen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. oder 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Kenntnisse der Hydrostatik, der Rohr- und Freispiegelhydraulik sowie Grundkenntnisse der Hydrologie

Empfohlene Vorkenntnisse
Lehrveranstaltung B2-WB I

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>B3-WB II Wasserbau II</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-WB II Wasserbau II</td>
<td>B3-WB II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hydraulic Engineering II)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Mathias Müller
 - Bauingenieurwesen

Lehrende/r / Dozierende/r
- Prof. Dr. Mathias Müller
 - in jedem Semester

Fakultät
- Bauingenieurwesen

Angebotsfrequenz
- in jedem Semester

Lehrform
- Seminaristischer Unterricht mit Übungen, Praktikum und Exkursionen

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6. oder 7.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca. 64 Stunden, davon 56 Stunden seminaristischer Unterricht und 8 Stunden Laborpraktikum (fakultativ)</td>
<td>Ca. 96 Stunden, davon 14 Stunden Vor- und Nachbereitung der Vorlesung, 4 Stunden Auswertung der Praktika sowie Berichte verfassen, 4 Stunden Übungsrechnungen, 30 Stunden eigenständige Recherche sowie Studium vertiefender Literatur, 16 Stunden Bearbeitung der Semester-Hausübung, 8 Stunden Exkursionen, 16 Stunden Prüfungsvorbereitung und 2 Stunden Prüfung</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienleistung:
- erfolgreiche Teilnahme am Laborpraktikum (fakultativ) mit Praktikumsbericht
- erfolgreiche Teilnahme an einer semesterbegleitenden Hausübung
- erfolgreiche Teilnahme am Numerikpraktikum mit Schulung der Software Hydro_AS-2D

Prüfungsleistung:
- schriftliche Prüfung; Dauer: 120 Minuten
Inhalte

Grundlegende Kenntnisse in hydrostatischen und hydrodynamischen Berechnungen einschließlich vereinfachender Rechenansätze zur Schwimmstabilität und für instationäre Strömungen
Vertiefte Kenntnisse zur Berechnung des hydraulischen Wechselsprungs und zur Bemessung von Energieumwandlungseinrichtungen
Grundlegende Kenntnisse zum Aufbau wasserbaulicher Anlagen (Wehre, Talsperren, Wasserkraftanlagen) und zum Zusammenwirken der einzelnen Komponenten dieser wasserbaulichen Anlagen
Grundsätzliche Fähigkeit zur Auswahl Bauweisen und -methoden im Wasserbau
Einblick über Flussbaumaßnahmen: Konstruktive Grundlagen und Bauwerksgestaltung
in den Bereichen Geschiebetransport, Gewässerregelung, Naturnaher Gewässerausbau,
Gewässerdurchgängigkeit und Hochwasserschutz
Einführung in numerische Methoden zur zweidimensionalen Berechnung von Freispiegelströmungen
Einführung in das deutsche Wasserrecht
Vertiefung des Lehrinhalts durch Praktika und Exkursionen

Eine ausführlichere Beschreibung der Inhalte des Moduls Wasserbau II und der erwarteten Kompetenzen nach Modulabschluss findet sich im Moodle-Kurs online.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• Grundlegende Kenntnisse über im Wasserbau notwendigen Bauwerke und deren hydraulische Bemessung (2)
• Praktische Kenntnisse über wasserbauliche Anlagen durch Vortrag von Praxisbeispielen und durch Exkursionen (2)
• Einblick in die Historie und Bedeutung der wasserwirtschaftlichen Infrastruktur (2-3)
• sind in der Lage im Rahmen von Übungen die erlernten Kenntnisse unmittelbar auf kleine Beispiele zu übertragen (Fachkompetenzen, Niveaustufe 2)
• erlernen die Recherchemöglichkeiten im Bereich von Normen, Regeln der Technik und Fachliteratur (1)
• sind fähig EDV-gestützte Rechenprogramme zur hydrodynamischen Berechnung zweidimensionaler Probleme z.B. zur Ermittlung von Hochwasser-Überflutungsflächen einzusetzen (2-3)
• sind fähig den hydraulischen Vorentwurf wasserbaulicher Anlagen durchzuführen und Anlagen hydraulisch zu bemessen (2-3)
• sind fachlich in der Lage bestehende Anlagen der wasserbaulichen Infrastruktur zu analysieren und zu bewerten (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• fördern durch die gruppenorientierte Erarbeitung von Studienarbeiten die sozialen Fähigkeiten und üben die Zusammenarbeit im Ingenieurteam (2)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, Übungsaufgaben
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimediale Vortragsvorlesung mit Tafelanschrieb, Exkursionen, Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bollrich, Gerhard: „Technische Hydromechanik 1, Grundlagen“; 7. Auflage; Verlag Bauwesen; Berlin 2013</td>
</tr>
<tr>
<td>Schneider: „Bautabellen für Ingenieure“, 21. Auflage, Kapitel 13A; Werner Verlag, Düsseldorf 2014</td>
</tr>
<tr>
<td>Schröder, Wolfgang: „Grundlagen des Wasserbaus“; 4. Auflage; Werner Verlag; Düsseldorf 1999</td>
</tr>
<tr>
<td>Eine ausführlichere Liste mit Literaturempfehlungen findet sich im Moodle-Kurs online</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden