Modulhandbuch

für den Bachelorstudiengang

Mikrosystemtechnik (B.Sc.)

SPO-Version ab: Wintersemester 2015

Sommersemester 2021

erstellt am 23.03.2021

von Sabrina Hildebrand

Fakultät Angewandte Natur- und Kulturwissenschaften
Modulliste

Studienabschnitt 1:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine und Anorganische Chemie mit Praktikum</td>
<td>5</td>
</tr>
<tr>
<td>Allgemeine und Anorganische Chemie</td>
<td>6</td>
</tr>
<tr>
<td>Praktikum Allgemeine und Anorganische Chemie</td>
<td>10</td>
</tr>
<tr>
<td>Allgemeinwissenschaftliche Wahlpflichtmodule</td>
<td>12</td>
</tr>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 1</td>
<td>14</td>
</tr>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 2</td>
<td>15</td>
</tr>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 3</td>
<td>16</td>
</tr>
<tr>
<td>Elektronische Bauelemente</td>
<td>17</td>
</tr>
<tr>
<td>Informationsverarbeitung mit Praktikum</td>
<td>20</td>
</tr>
<tr>
<td>Praktikum Informationverarbeitung</td>
<td>24</td>
</tr>
<tr>
<td>Mathematik 1 (Mathematics 1)</td>
<td>27</td>
</tr>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>31</td>
</tr>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>32</td>
</tr>
<tr>
<td>Technische Physik 1 (Engineering Physics 1)</td>
<td>36</td>
</tr>
<tr>
<td>Technische Physik 1 (Engineering Physics 1)</td>
<td>37</td>
</tr>
<tr>
<td>Technisches Englisch (Technical English)</td>
<td>40</td>
</tr>
<tr>
<td>Technisches Englisch (Technical English)</td>
<td>41</td>
</tr>
<tr>
<td>Werkstoffe 1 (Materials Sciences 1)</td>
<td>43</td>
</tr>
<tr>
<td>Werkstoffe 1 (Materials Sciences 1)</td>
<td>44</td>
</tr>
</tbody>
</table>

Studienabschnitt 2:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit (Bachelor's Thesis)</td>
<td>50</td>
</tr>
<tr>
<td>Praktikum (Internship)</td>
<td>51</td>
</tr>
<tr>
<td>Praktikum (Internship)</td>
<td>47</td>
</tr>
<tr>
<td>Praxisbegleitende Lehrveranstaltungen/Praxisseminar</td>
<td>48</td>
</tr>
<tr>
<td>Praxisbegleitende Lehrveranstaltungen (Support Module)</td>
<td>53</td>
</tr>
<tr>
<td>Praxisseminar (Seminar of Practical Course)</td>
<td>54</td>
</tr>
</tbody>
</table>

Schwerpunkt: Mikrotechnologie

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analoges und digitale Schaltungstechnik mit Praktikum</td>
<td>58</td>
</tr>
<tr>
<td>Analoges und digitale Schaltungstechnik (Analogue and Digital Circuitry)</td>
<td>59</td>
</tr>
<tr>
<td>Praktikum Analoges und digitale Schaltungstechnik</td>
<td>61</td>
</tr>
<tr>
<td>Ausgewählte Kapitel aus der Elektrotechnik</td>
<td>63</td>
</tr>
<tr>
<td>Ausgewählte Kapitel aus der Elektrotechnik</td>
<td>64</td>
</tr>
<tr>
<td>Defekt-Engineering</td>
<td>69</td>
</tr>
<tr>
<td>Fachbezogenes Wahlpflichtmodul 1 (Mandatory Subjectspecific Elective Module 1)</td>
<td>70</td>
</tr>
<tr>
<td>Analytische Chemie (Analytical Chemistry)</td>
<td>105</td>
</tr>
<tr>
<td>Rastermikroskopie (Scanning Microscopy)</td>
<td>108</td>
</tr>
<tr>
<td>Security Studies</td>
<td>110</td>
</tr>
<tr>
<td>Sensorprinzipien (Fundamental Principles of Sensor Technology)</td>
<td>112</td>
</tr>
<tr>
<td>Course</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Werkstoffe 2 (Material Sciences 2)</td>
<td>114</td>
</tr>
<tr>
<td>Vakuumtechnik (Vacuum Physics and Technology)</td>
<td>116</td>
</tr>
<tr>
<td>Technische Physik 2 mit Praktikum (Engineering Physics with Laboratory Exercises)</td>
<td>118</td>
</tr>
<tr>
<td>Mikroelektroniktechnologie mit Praktikum (Microelectronics Technology with Laboratory Exercises)</td>
<td>120</td>
</tr>
<tr>
<td>Optische Sensorik und Analytik (Methods of Nuclear Physics in Sensors and Analysis)</td>
<td>123</td>
</tr>
<tr>
<td>Projektarbeit (Project Work)</td>
<td>126</td>
</tr>
<tr>
<td>Sensors in Biotechnology</td>
<td>128</td>
</tr>
<tr>
<td>Spurenanalytik auf Siliziumscheiben (Trace Analysis on Silicon Wafers)</td>
<td>130</td>
</tr>
<tr>
<td>Technische Optik (Applied Optics)</td>
<td>133</td>
</tr>
<tr>
<td>Festkörperphysik 1 (Solid State Physics 1)</td>
<td>136</td>
</tr>
<tr>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>137</td>
</tr>
<tr>
<td>Konstruktion (Mechanical Component Design)</td>
<td>140</td>
</tr>
<tr>
<td>Konstruktion (Mechanical Component Design)</td>
<td>141</td>
</tr>
<tr>
<td>Mess- und Prüftechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory Exercises)</td>
<td>152</td>
</tr>
<tr>
<td>Pakkagen (Electronics Packaging)</td>
<td>153</td>
</tr>
<tr>
<td>Mikroelektroniktechnologie mit Praktikum (Microelectronics Technology with Laboratory Exercises)</td>
<td>158</td>
</tr>
<tr>
<td>Mikroelektroniktechnologie (Microelectronics Technology)</td>
<td>163</td>
</tr>
<tr>
<td>Praktikum Mikroelektroniktechnologie (Laboratory Exercises: Microelectronics Technology)</td>
<td>164</td>
</tr>
<tr>
<td>Packaging (Electronics Packaging)</td>
<td>167</td>
</tr>
<tr>
<td>Physikalische Chemie mit Praktikum (Physical Chemistry with Laboratory Exercises)</td>
<td>172</td>
</tr>
<tr>
<td>Physikalische Chemie (Physical Chemistry)</td>
<td>188</td>
</tr>
<tr>
<td>Praktikum Physikalische Chemie (Laboratory Exercises: Physical Chemistry)</td>
<td>190</td>
</tr>
<tr>
<td>Physikalische Technologien (Technological Physics)</td>
<td>193</td>
</tr>
<tr>
<td>Laser und Optoelektronik (Laser Technology and Optoelectronics)</td>
<td>195</td>
</tr>
<tr>
<td>Quality management (Quality Management)</td>
<td>206</td>
</tr>
<tr>
<td>Regelungstechnik und Signalverarbeitung (Control Engineering and Signal Processing with Laboratory Exercises)</td>
<td>207</td>
</tr>
<tr>
<td>Regelungstechnik und Signalverarbeitung (Control Engineering and Signal Processing)</td>
<td>209</td>
</tr>
<tr>
<td>Systemintegration und Simulation (Systems: Integration and Simulation)</td>
<td>210</td>
</tr>
<tr>
<td>Systemintegration und Simulation (Systems: Integration and Simulation)</td>
<td>219</td>
</tr>
<tr>
<td>Technische Physik 2 mit Praktikum (Engineering Physics with Laboratory Exercises)</td>
<td>220</td>
</tr>
<tr>
<td>Technische Physik 2 (Engineering Physics 2)</td>
<td>225</td>
</tr>
<tr>
<td>Technische Physik 2 (Engineering Physics 2)</td>
<td>226</td>
</tr>
<tr>
<td>Vakuumtechnik (Vacuum Physics and Technology)</td>
<td>228</td>
</tr>
<tr>
<td>Vakuumtechnik (Vacuum Physics and Technology)</td>
<td>230</td>
</tr>
<tr>
<td>Werkstoffe 2 (Material Sciences 2)</td>
<td>231</td>
</tr>
<tr>
<td>Werkstoffe 2 (Material Sciences 2)</td>
<td>239</td>
</tr>
<tr>
<td>Werkstoffe 2 (Material Sciences 2)</td>
<td>240</td>
</tr>
</tbody>
</table>

Schwerpunkt: Optoelektronik

Computer Programming.. 66

Electrodynamics / Applied Optics.. 67

Electronic Devices (Digital, Analog, Microcontroller)............................. 72

Electronics (Digital, Analog, Microcontroller).. 73

Fachbezogener Wahlpflichtmodul (Mandatory Subjectspecific Elective Module) | 75

Analytische Chemie (Analytical Chemistry)... 76

Bioanalytik und Genanalytik (Bioanalysis and Genetic Analyses)............... 78
Signals and Systems ... 84
Optoelectronics ... 87
Foreign Language / Culture .. 90
Raster mikroskopie (Scanning Microscopy) 92
Security Studies ... 94
Sensorprinzipien (Fundamental Principles of Sensor Technology) ... 96
Spurenanalytik auf Siliziumscheiben (Trace Analysis on Silicon Wafers) 98
Technische Optik (Engineering Optics) 101
Technologiefolgenabschätzung (Technology Assessment) 103
Festkörperphysik 2 (Solid State Physics 2) 143
Festkörperphysik 2 (Solid State Physics 2) 144
Fiber optics ... 146
Fiber optics ... 147
Foreign Language / Culture .. 150
Foreign Language/Culture .. 151
Mathematics 3 .. 155
Mathematics 3 .. 156
Optoelectronics .. 169
Optoelectronics .. 170
Packaging ... 173
Packaging ... 174
Photonics and Laser Technology ... 180
Photonics and Laser ... 181
Physical Optics .. 185
Physical Optics .. 186
Prüf- und Messtechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory
Exercises) ... 201
Praktikum Prüf- und Messtechnik (Laboratory Exercises: Engineering Metrology and Test
Engineering) .. 202
Prüf- und Messtechnik (Engineering Metrology and Test Engineering) 204
Signals and Systems ... 213
Signals and Systems ... 214
Solid State Physics 1 .. 216
Solid State Physics 1 .. 217
Systemintegration und Simulation (Systems Integration and Simulation) 222
Systemintegration und Simulation (Systems: Integration and Simulation) 223
Werkstoffe 2, OLEDs (Material Sciences 2, OLEDs) ... 234
OLEDs ... 235
Werkstoffe 2 (Material Sciences 2) .. 237
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Allgemeine und Anorganische Chemie mit Praktikum (General and Inorganic Chemistry with Laboratory Exercises) | CHP / Nr.2

Modulverantwortliche/r	Fakultät
Prof. Dr. Alfred Lechner | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Zulassungsvoraussetzung für das Praktikum Allgemeine und Anorganische Chemie (Teilmodul Nr. 2.2 / PCH): bestandene Prüfung im Teilmodul Allgemeine und Anorganische Chemie (Teilmodul Nr. 2.1 / CH)

Empfohlene Vorkenntnisse
Grundlagen chemischen Rechnens

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseiten

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Allgemeine und Anorganische Chemie (General and Inorganic Chemistry)</td>
<td>4 SWS</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Allgemeine und Anorganische Chemie (General and Inorganic Chemistry Laboratory Exercises)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allgemeine und Anorganische Chemie (General and Inorganic Chemistry)</td>
<td>CH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>4 SWS</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplattabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplattabelle
<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atommodelle</td>
</tr>
<tr>
<td>* Rutherford</td>
</tr>
<tr>
<td>* Bohr</td>
</tr>
<tr>
<td>* Quantenmechanik</td>
</tr>
<tr>
<td>* Quantenzahlen</td>
</tr>
<tr>
<td>Periodensystem der Elemente</td>
</tr>
<tr>
<td>* Metallocharakter</td>
</tr>
<tr>
<td>* Ionisierungsenergie</td>
</tr>
<tr>
<td>* Ionenradien</td>
</tr>
<tr>
<td>* Elektroaffinität</td>
</tr>
<tr>
<td>* Elektronegativität</td>
</tr>
<tr>
<td>Chemische Bindung</td>
</tr>
<tr>
<td>* Oktett / Duett - Regel</td>
</tr>
<tr>
<td>* Reaktionswärme</td>
</tr>
<tr>
<td>* Ionenbindung</td>
</tr>
<tr>
<td>* Atombindung</td>
</tr>
<tr>
<td>* Lewisformeln</td>
</tr>
<tr>
<td>* Valence-Bond-Theorie</td>
</tr>
<tr>
<td>* Molecular- Orbital-Theorie</td>
</tr>
<tr>
<td>* Komplexbindung</td>
</tr>
<tr>
<td>* Valence-Bond-Theorie</td>
</tr>
<tr>
<td>* Ligandenfeld-Theorie</td>
</tr>
<tr>
<td>* Metallbindung</td>
</tr>
<tr>
<td>* Elektronengas</td>
</tr>
<tr>
<td>* Bändermodell</td>
</tr>
<tr>
<td>* Halbleiter Metall Isolatoren</td>
</tr>
<tr>
<td>* Wasserstoffbrückenbindung</td>
</tr>
<tr>
<td>* Van der Waals - Bindung</td>
</tr>
<tr>
<td>Chemische Reaktion</td>
</tr>
<tr>
<td>* Chemisches Gleichgewicht</td>
</tr>
<tr>
<td>* Massenwirkungsgesetz</td>
</tr>
<tr>
<td>* Löslichkeitsprodukt</td>
</tr>
<tr>
<td>* Redoxsysteme</td>
</tr>
<tr>
<td>* Oxidationszahlen</td>
</tr>
<tr>
<td>* Redoxgleichungen</td>
</tr>
<tr>
<td>* Galvanisches Element</td>
</tr>
<tr>
<td>* Spannungsreihe der Elemente</td>
</tr>
<tr>
<td>* Herstellung von Metallen</td>
</tr>
<tr>
<td>* Säure-Base-Systeme</td>
</tr>
<tr>
<td>* Brönsted-Theorie</td>
</tr>
<tr>
<td>* pH-Wert</td>
</tr>
<tr>
<td>* Säurekonstante</td>
</tr>
<tr>
<td>* Basenkonstante</td>
</tr>
<tr>
<td>* Verschiedene Säuren und Basen</td>
</tr>
<tr>
<td>Chemie der 4. Hauptgruppe</td>
</tr>
<tr>
<td>* Kohlenstoff</td>
</tr>
<tr>
<td>* Graphit und Diamant</td>
</tr>
<tr>
<td>* Silicium</td>
</tr>
<tr>
<td>* Sauerstoffverbindungen</td>
</tr>
<tr>
<td>* Wasserstoffverbindungen</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Allgemeine und Anorganische Chemie mit Praktikum (General and Inorganic Chemistry with Laboratory Exercises)

- Reinstsilicium
- Germanium und Blei

Chemikalien in der Halbleitertechnologie
- Wasserstoffperoxid
- Chlorwasserstoff
- Ammoniak
- Cholin
- Schwefelsäure
- Fluorwasserstoff
- Ammoniumfluorid
- Verschiedene Lösungsmittel

Metallische Werkstoffe
- Legierungen
- Mischkristalle
- Gibbsche Phasenregel
- Phasendiagramm des Eutektikums ohne Mischkristallbildung
- Phasendiagramm für vollständige Löslichkeit im flüssigen und festem Zustand
- Phasendiagramm mit Mischkristallbildung
- Phasendiagramm des Peritektikums
- Beispiele: Blei-Zinn, Eisen-Kohlenstoff, Kupfer-Legierungen, Aluminium-Legierungen

Halbleiter
- Energiebändermodell
- Darstellung von Reinstsilicium
- Einkristallzucht aus der Schmelze
- Impfkristall, Millersche Indizes
- Waferherstellung, Reinigungen
- III/V - Halbleiter
- Anwendungen

Kunststoffe
- Arten der Kunststoffe
- Thermoplaste
- Duroplaste
- Herstellungsverfahren und Reaktionsmechanismen
- Eigenschaften der Kunststoffe
- Bearbeitungsverfahren

Werkstoffprüfungen
- Kunststoffe
- Metalle

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Kenntnis der Grundlagen der allgemeinen und anorganischen Chemie.
- Die Studierenden kennen die 4 Quantenzahlen: die Hauptquantenzahl, der Nebenquantenzahl, die magnetische Nebenquantenzahl und die magnetische Spinquantenzahl.
- Sie kennen den Aufbau des Periodensystems der Elemente mit Hilfe der 4 Quantenzahlen.
- Sie kennen die 4 starken chemischen Bindungen: Ionen-Bindung, Atombindung, Metallbindung und Koordinationsbindung.
• Sie kennen die schwachen Bindungen: Van der Waals-Bindungen und Wasserstoffbrückenbindungen.
• Sie kennen die anorganischen-chemischen Reaktionen: Redox-Reaktion, Säure-Basen-Reaktion

Kompetenzen:

• Kompetenz zur Anwendung des Periodensystems der Elemente: z.B. sind die Studierenden in der Lage auf Grund des Standes des Elements im Periodensystem die Eigenschaften vorauszusagen.
• Kompetenz zur selbständigen Lösung chemischer Gleichungssysteme.
• Die Studierenden sind in der Lage zur indirekten Bestimmung der Reaktionsenergie.

Angebotene Lehrunterlagen

Skript: Allgemeine und Anorganische Chemie, OTH Regensburg 2017

Lehrmedien

Tafel, Notebook, Beamer, chemische Anschauungsversuche

Literatur

• Erwin Riedel, Allgemeine und Anorganische Chemie, de Gruyter Verlag
• Erwin Riedel, Willm Grimmich, Atombau, Chemische Bindung, Chemische Reaktion, Grundlagen in Aufgaben und Lösungen, de Gruyter Verlag

Weitere Informationen zur Lehrveranstaltung

Das Bestehen der Prüfung gilt als Zulassungsvoraussetzung für das Praktikum (Modul Nr. 2.2 / PCH)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>Praktikum Allgemeine und Anorganische Chemie (General and Inorganic Chemistry Laboratory Exercises)</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeit auf wand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Praktikumsversuche zu folgenden Themen:

- Gemenge und Verbindung
- Säure-Base-Titration
- Redoxreaktionen - Spannungsreihe
- Gravimetrie
- Nachweisreaktionen (qualitative Analyse)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, **Kenntnisse:**

- Die in der Vorlesung Allgemeine und Anorganische Chemie vermittelten Kenntnisse werden in dieser Lehrveranstaltung durch praktische Versuche vertieft.

Fertigkeiten:

- Die Studierenden können mit den typischen Gerätschaften der Chemie umgehen und grundlegende praktische Labortätigkeiten durchführen.

Kompetenzen:
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Allgemeine und Anorganische Chemie mit Praktikum
(General and Inorganic Chemistry with Laboratory
Exercises)

- Die Studierenden sind in der Lage, theoretische Zusammenhänge im Kontext praktischer Problemstellungen anzuwenden.

Angebote Lehrunterlagen

Versuchsprotokolle

Lehrmittel

Tafel, Notebook, Beamer

Literatur

- Riedel, Erwin, Allgemeine und Anorganische Chemie, de Gruyter Berlin; 11. Auflage 2013

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Allgemeinwissenschaftliche Wahlpflichtmodule (General Scientific Elective Modules)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinwissenschaftliche Wahlpflichtmodule (General Scientific Elective Modules)</td>
<td>AW / Nr.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. oder 2.</td>
<td>1.</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine. Ausnahmen sind bei Sprachkursen höheren Niveaus oder Fächer von aufeinander aufbauenden Zusatzausbildungen möglich.

Empfohlene Vorkenntnisse
Keine. Ausnahmen sind bei Sprachkursen höheren Niveaus oder Fächer von aufeinander aufbauenden Zusatzausbildungen möglich.

Inhalte
Je nach Lehrveranstaltung

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die Studierenden erwerben Wissen über allgemeinwissenschaftliche Themen – je nach dem gewählten Fach in den Bereichen:

Orientierungswissen: Horizont erweitern, fachliches Wissen außerhalb des Fachstudiums erwerben (z.B. BWL, Recht, Technik)

Soft Skills: persönliche, soziale und methodische Kompetenz erwerben

Sprachen: Fremdsprachen verstehen, sprechen, schreiben

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 23.03.2021
Ostbayerische Technische Hochschule Regensburg
Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 1 (General Scientific Elective Module 1)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 2 (General Scientific Elective Module 2)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 3 (General Scientific Elective Module 3)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Nähere Informationen zum allgemeinwissenschaftlichen Angebot entnehmen Sie dem AW-Katalog auf der Webseite der OTH Regensburg. Im Rahmen des allgemeinwissenschaftlichen Angebots ist es möglich, durch Belegung einer ganzen Fächergruppe bestimmte zertifizierte Qualifikationen zu erwerben.
Teilmodul

<table>
<thead>
<tr>
<th>Modulname</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 1</td>
<td>AW1</td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Gabriele Blod

Fakultät
- Angewandte Natur- und Kulturwissenschaften

Lehrende/r / Dozierende/r
- Angebotsfrequenz: in jedem Semester

Lehrform
- Je nach Lehrveranstaltung

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. oder 2.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 30h
- Eigenstudium: 30h

Studien- und Prüfungsleistung
- Je nach Lehrveranstaltung

(der Katalog mit Wahlpflichtmodulen wird im Studienplan für die Allgemeinwissenschaftlichen Wahlpflichtmodule festgelegt. Dieser regelt auch die zu erbringenden Prüfungsleistungen.)

Zugelassene Hilfsmittel für Leistungsnachweis
- Je nach Lehrveranstaltung

Inhalte
- Je nach Lehrveranstaltung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Lehrveranstaltung

Angebotene Lehrunterlagen
- Je nach Lehrveranstaltung

Lehrmedien
- Je nach Lehrveranstaltung

Literatur
- Je nach Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Teilmodul

<table>
<thead>
<tr>
<th>Allgemeinwissenschaftliches Wahlpflichtmodul 2 (General Scientific Elective Module 2)</th>
<th>AW2</th>
</tr>
</thead>
</table>

Verantwortliche/r

| Prof. Dr. Gabriele Blod | Angewandte Natur- und Kulturwissenschaften |

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrende im AW-Programm (LB) in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

| Je nach Lehrveranstaltung |

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. oder 2. 2 SWS deutsch</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

| Je nach Lehrveranstaltung |

(Der Katalog mit Wahlpflichtmodulen wird im Studienplan für die Allgemeinwissenschaftlichen Wahlpflichtmodule festgelegt. Dieser regelt auch die zu erbringenden Prüfungsleistungen.)

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Lehrveranstaltung</td>
</tr>
</tbody>
</table>

Inhalte

| Je nach Lehrveranstaltung |

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Lehrveranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Lehrveranstaltung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Lehrveranstaltung</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinwissenschaftliches Wahlpflichtmodul 3 (General Scientific Elective Module 3)</td>
<td>AW3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrende im AW-Programm (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Je nach Lehrveranstaltung

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
</tr>
<tr>
<td>1. oder 2.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium
30h

Eigenstudium
30h

Studien- und Prüfungsleistung
Je nach Lehrveranstaltung

(Der Katalog mit Wahlpflichtmodulen wird im Studienplan für die Allgemeinwissenschaftlichen Wahlpflichtmodule festgelegt. Dieser regelt auch die zu erbringenden Prüfungsleistungen.)

Zugelassene Hilfsmittel für Leistungsnachweis
Je nach Lehrveranstaltung

Inhalte
Je nach Lehrveranstaltung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
Je nach Lehrveranstaltung

Angebotene Lehrunterlagen
Je nach Lehrveranstaltung

Lehrmedien
Je nach Lehrveranstaltung

Literatur
Je nach Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Elektronische Bauelemente (Electronic Circuit Elements)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektronische Bauelemente (Electronic Circuit Elements)</td>
<td>EB / Nr.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Mathematik 1 (Modul Nr.3), Technische Physik 1 (Modul Nr.4)

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elektronische Bauelemente (Electronic Circuit Elements)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Elektronische Bauelemente (Electronic Circuit Elements)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektronische Bauelemente (Electronic Circuit Elements)</td>
<td>EB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform: Seminaristischer Unterricht

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehramfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. 4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

1. Einleitung – Physikalische Grundlagen, Symbole, lineare Netzwerke
2. Passive Bauelemente: Widerstand, Kondensator, Spule / Transformator
3. Halbleiter-Bauelemente – Grundlagen (Bändermodell, Kontakt/e/pn-Übergang)
 Physikalische Funktionsweisen, statisches Verhalten, dynamisches Verhalten,
 Simulationsmodelle

exemplarische Anwendungen für:
4. Dioden
5. Bipolar-Transistor (Ebers-Moll-Modell)
6. MOS-Kapazität und Feldeffekttransistor

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
Kenntnisse:
- Die Studierenden kennen verschiedene Typen und Bauformen von passiven
 Bauelementen und deren Eigenschaften hinsichtlich Physik und Material.
- Sie kennen die Möglichkeiten der Planartechnologie zur Herstellung von aktiven
elektronischen Bauelementen, insbesondere aktiven Bauelementen aus dotierten
Halbleitern und deren physikalische Eigenschaften.
Fertigkeiten:

- Die Studierenden können einfache elektrische Schaltkreise verstehen und durch Nutzung von Knoten- und Maschenregel vereinfachen, und sie können Ersatzspannungsquellen von linearen Netzen berechnen.
- Im Bereich der Halbleiter-Bauelemente können sie Bänderdiagramme zeichnen, auch für Kontaktstellen (pn-Übergang) und das Verhalten bei angelegtem elektrischen Feld in Durchlass- und Sperrrichtung damit beschreiben.

Kompetenzen:

- Die Studierenden können verschiedene gängige Bauelemente gezielt für bestimmte schaltungstechnische Aufgaben auswählen und deren Funktion und Einsatzbereiche beurteilen. Auf dieser Basis sind sie in der Lage, sich später komplexere (zunächst analoge) Schaltungsanwendungen zu erschließen.

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Vorlesungsskript mit Übungen, Moodle-Kursraum</th>
</tr>
</thead>
</table>

Lehrmedien

- Tafel, Notebook, Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Nach Möglichkeit wird ein begleitendes Tutorium angeboten.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)	**Modul-KzBez. oder Nr.**
Informationsverarbeitung mit Praktikum (Information Processing with Laboratory Exercises) | IVP / Nr.1

Modulverantwortliche/r	**Fakultät**
Prof. Dr. Rudolf Bierl | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Zulassungsvoraussetzung zur Prüfung im Teilmodul *Informationsverarbeitung* (Modul Nr. 1.1 / IV): bestandenes *Praktikum Informationsverarbeitung* (Modul Nr. 1.2 / PIV)

Empfohlene Vorkenntnisse

Keine

Inhalte

Siehe Folgeseiten

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseiten

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Informationsverarbeitung (Information Processing)</td>
<td>4 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Informationsverarbeitung (Laboratory Exercises: Information Processing)</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informationsverarbeitung (Information Processing)</td>
<td>IV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Bierl</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Rudolf Bierl</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>3 (ECTS-Credits)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

LABVIEW:
- Geschichte der Informatik
- Duales Zahlensystem
- Kennenlernen von strukturiertem Programmieren
- Bedienung von LabVIEW
- Erstellen Ihrer ersten Anwendung
- Suchen und Beheben von Fehlern in VIs
- Verwenden von Schleifen
- Erstellen und Verwenden von Datenstrukturen
- Erzeugen von Programm-verzweigungen mittels Strukturen
- Modularität
- Durchführen von Messungen mit Hilfe von Hardware
- Arbeiten mit Dateien in LabVIEW
- Verwenden von sequenziellen Algorithmen und Zustandsautomaten

MATLAB:
- Hintergründe und Daten zu Mathworks Matlab
- Allgemeine Grundlagen zu Matrizenoperationen
- Mathematische Probleme mit Matrizen lösen
- Aufbau und Bedienung der Benutzeroberfläche in Matlab
- Eingeben von Daten in Matrizenform und deren Weiterverarbeitung
- M-Files; Skripte erstellen und anwenden; Anonyme Funktionen in Matlab
- Speichern und Laden von Messdaten
- Grafische Ausgaben von Punkten bzw. Linien in 2D und komplexen Datenstrukturen in 3D
- Speichern, Laden und manipulieren von Bilddateien und Graphiken
- Interpolieren und Approximieren von Messdaten
- Elementare Optimierung in Matlab
- Signalverarbeitung in Matlab; Fast Fourier-Transformation in Matlab
- Laufzeitgeschwindigkeitstests von Matlab Funktionen und Programmen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

LABVIEW:
Kenntnisse:
- Erlernen theoretischer Grundlagen
- Grundlagen der Programmierung
- Kennenlernen und Anwenden einer grafischen Programmiersprache (Labview)

Fertigkeiten:
- Fertigkeit, Algorithmen und Datenstrukturen eigenständig zu programmieren
- Fertigkeit, Fehleranalyse von Programmen durchzuführen
- Fertigkeit, den Ablauf komplexer Programme zu verstehen und zu analysieren
- Fertigkeit, grafische Bedienoberflächen intuitiv bedienbar zu gestalten

Kompetenzen aus Unterricht und Praktikum:
- Analyse von technischen Aufgabenstellungen im Hinblick auf die Umsetzung mit Labview
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Informationsverarbeitung mit Praktikum (Information Processing with Laboratory Exercises)

- Umsetzung gegebener technischer Aufgabenstellungen mit LABVIEW unter Beachtung von technischen und wirtschaftlichen Randbedingungen

MATLAB

Kenntnisse:

- Erlernen theoretischer Grundlagen zu Matrizen und deren Operationen
- Matlab Benutzeroberfläche bedienen
- Grundlagen zur Matlab Programmierung
- Plotten in 2D und 3D in Matlab
- Bildbearbeitung in Matlab
- Interpolation und Approximation

Fertigkeiten:

- Fertigkeit, Matrizen zu erstellen und zu bearbeiten
- Fertigkeit, Fehleranalyse von Matlab Programmen durchzuführen
- Fertigkeit, den Ablauf prozeduraler Programme zu verstehen und zu analysieren
- Fertigkeit, Messdaten sinnvoll grafisch auszugeben
- Fertigkeit, Messdaten zu bearbeiten, zu interpretieren und abzuspeichern

Kompetenzen Unterricht und Praktikum:

- Analyse von technischen Aufgabenstellungen im Hinblick auf die Umsetzung mit Matlab
- Umsetzung gegebener technischer und mathematischer Aufgabenstellungen mit Matlab unter Beachtung von technischen und wirtschaftlichen Randbedingungen

Lehrmedien

- Tafel, Notebook, Beamer

Literatur

LABVIEW:

- Einführung in Labview von Wolfgang Georgi, Hanser Verlag, ISBN 978-3-446-41560-7
- R. Jamal / A. Hagestedt: Labview - Das Grundlagenbuch, Addison-Wesley, August 2004
- Peter A. Blume: The Labview Style Book, Prentice Hall, 2004

MATLAB:

- Physical Modeling in MATLAB; von Allen Downey kostenlos unter http://greenteapress.com/matlab
- Programmieren mit MATLAB; von Ulrich Stein als eBook über die Bibliothek
- MATLAB 7 für Ingenieure; von Frieder Grupp und Florian Grupp als eBook über die Bibliothek

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 23.03.2021

Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Informationverarbeitung (Laboratory Exercises: Information Processing)</td>
<td>PIV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Bierl</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthias Altmann (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Rudolf Bierl</td>
<td></td>
</tr>
<tr>
<td>Johannes Fischer (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

LABVIEW:
- Programmierung des Lego Roboters mit Hilfe der grafischen Programmiersprache Labview
- Kennenlernen eines Embedded Systems
- Projektarbeit im Team: Steuerung des Lego Roboters durch einen Parcours; Lösen vieler programmiertechnischer Aufgaben; Erlernen von strukturierter Softwareentwicklung
- Spielerisches Kennenlernen der Grundbegriffe der Sensorik: Kalibrierung, etc.

MATLAB:
- Aufgaben zu grundlegenden Matrizenoperationen
- Aufgaben zu mathematischen Problemen mit Matrizen lösen
- Erlernen und Bedienung der Benutzeroberfläche in Matlab
- Eingeben von Daten in Matrizenform und deren Weiterverarbeitung
- Aufgaben zu M-Files; Skripte erstellen und anwenden; Anonyme Funktionen in Matlab
- Aufgaben zum Speichern und Laden von Messdaten
- Aufgaben zur grafischen Ausgabe von Punkten bzw. Linien in 2D und komplexen Datenstrukturen in 3D
- Aufgaben zum Speichern, Laden und manipulieren von Bildateien und Graphiken
- Aufgaben zum Interpolieren und Approximieren von Messdaten
- Aufgaben zur elementaren Optimierung in Matlab
- Aufgaben zu Signalverarbeitung in Matlab; Fast Fourier-Transformation in Matlab
- Laufzeitgeschwindigkeitstests von Matlab Funktionen und Programmen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

LABVIEW:

Kenntnisse:
- Kennenlernen und Anwenden einer grafischen Programmiersprache (LabVIEW)
- Praktisches Umsetzen theoretischer Grundlagen
- Grundlagen der Programmierung eines Embedded Systems
- Kennenlernen unterschiedlicher Sensorprinzipien und deren Kalibriermethoden

Fertigkeiten:
- Fertigkeit, Algorithmen und Datenstrukturen eigenständig programmieren
- Fertigkeit, Fehleranalyse von Programmen durchzuführen
- Fertigkeit, den Ablauf komplexer Programme zu verstehen und zu analysieren
- Fertigkeit, grafische Bedienoberflächen intuitiv bedienbar zu gestalten

Kompetenzen:
- Soziale Kompetenzen wie Teamfähigkeit und Arbeitsteilung
- Methodische Kompetenzen wie Problemanalyse, Systematik und Lösungsfindung werden erweitert
- Rhetorische Kompetenzen zur Kommunikation und Präsentation von Konzepten und Ergebnissen werden verbessert
- Projektmanagement
- Reflexion der eigenen Leistung
- Kreativität
Zeitmanagement

MATLAB:
Kenntnisse:

- Erstellen von Matrizen und deren Operationen
- Matlab Benutzeroberfläche bedienen
- Grundlagen zur Matlab Programmierung
- Plotten in 2D und 3D in Matlab
- Bildbearbeitung in Matlab
- Interpolation und Approximation

Fertigkeiten:

- Fertigkeit, Matrizen zu erstellen und zu bearbeiten
- Fertigkeit, eine Fehleranalyse von Matlab Programmen durchzuführen
- Fertigkeit, den Ablauf prozeduraler Programme zu verstehen und zu analysieren
- Fertigkeit, Messdaten sinnvoll grafisch auszugeben
- Fertigkeit, Messdaten zu bearbeiten, zu interpretieren und abzuspeichern

Kompetenzen:

- Analyse von technischen Aufgabenstellungen im Hinblick auf die Umsetzung mit Matlab
- Umsetzung gegebener technischer und mathematischer Aufgabenstellungen mit Matlab unter Beachtung von technischen und wirtschaftlichen Randbedingungen

Angebotene Lehrunterlagen

Übungsblätter

Literatur

LABVIEW:
- Labview for Lego Mindstorms NXT von Michael Gasperi

MATLAB:

- Physical Modeling in MATLAB; von Allen Downey kostenlos unter http://greenteapress.com/matlab
- Programmieren mit MATLAB; von Ulrich Stein als eBook über die Bibliothek
- MATLAB 7 für Ingenieure; von Frieder Grupp und Florian Grupp als eBook über die Bibliothek

Weitere Informationen zur Lehrveranstaltung

Aufteilung: 2 SWS LabVIEW und 2 SWS Matlab

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1 (Mathematics 1)</td>
<td>MA1 / Nr. 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Stein</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Keine

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 1 (Mathematics 1)</td>
<td>8 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Mathematik 1 (Mathematics 1)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 1 (Mathematics 1)</td>
<td>MA1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Stein</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Stein</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Seminaristischer Unterricht</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>8 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>120h</td>
<td>120h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Vektorrechnung und Analytische Geometrie:
- Rechenoperationen mit Vektoren, Betrag, Skalarprodukt, Vektorprodukt, Spatprodukt, orthogonale Projektion, Geraden und Ebenen
- Anwendungen in Geometrie, Physik und Technik

Differentialrechnung:
- Ableitung von differenzierbaren Funktionen und von Kurven in Parameterdarstellung

Anwendungen der Differentialrechnung:
- z. B. Kurvendiskussion, Extremwerte, Newton-Verfahren

Integralrechnung:
- Bestimmtes und unbestimmtes Integral, Integrationsregeln, Numerische Integration, Uneigentliche Integrale
- Längen- Flächen- und Volumenmessung
- Anwendungen der Integralrechnung z. B. in der Kinematik, Schwerpunkte, Momente

Unendliche Reihen:
- Zahlenreihen und Funktionenreihen, Konvergenzkriterien, Fehlerabschätzung
- Potenzreihen und Taylor-Reihen;
- Anwendungen: z.B. Approximation, Integration durch Reihenentwicklung
- Fourier-Reihen, Numerische Fourieranalyse, Interpretation in der Technik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, **Kenntnisse:**
- Übersicht über wesentliche Regeln und Methoden der eindimensionalen reellen Analysis: z.B. Differentiationsregeln, Integrationsmethoden, Grenzwertregeln

Fertigkeiten:
- Sichere Anwendung der Rechenregeln von Vektoroperationen.
- Anwendung der Vektorrechnung in Anwendungsbeispielen aus Physik und Technik.
- Korrekte Anwendung wesentlicher Konvergenzkriterien bei Folgen und Reihen.
- Beherrschung der Differentiationsregeln einer Veränderlichen.
- Korrekte Anwendung wesentlicher Integrationsmethoden einer Veränderlichen.
Kompetenzen:

- Sichere Konvergenzanalyse bei Folgen und Reihen.
- Einsatz der Differentialrechnung zur Diskussion des Verhaltens einer Funktion in einer reellen Veränderlichen.
- Einsatz der Differentialrechnung zur Lösung von Extremwertaufgaben und zur Approximation von Funktionen.
- Nutzung der Integralrechnung zur Berechnung geometrischer und physikalisch technischer Größen.
- Übersetzung praktischer Fragestellungen in mathematische Probleme.

Lehrmedien

- Tafel, Notebook, Beamer

Literatur

- Bronstein I., Semendjajew K., Taschenbuch der Mathematik, Verlag Harri Deutsch
- Erven J., Erven M., Hörwick J., Vorkurs Mathematik, Oldenbourg Wissenschaftsverlag
- Erven J., Schwägerl D., Mathematik für Ingenieure, Oldenbourg Wissenschaftsverlag
- Erven J., Schwägerl D., Übungsbuch zur Mathematik für Ingenieure, Oldenbourg Wissenschaftsverlag
- Leitz M., Ingenieurmathematik 1 (Kurzsskript), Hochschule Regensburg
- Meyberg K., Vachenauer P., Höhere Mathematik 1, Springer Verlag
- Papula L., Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>MA 2 / Nr.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Stein</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse

Mathematik 1 (Modul Nr. 3)

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 2 (Mathematics 2)</td>
<td>8 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>

Stand: 23.03.2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik 2 (Mathematics 2)</td>
<td>MA2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Stein</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Stein</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>8 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>120h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Fourier-Reihen:
Periodische Funktion, harmonische Grundschwingung, Begriff der Fourier-Reihe, stückweise stetig-differenzierbare Funktionen, punktweise Konvergenz von Fourier-Reihen, Anwendung von Fourier-Reihen zur Approximation periodischer Funktionen.

Komplexe Zahlen:

Differentialrechnung für Funktionen mehrerer reeller Veränderlicher
- Funktionen mehrerer reeller Veränderlicher, Niveaupunkte, partielle Ableitungen, Richtungsableitung, vollständige Differenzierbarkeit, Gradient, Tangentialebene
- Anwendungen der Differentiation: z.B. Bedeutung der Gradienten, Fehlerrechnung, lokale Extremwerte, Extremwerte unter Nebenbedingungen, globale Extremwerte

Gewöhnliche Differentialgleichungen:

Die Laplace-Transformation:
- Anwendung auf lineare Differentialgleichungen und lineare Differentialgleichungssysteme mit konstanten Koeffizienten.

Lineare Algebra:

Integralrechnung für Funktionen mehrerer reeller Veränderlicher Kurvenintegrale (optional!):
- Vektorfelder, Potentialfelder, Kurvenintegral eines Vektorfeldes, Wegunabhängigkeit, Kurvenintegral eines Skalarfeldes.
- Integration über ebene Bereiche: Integration über Normalbereiche, Transformationen (z.B. auf Polarkoordinaten)
- Anwendungen: z.B. Arbeit, Momente, Schwerpunkte, Volumenberechnungen.
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Kenntnisse grundlegender Begriffe im Zusammenhang mit Fourier-Reihen sowie deren Anwendung bei der Approximation periodischer Funktionen.
- Kenntnis des Begriffs der komplexen Zahl sowie deren unterschiedliche Darstellungsform.
- Kenntnis des Begriffs der gewöhnlichen Differentialgleichung und deren Anwendung zur Beschreibung und Lösung technisch-physikalischer Probleme.
- Übersicht über die wesentlichen Begriffe der mehrdimensionalen reellen Analysis: z.B. partielle Ableitung, Richtungsableitung, Gradient, partielle Differentialgleichung usw.
- Kenntnis des Begriffs der Matrix und des linearen Gleichungssystems sowie deren Anwendung in der Technik.

Fertigkeiten:

- Berechnung der Fourier-Reihe einer periodischen Funktion, Bestimmung der Konvergenzeigenschaften einer Fourier-Reihe.
- Sicheres Rechnen mit komplexen Zahlen und elementaren komplexen Funktionen.
- Sichere Berechnung partieller Ableitungen, Bestimmen von lokalen und globalen Extrema von Funktionen mehrerer Veränderlicher.
- Berechnung der Laplace-Transformierten, sichere Beherrschung Transformationsregeln für die Laplace-Transformation.
- Beherrschung der Matrizenrechnung, Beherrschung von grundlegenden Verfahren zur Lösung von linearen Gleichungssystemen.

Kompetenzen:

- Approximation periodischer Funktionen aus technischen Anwendungen mit Hilfe von Fourier-Reihen.
- Sicherer Umgang mit komplexen Zahlen und elementaren komplexen Funktionen im Hinblick auf Anwendungen in der komplexen Wechselstromtechnik.
- Lösen einer physikalisch-technischen Problemstellung durch die Analyse des Lösungsraumes einer geeigneten gewöhnlichen Differentialgleichung.
- Sichere Analyse des Lösungsraumes eines linearen Gleichungssystems.

Lehrmedien

Tafel, Notebook, Beamer
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bronstein I., Semendjajew K., Taschenbuch der Mathematik, Verlag Harri Deutsch</td>
</tr>
<tr>
<td>• Erven J., Schwägerl D., Mathematik für Ingenieure, Oldenbourg Wissenschaftsverlag</td>
</tr>
<tr>
<td>• Erven J., Schwägerl D., Übungsbuch zur Mathematik für Ingenieure, Oldenbourg Wissenschaftsverlag</td>
</tr>
<tr>
<td>• Leitz M. Ingenieurmathematik 2 (Kurzskript), Hochschule Regensburg</td>
</tr>
<tr>
<td>• Meyberg K., Vachenauer P., Höhere Mathematik 1, Springer Verlag</td>
</tr>
<tr>
<td>• Meyberg K., Vachenauer P., Höhere Mathematik 2, Springer Verlag</td>
</tr>
<tr>
<td>• Papula L., Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg Verlag</td>
</tr>
<tr>
<td>• Weber H., Ulrich H., Laplace-Transformation, Grundlagen – Fourierreihen und Fourierintegral – Anwendungen, Teubner Verlag</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Physik 1 (Engineering Physics 1)</td>
<td>TP1 / Nr.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,
Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Technische Physik 1 (Engineering Physics 1)</td>
<td>8 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Das Modul erstreckt sich über zwei Semester: Teil 1 (WiSe) / Teil 2 (SoSe)
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Physik 1 (Engineering Physics 1)</td>
<td>TP 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
</table>
| Prof. Dr. Peter Bickel
Prof. Dr. Thomas Peterreins | Angewandte Natur- und Kulturwissenschaften |

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
</table>
| Prof. Dr. Peter Bickel
Prof. Dr. Thomas Peterreins | jährlich |

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2.</td>
<td>8 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>120h</td>
<td>120h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
<tr>
<td>Inhalte</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Teil 1 (WiSe):</td>
</tr>
<tr>
<td>Mechanik</td>
</tr>
<tr>
<td>• Physikalische Erkenntnisgewinnung</td>
</tr>
<tr>
<td>• Der Messprozess: Systematische Fehler – Statistische Fehler</td>
</tr>
<tr>
<td>• Kinematik der Massepunkte</td>
</tr>
<tr>
<td>• Dynamik der Bewegung: Die Newton'schen Axiome, Lösung von Bewegungsgleichungen</td>
</tr>
<tr>
<td>• Arbeit, Energie und Leistung- Kräftefelder, Potential und Potentialfelder am Bsp. der Gravitation, Wie hängen Feld und Potential zusammen?, Abstandsgesetz der Kraft und Geometriempulssatz für Systeme von MP</td>
</tr>
<tr>
<td>• Erhaltungsgrößen der Drehbewegung, Drehmoment und Drehimpuls, Massenträgheitsmoment, Corioliskraft</td>
</tr>
<tr>
<td>• Mechanik deformierbarer Körper, Elastische Verformungen, Mechanik der Flüssigkeiten und Gase, Hydrostatik</td>
</tr>
<tr>
<td>• Grenzflächenwirkung, Oberflächen- Flüssigkeitsvorgänge, Flüssigkeits- und Gaskinetik, Bernoulli-Gleichung, Reibungskräfte in strömenden Flüssigkeiten, Laminare und turbulente Strömungen, Ähnlichkeit, Reynoldszahl</td>
</tr>
</tbody>
</table>

| **Teil 2 (im SoSe):** |
| **Elektrostatik** |
| • Ladungen, Coulombkraft |
| • Elektrisches Feld |
| • Fluß des elektrischen Feldes |
| • Gauß'scher Satz |
| • Elektrisches Potential |
| • Kapazitäten |
| • Materie im elektrischen Feld |

| **Elektrodynamik** |
| • Freie Elektronen im elektrischen Feld |
| • Ströme |
| • Ohm'sches Gesetz |
| • Magnetfelder, Lorentzkraft, Hall Effekt |
| • Fluß des Magnetfeldes |
| • Durchflutungsgesetz |
| • Induktivitäten |
| • Magnetfelder in Materie |

| Lernziele: Fachkompetenz |

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

• Die Studierenden kennen die grundlegenden Konzepte und Methoden der Physik.
• Die Studierenden kennen die in der Mechanik elementaren Begriffe der Kinematik, das Konzept der Kraft und des Impulses und darauf aufbauend Arbeit, Energie, der physikalische Feldbegriff sowie das Potenzial.
• Die Studierenden verfügen über das für die weiteren Physik- und Technikkurse erforderliche Basiswissen.
Fertigkeiten:

- Sie können grundlegende mathematische Methoden anwenden und verfügen über vertieftes Wissen darin.
- Fernerhaben sie den Umgang mit physikalischen Erhaltungsgrößen in Theorie und Praxis erlernt und können Konzepte auf reale Körper und Fluide anwenden.

Kompetenzen:

- Sie sind in der Lage physikalische Zusammenhänge zu erkennen, technische Probleme zu analysieren und mit physikalischen Methoden zu lösen.

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Friedhelm Kuypers: Physik für Ingenieure Band 1: Mechanik und Thermodynamik, VCH Verlagsgesellschaft mbH, D-69451 Weinheim
- Hering-Martin-Stohrer: Physik für Ingenieure, VDI-Verlag, Düsseldorf
- Bohrmann-Pitka-Stöcker/Terleck: Physik für Ingenieure, Verlag Harry Deutsch, Frankfurt/Main
- Hans J. Paus: Physik, Hanser Verlag, München
- Gehrtsen, Kneser, Vogel, „Physik“ , Springer Verlag
- David Halliday, Robert Resnick: Fundamentals of Physics, Verlag Wiley & Sons, New York
- Klaus Dransfeld, Paul Kienle: Physik II, Oldenbourg Verlag, München

Weitere Informationen zur Lehrveranstaltung

Ein begleitendes Tutorium zu Teil 1 und 2 wird jeweils im Sommersemester angeboten.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	**Modul-KzBez. oder Nr.**
Technisches Englisch (Technical English) | TE / Nr.5

Modulverantwortliche/r	**Fakultät**
Ulrich Martzinek (LB) | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Grundlagen des Schulenglischen

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Technisches Englisch (Technical Englisch)</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Das Modul erstreckt sich über 2 Semester.
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Technisches Englisch (Technical English)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technisches Englisch (Technical Englisch)</td>
<td>TE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrich Martzinek (LB)</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrich Martzinek (LB)</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. und 2.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>4 (ECTS-Credits)</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Grundlegende Strukturzüge und Merkmale des Englischen als Fachsprache
- Verbreitete Strukturen komplexer Syntax
- Behandlung gängiger Phrasen
- Probleme und Besonderheiten der Wortbildung im Englischen als Fachsprache
- Englisch-deutsche Besonderheiten der Grammatik
- Wichtige Unterschiede in den Interpunktionssystemen des Englischen und Deutschen
- Wesen und Problematik der Metaphorik in der Fachsprache
- Relevante fremdsprachliche Einflüsse im Englischen als Fachsprache
- Wesen und Problematik von Abkürzungen
- Grundlagen der Zahlensysteme, Geometrie, numerischen und abstrakten Darstellungen in angewandter Mathematik
- Grundlagen in Englisch aus Chemie, Physik und Elektrotechnik/Elektronik
- Sozio-kulturelle Unterschiede und ihre Berücksichtigung im englisch-deutschen Begriffssystem
- Fachlich verschriftete Darstellungen von einem repräsentativen naturwissenschaftlichen Spektrum an Themen aus Mikrosystemtechnik (MS) sowie Sensorik & Analytik (SA)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

Stand: 23.03.2021

Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Technisches Englisch (Technical English)

- Reaktivierung der Funktionsfähigkeit von Schulenglisch.
- Zugrundelegung und Ausbau eines englischen Fachwortschatzes.
- Problematisierung der anglizistischen Durchdringung des Deutschen sowie der MST-Fachsprache.

Fertigkeiten:

- Entwicklung der Fähigkeit, englische Fachtexte aus der Mikrosystemtechnik und angrenzender Wissenschaften zu lesen und durch Übersetzung ins Deutsche nachweislich zu erfassen sowie mündliche Darstellungen in einem englischen Fachvortrag zu verstehen.
- Erfassung von wichtigen englischsprachigen Grundlagen in MS, SA, Chemie, Physik, Mathematik und entsprechend angewandten Technologien.
- Hinführung zum Verständnis von naturwissenschaftlichen Themen aus MS sowie SA in technisch-technologischem Englisch

Kompetenzen:

- Beherrschung eines Grundstocks an lexikalischen, phraseologischen sowie syntaktischen Strukturen im für MS & SA relevantem technologischem Englisch.
- Selbsterantwortliche Durchdringung von fachlichen Darstellungen auf Englisch in Büchern, Aufsätzen und Vorträgen.

Angebotene Lehrunterlagen

Authentische Fachliteratur in Englisch zur Erarbeitung der diversen sprachlichen Fachproblematiken (vom Modulverantwortlichen)

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Fachzeitschrift Compoundsemiconductor (elektronisch) als ein exemplarisches Arbeitsmittel
- Wörterbücher Englisch-Deutsch/Deutsch-Englisch aus dem gehobenen Sekundarschulbereich
- Fremdwörterbuch Deutsch und/oder Englisch

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)
Werkstoffe 1 (Materials Sciences 1)

Modul-KzBez. oder Nr.
WE1 / Nr.6

Modulverantwortliche/r
Prof. Dr. Alfred Lechner

Fakultät
Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Allgemeine und Anorganische Chemie mit Praktikum (Modul Nr. 2)

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Werkstoffe 1 (Materials Sciences 1)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 23.03.2021
Ostbayerische Technische Hochschule Regensburg
Seite 43
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstoffe 1 (Materials Sciences 1)</td>
<td>WE 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
<tr>
<td>Eigenstudium</td>
</tr>
<tr>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Chemikalien in der Halbleitertechnologie:
* Wasserstoffperoxid
* Chlorwasserstoff
* Ammoniak
* Cholin
* Schwefelsäure
* Fluorwasserstoff
* Ammoniumfluorid
* Verschiedene Lösungsmittel

Metallische Werkstoffe:
* Legierungen
* Mischkristalle
* Gibbche Phasenregel
* Phasendiagramm des Eutektikums ohne Mischkristallbildung
* Phasendiagramm für vollständige Löslichkeit im flüssigen und festem Zustand
* Phasendiagramm mit Mischkristallbildung
* Phasendiagramm des Peritektikums
* Beispiele: Blei-Zinn, Eisen-Kohlenstoff, Kupfer-Legierungen, Aluminium-Legierungen

Halbleiter:
* Energiebändermodell
* Darstellung von Reinstsilicium
* Einkristallzucht aus der Schmelze
* Impfkristall, Millersche Indizes
* Waferherstellung, Reinigungen
* III/V - Halbleiter
* Anwendungen

Kunststoffe:
* Arten der Kunststoffe
* Thermoplaste
* Duroplaste
* Herstellungsverfahren und Reaktionsmechanismen
* Eigenschaften der Kunststoffe
* Bearbeitungsverfahren

Werkstoffprüfungen:
* Kunststoffe
* Metalle

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
• Kenntnis der Stoffe, die in der Mikrotechnik sowie der Sensorik und Analytik zur Anwendung kommen (wird weitergeführt in den Modulen Werkstoffe 2 bzw. Organische Chemie und Funktionelle Werkstoffe).
- Detaillierte Kenntnis der wichtigsten nasschemischen Chemikalien, die in der Halbleiter-Technologie Anwendung finden, hinsichtlich ihrer Herstellungsverfahren, ihrer Eigenschaften, ihrer typischen chemischen Reaktionen und ihrer Aufgaben in der Mikrosystemtechnik und Analytik.
- Kenntnisse über die metallischen Leiterwerkstoffe, deren Legierungen, die verschiedenen Halbleiterwerkstoffe und Kunststoffe.

Fertigkeiten:

- Fähigkeit zum Lesen von Phasendiagrammen

Kompetenzen:

- Kompetenz zur Anwendung von Werkstoffen in der Halbleitertechnik
- Kompetenz zur Anwendung geeigneter Chemikalien für Ätz- und Reinigungsprozesse
- Kompetenz zur Anwendung geeigneter Legierungen in der Verbindungstechnik

Angebotene Lehrunterlagen

Skript Werkstoffe 1, Alfred Lechner, OTH Regensburg

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- U. Hilleringmann, Silizium-Halbleitertechnologie, Teubner Verlag, Stuttgart, 2002
- Bargel/Schulze Werkstoffkunde VDI Verlag
- E. Ivers-Tiffee, W. von Münch, Werkstoffe der Elektrotechnik, Teubner Verlag, Stuttgart, 2004

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Praktikum (Internship)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum (Internship)</td>
<td>PX / Nr.22</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r	Fakultät
Prof. Dr. Rudolf Bierl | Angewandte Natur- und Kulturwissenschaften |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2</td>
<td>Pflicht</td>
<td>23</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Alle 60 ECTS aus dem ersten Studienabschnitt, weitere 30 ECTS aus dem 2. Studienabschnitt.

Empfohlene Vorkenntnisse
Theoretische Kenntnisse aus 4. Studiensemestern

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum (Internship)</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Stand: 23.03.2021
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Praktikum (Internship)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum (Internship)</td>
<td>PX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Bierl</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Praktikum (18 Wochen extern)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsentzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>690h</td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Das Praktikum ist wie folgt zu dokumentieren:
- Praktikantenvertrag (Abgabe spätestens zwei Wochen vor Praktikumsbeginn)
- Erstellung eines Praktikumsberichts (4000 bis 6000 Zeichen)
- Der Bericht sollte zu mindestens 2/3 aus der Dokumentation der eigenen Arbeit bestehen (Arbeitsaufgaben und Vorgehensweise) und konkrete Ergebnisse darstellen.
- Sollten die Rahmenbedingungen nicht eingehalten werden können, so ist rechtzeitig Rücksprache mit dem Ausbildungsbeauftragten in der Ausbildungsstelle zu nehmen.
- Das Praktikumszeugnis wird nach Beendigung des Praktikums im Original im Servicebüro vorgelegt (Kopie mitbringen).

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Projektbezogene Arbeit an einem mikrotechnologischen Prozess oder Mikrosystem auf einem Niveau, das den bisher im Studium erworbenen Fähigkeiten entspricht, an einem frei wählbaren, mit der externen Ausbildungsstätte zu vereinbarendem Thema.

Stand: 23.03.2021
Ostbayerische Technische Hochschule Regensburg Seite 48
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Die Studierenden kennen die Arbeitsgebiete, die betrieblichen Abläufe und sozialen Mechanismen in einem Unternehmen.
- Sie haben die Tätigkeiten und die Arbeitsmethodik von Ingenieuren/innen im Unternehmen kennengelernt.

Fertigkeiten:

- Sie sind in der Lage Arbeitsergebnisse aufzubereiten, zu präsentieren und zu diskutieren.
- Sie verfügen über ein Gespür für Zeitmanagement.
- Sie können theoretische wissenschaftliche Kenntnisse praktisch anwenden.

Kompetenzen:

- Die Studierenden verfügen über die Kompetenz, im Team ergebnisorientiert und unter gegebenen zeitlichen Rahmenbedingungen zu arbeiten.
- Sie können den Einfluss wirtschaftlicher und sozialer Faktoren auf die fachliche Arbeit akzeptieren und einkalkulieren.
- Sie sind in der Lage, Rückschlüsse hinzunehmen, sinnvolle Kompromisse zu schließen und Hindernisse zu überwinden.
- Sie sind in der Lage, theoretische Erkenntnisse auf ihre praktische Anwendbarkeit kritisch zu hinterfragen.
- Sie sind in der Lage eingefahrene Abläufe in der Praxis vor dem Hintergrund theoretischer Erkenntnisse kritisch zu hinterfragen.

Angebotene Lehrunterlagen

Merkblatt zum Ablauf des Praxissemesters

Literatur

Weitere Informationen zur Lehrveranstaltung

Auf der Webseite der Fakultät steht den Studierenden unter der Rubrik "Praktikum" ein umfassendes Merkblatt zum Ablauf des Praxissemesters zur Verfügung.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Bachelorarbeit (Bachelor's Thesis)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit (Bachelor’s Thesis)</td>
<td>BA / Nr.29 bzw. Nr.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät AM</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>2.</td>
<td>Pflicht</td>
<td>12</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Das Thema der Bachelorarbeit wird frühestens im sechsten Studiensemester unter der Voraussetzung, dass die Praxisbegleitenden Lehrveranstaltungen, das berufsbegleitende Praktikum sowie das Praxisseminar erfolgreich absolviert sind, ausgegeben.

Empfohlene Vorkenntnisse

Einschlägige fachliche und methodische Vorkenntnisse aus dem Studium.

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bachelorarbeit</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Bearbeitungszeit und weitere Bestimmungen siehe SPO § 11 und APO § 19

Stand: 23.03.2021

Ostbayerische Technische Hochschule Regensburg

Seite 50
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)
Modulname:
Bachelorarbeit (Bachelor's Thesis)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit</td>
<td>BA</td>
</tr>
</tbody>
</table>

Verantwortliche/r: Fakultät
Dekan Fakultät AM: Angewandte Natur- und Kulturwissenschaften
Lehrende/r / Dozierende/r: Angebotsfrequenz
BetreuerIn Bachelorarbeit: in jedem Semester

Lehrlform
Selbständige Ingenieursarbeit mit Dokumentation

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch/englisch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium: Eigenstudium
360h

Studien- und Prüfungsleistung
Bachelorarbeit: siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
In der Bachelorarbeit lösen die Studierenden selbstständig mit ingenieurmäßiger Arbeitsweise und auf Basis wissenschaftlicher Methodik ein Problem, das kumulatives Fachwissen und die im Studium erworbenen Fähigkeiten und Fertigkeiten herausfordert. Das Thema kann frei gewählt werden und in Industrie oder an der OTH Regensburg bearbeitet werden. Dozenten/innen sowie Industrieeunternehmen bieten regelmäßig Themen zur Bearbeitung an. In jedem Fall fungiert ein/e Dozent/in der OTH Regensburg als Betreuer/in, Ansprechpartner/in und Prüfer/in. Die Arbeit ist schriftlich zu dokumentieren, die Bewertung erfolgt auf der Grundlage der Qualität der Ergebnisse und der Dokumentation.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, mit dem erfolgreichen Abschluss der Bachelorarbeit weisen Studierenden folgende Qualifikationen nach:
- Die Fähigkeit, eine komplexe Aufgabenstellung aus dem Fachgebiet selbständig in gegebenem Zeitrahmen zu lösen.
- Kompetenz in der Anwendung theoretischer wissenschaftlicher Kenntnisse als Ingenieur/in.
- Befähigung zum Einarbeiten in Fachgebiete, die im Studium nicht behandelt wurden.

Stand: 23.03.2021
Ostbayerische Technische Hochschule Regensburg
- Fähigkeit, Rückschlüsse hinzunehmen, sinnvolle Kompromisse zu schließen und Hindernisse zu überwinden.
- Fertigkeit in der schriftlichen technisch-wissenschaftlichen Dokumentation.

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Thema</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Bachelorarbeit darf mit Genehmigung des Aufgabenstellers oder der Aufgabenstellerin in Englisch abgefasst werden.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Praxisbegleitende Lehrveranstaltungen/Praxisseminar (Support Module) | PBLV / Nr.21

Modulverantwortliche/r	Fakultät
Prof. Dr. Rudolf Bierl | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Für die praxisbegleitenden Lehrveranstaltungen: grundlegende Kenntnisse aus der Mathematik, den Naturwissenschaften, Mess- und Schaltungstechnik sowie LabVIEW-Programmierung

Inhalte

Siehe Folgeseiten

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseiten

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praxisbegleitende Lehrveranstaltungen (Support Module)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Praxisseminar (Seminar of Practical Course)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Die PBLV finden als Blockunterricht stattfinden.
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Praxisbegleitende Lehrveranstaltungen/Praxisseminar
(Support Module)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praxisbegleitende Lehrveranstaltungen (Support Module)</td>
<td>PBLV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Bierl</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrempfänger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Je nach Lehrveranstaltung sind Leistungsnachweise in Form von Versuchen und/oder Simulationsübungen zu erbringen.

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- LabView Programmierung
- Grundlagen Messtechnik
- Signalverarbeitung an Hand von Audio Signalen
- Regellkreise
- Bildverarbeitung
- Einführung in CAD
- Entwurf mechanischer Bauteile mit einem CAD Programm
- Unternehmens Planspiel
- Simulation des Erfolgs eines Unternehmens unter dem Einfluss verschiedener Parameter

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die während des Studiums erworbenen Kenntnisse an Hand von ausgewählten, besonders praxisorientierten Lehrveranstaltungen vertieft, die auf das Studiensemester in Industriebetrieben oder Laboren vorbereiten bzw. begleiten. Nach Abschluss des Moduls verfügen die Studierenden über folgende Kenntnisse, Fertigkeiten und Kompetenzen:

- praktische Erfahrung in der Erfassung und Analyse von Messdaten,
- Kenntnisse der Bildverarbeitung,
• die Befähigung zu sicherem Umgang mit Gefahrstoffen,
• die Fähigkeit zu methodischem Arbeiten und
• die Einsicht in die Notwendigkeit der Berücksichtigung betriebswirtschaftlicher Aspekte

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
<th>Je nach Dozent/in</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
<th>Je nach Dozent/in</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Je nach Dozent/in</th>
</tr>
</thead>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Praxisbegleitende Lehrveranstaltungen/Praxisseminar (Support Module)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praxisseminar (Seminar of Practical Course)</td>
<td>PS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Bierl</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Professoren AM</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>12h</td>
<td>48h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Die Studierenden haben einen potentiellen Arbeitgeber und die verschiedenen Arbeitsfelder im Unternehmen kennengelernt und sich entsprechendes Wissen über das Unternehmen angeeignet.

Fertigkeiten:

- Die Studierenden können vor Publikum die Ziele, den Inhalt und die Ergebnisse der eigenen fachlichen Arbeit knapp, klar und überzeugend mündlich präsentieren.
- Sie verfügen über Fertigkeiten im Umgang mit Präsentationstechniken.
- Die Studierenden können zu einer Fachdiskussion beitragen.

Kompetenzen:
• Sie zeigen Souveränität und verlieren auch bei kritischen Fragen nicht den Faden.

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Analog und digitale Schaltungstechnik mit Praktikum (Analogue and Digital Circuitry with Laboratory Exercises)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Analoge und digitale Schaltungstechnik mit Praktikum (Analogue and Digital Circuitry with Laboratory Exercises) | ADP / Nr.14

Modulverantwortliche/r	Fakultät
Prof. Dieter Kohlert | Elektro- und Informationstechnik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. + 4. | 2. | Schwerpunkt Pflichtmodul | 8

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Grundlagen des Moduls *Elektronische Bauelemente* (Modul Nr. 8), komplexe Wechselstromrechnung

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,
Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Analoge und Digitale Schaltungstechnik (Analogue and Digital Circuitry)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Analoge und Digitale Schaltungstechnik (Laboratory Exercises: Analogue and Digital Circuitry)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021

Ostbayernische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Teilmodul

<table>
<thead>
<tr>
<th>Modulname: Analog und digitale Schaltungstechnik mit Praktikum (Analogue and Digital Circuitry with Laboratory Exercises)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)</td>
</tr>
<tr>
<td>Modulname: Analog und digitale Schaltungstechnik mit Praktikum (Analogue and Digital Circuitry with Laboratory Exercises)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog und Digitale Schaltungstechnik (Analogue and Digital Circuitry)</td>
<td>AD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. + 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitauflaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>56h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleinsignalmodelle der aktiven elektronischen Bauelemente, Berechnung von Arbeitspunkten, Berechnung der Eigenschaften von Grundschaltungen mit Hilfe von Kleinsignalmodellen, Simulationsmodi, Hardwareaufbauten</td>
</tr>
<tr>
<td>Grundschaltungen auf der Basis des idealen Operationsverstärkers, Eigenschaften des realen Operationsverstärkers, Einfluss auf das Schaltungsverhalten, Simulationen, Hardware</td>
</tr>
<tr>
<td>Schaltungstechnik der digitalen Grundschaltungen in CMOS-Technologie, kombinatorische Grundstrukturen (Addierer, Multiplizierer, Decoder), sequentielle Grundstrukturen (Register, Zähler, State Machines), Grundlagen der Digitalsimulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>Lernziele:</td>
</tr>
<tr>
<td>• Die Studierenden verstehen die Grundlagen der analogen Schaltungstechnik sowohl auf Transistor- als auch Operationsverstärkerebene.</td>
</tr>
<tr>
<td>• Sie verfügen über Verständnis der digitalen Schaltungstechnik auf CMOS-Basis,</td>
</tr>
<tr>
<td>• Sowie über Verständnis von Funktion und Entwurf kombinatorischer und sequentieller digitaler Strukturen,</td>
</tr>
<tr>
<td>• Die Studierenden haben Simulationswerkzeuge kennen gelernt.</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg

Seite 59
• Die theoretischen Kenntnisse sind vertieft durch praktische Übungen in Simulation und Hardwareaufbau.

Angebotene Lehrunterlagen

Vorlesungsskript: "Analog und Digitaltechnik". D. Kohlert, 2009

Lehrmedien

Tafel, Notebook, Beamer

Literatur

• Tietze, Schenck: „Halbleiterschaltungstechnik“, Springer
• Siegl: „Schaltungstechnik“, Springer

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>Praktikum Analoge und Digitale Schaltungstechnik (Laboratory Exercises: Analogue and Digital Circuitry)</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Lehrform</td>
<td></td>
</tr>
<tr>
<td>Laborpraktikum</td>
<td></td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>24h</td>
<td>42 h Versuchsvorbereitung; 24 h Nachbereitung (Erstellung Protokolle)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

- Siehe Studienplantabelle

Inhalte

- Versuch 1 : Einführung in die Schaltungssimulation mit LTSPICE
- Versuch 2 : Simulation von Operationsverstärkergrundschatungen mit LTSPICE
- Versuch 3 : Hardwareaufbau und Messung von Operationsverstärkergrundschatungen
- Versuch 4 : Simulation von FET-Verstärkerschaltungen mit LTSPICE
- Versuch 5 : Hardwareaufbau und Messung von FET-Verstärkerschaltungen
- Versuch 6 : Entwurf und Simulation eines Sieben-Segment-Decoders und eines 8- Bit-Zählers

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Die Studierenden verstehen die Grundlagen der analogen Schaltungstechnik sowohl auf Transistor- als auch Operationsverstärkerbene.
- Verständnis der digitalen Schaltungstechnik auf CMOS-Basis, Verständnis von Funktion und Entwurf kombinatorischer und sequentieller digitaler Strukturen.
- Die Studierenden haben Simulationswerkzeuge kennen gelernt.
- Die theoretischen Kenntnisse sind vertieft durch praktische Übungen in Simulation und Hardwareaufbau.

Angebote Lehrunterlagen

- Versuchsanleitungen Versuch 1 bis Versuch 6, D. Kohlert, 2016
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Manual LTSPICE: www.linear.com</td>
</tr>
<tr>
<td>Data_sheet_tlc272.pdf: www.ti.com</td>
</tr>
<tr>
<td>datasheet_2n7000.pdf: www.st.com</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Ausgewählte Kapitel aus der Elektrotechnik (Selected Topics of Electronics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Kapitel aus der Elektrotechnik (Selected Topics of Electronics)</td>
<td>AKE / Nr. 27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Schubert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Beherrschung des Stoffes der Module: *Elektronische Bauelemente (Modul Nr. 8)*, *Analoge und digitale Schaltungstechnik (Modul Nr. 14)* bzw. *Analogtechnik (Modul Nr. 14 aus SA)*

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die Folgende Inhalte zu beherrschen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ausgewählte Kapitel aus der Elektrotechnik</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Ausgewählte Kapitel aus der Elektrotechnik (Selected Topics of Electronics)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Kapitel aus der Elektrotechnik</td>
<td>AKE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Schubert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Martin Schubert</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht und Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
90h | 120h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte

Wiederholung Grundlagen:
Wechselstromnetzwerke, Mittelwerte und Leistungsangaben, Komplexe Darstellung, Magnetischer Kreis, Transformator, Übertragungsfunktion, Pole, Nullstellen.

Schaltungstechnik auf Operationsverstärkerbasis:

Digitale Signalverarbeitung:

Schaltungstechnik auf Transistorbasis:

Leitungstheorie:
Herleitung der Telegraphengleichung, verlustbehaftete Leitung, verlustlose Leitung, Smith-Diagramm.
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:
- Verständnis der Grundlagen der analogen Schaltungstechnik
- Verständnis der Eigenschaften realer Operationsverstärker, Rückkopplung, Stabilität
- Verständnis der Wechselwirkung der Schaltungen mit Leitungen bei höheren Frequenzen
- Kenntnis der Konzepte der digitalen Signalverarbeitung, Kenntnis der grundlegenden digitalen Filterkonzepte

Fertigkeiten:
- Berechnung der analogen Grundschaltungen auf Operationsverstärker- und Einzeltransistorebene, Entwurf von FIR-Filtern

Kompetenzen:
- Beurteilung verschiedener Schaltungskonzepte zur Lösung schaltungstechnischer Problemstellungen
- Abschätzung der Leistungsfähigkeit von Analogbausteinen
- Partitionierung von Signalverarbeitungssystemen in Analog- und Digitalteil

Angebotene Lehrunterlagen
Lückenskript, Übungen, Musterlösungen, Literaturliste, Simulationsmodelle

Lehrmedien
Grafiktablett, Lückenskript PDF, PDF Annotator, Rechner/Beamer, Simulationssoftware, Tafel

Literatur
- Tietze, Schenk: „Halbleiterschaltungstechnik“, Springer
- Siegl: „Schaltungstechnik“, Springer
- Pennock, Shepherd: „Microwave Engineering“, New York: Mc Graw Hill,

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Computer Programming

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Programming</td>
<td>CP / Nr.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>12 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

- Erfolgreicher Eintritt in den 2. Studienabschnitt
- Empfohlene Vorkenntnisse
 - Je nach Partnerhochschule

Inhalte

- Je nach Partnerhochschule

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,
- Je nach Partnerhochschule

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Computer Programming</td>
<td>12 SWS</td>
<td>12</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3.+ 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. In einem der beiden Auslandssemester ist u.a. das Fach Computer Programming an der Partnerhochschule zu belegen.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Programming</td>
<td>CP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>12 SWS</td>
<td>englisch</td>
<td>12</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>180h</td>
<td>180h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Englischsprachiger Leistungsnachweis
Prüfungsform je nach Partnerhochschule

Zugelassene Hilfsmittel für Leistungsnachweis
Je nach Partnerhochschule

Inhalte
Je nach Partnerhochschule

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Angebote Lehrunterlagen
Je nach Partnerhochschule

Lehrmedien
Je nach Partnerhochschule

Literatur
Je nach Partnerhochschule

Weitere Informationen zur Lehrveranstaltung
Das Modul wird an einer ausländischen Partnerhochschule erbracht. Die Anrechnung erfolgt an der OTH Regensburg nach abgestimmter Notenumrechnungstabelle.
Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Defect-Engineering

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect-Engineering</td>
<td>DE / Nr. 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Die Chemie- und Physik-Module der Semester 1 bis 6.

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Defect-Engineering</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defect-Engineering</td>
<td>DE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>7.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zusammenhänge Ausbeute, Fläche und Defektdichte</td>
</tr>
<tr>
<td>• Testen von Bauteilen unter besonderer Berücksichtigung von Speicherchips</td>
</tr>
<tr>
<td>• Ausfallursachen chemischer und physikalischer Natur und deren Analyse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• Kenntnis der Messmethoden für Ausbeute</td>
</tr>
<tr>
<td>• Kenntnisse über theoretische Modelle zur Berechnung von Ausbeuten</td>
</tr>
<tr>
<td>• Kenntnisse über chemische und physikalische Ursachen von Ausfällen, die bei einem mikrosystemtechnischen Fertigungsprozess entstehen können</td>
</tr>
<tr>
<td>• Kenntnisse über Kristallstrukturfehler und metallische und organische Kontaminationen</td>
</tr>
<tr>
<td>• Kenntnisse zum Finden von Ausfällen auf Scheibenebene und deren Analyse</td>
</tr>
<tr>
<td>• Kenntnisse über chemische und physikalische Analysemethoden</td>
</tr>
<tr>
<td>• Kenntnisse über Reinigungskonzepte zur Beseitigung von Kontaminationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Defect-Engineering

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Beck, Integrierte Halbleiterschaltungen, VCH Verlag</td>
</tr>
<tr>
<td>R. Eckert, Fehleranalyse an Halbleiterschaltungen, Expert Verlag, Sindelfingen</td>
</tr>
<tr>
<td>H. F. Hadamovsky, Werkstoffe der Halbleitertechnik, VEB Leipzig</td>
</tr>
<tr>
<td>S. Wolf, R. Tauber, Silicon Processing for the ULSI Era</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Electrodynamics / Applied Optics

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrodynamics / Applied Optics</td>
<td>EO / Nr.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreicher Eintritt in den 2. Studienabschnitt

Empfohlene Vorkenntnisse

Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electrodynamics / Applied Optics</td>
<td>8 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3.+ 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. In einem der beiden Auslandssemester ist u.a. das Fach Electrodynamics / Applied Optics an der Partnerhochschule zu belegen.
Teilmodul	TM-Kurzbezeichnung
Electrodynamics / Applied Optics | EO

Verantwortliche/r | Fakultät
Prof. Dr. Rupert Schreiner | Angewandte Natur- und Kulturwissenschaften
Lehrende/r / Dozierende/r | Angebotsfrequenz
N.N. | nur im Wintersemester

Lehrform
Je nach Partnerhochschule

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3.</td>
<td>8 SWS</td>
<td>englisch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung
Englischsprachiger Leistungsnachweis
Prüfungsform je nach Partnerhochschule

Zugelassene Hilfsmittel für Leistungsnachweis
Je nach Partnerhochschule

Inhalte
Je nach Partnerhochschule

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Angebotene Lehrunterlagen
Je nach Partnerhochschule

Lehrmedien
Je nach Partnerhochschule

Literatur
Je nach Partnerhochschule

Weitere Informationen zur Lehrveranstaltung
Das Modul wird an einer ausländischen Partnerhochschule erbracht. Die Anrechnung erfolgt an der OTH Regensburg nach abgestimmter Notenumrechnungstabelle.
Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulname: Electronics (Digital, Analog, Microcontroller)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics (Digital, Analog, Microcontroller)</td>
<td>EI / Nr.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>15</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreicher Eintritt in den 2. Studienabschnitt

Empfohlene Vorkenntnisse

Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electronics (Digital, Analog, Microcontroller)</td>
<td>15 SWS</td>
<td>15</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3.+ 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. In beiden Semestern ist das Fach Electronics an der Partnerhochschule zu belegen.
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Electronics (Digital, Analog, Microcontroller)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics (Digital, Analog, Microcontroller)</td>
<td>EI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>englisch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3. und 4.</td>
<td>15 SWS</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischsprachiger Leistungsnachweis</td>
</tr>
<tr>
<td>Prüfungsform je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

| Zugelassene Hilfsmittel für Leistungsnachweis | Je nach Partnerhochschule |

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul wird an einer ausländischen Partnerhochschule der OTH Regensburg erbracht. Die Anrechnung erfolgt an der OTH Regensburg nach abgestimmter Notenumrechnungstabelle.</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg
Seite 76
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Electronics (Digital, Analog, Microcontroller)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)</td>
<td>WP 1 / Nr.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrpersonen im FWPF-Modul</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Je nach Lehrveranstaltung

Empfohlene Vorkenntnisse

Je nach Lehrveranstaltung

Inhalte

Je nach Lehrveranstaltung

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Analytische Chemie (Analytical Chemistry)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Bioanalytik und Genanalytik (Bioanalysis and Genetic Analyses)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Kernphysikalische Methoden in Sensorik und Analytik (Methods of Nuclear Physics in Sensorics and Analysis)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Optische Sensorik (Optical Sensors)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Projektarbeit (Project Work)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>Rastermikroskopie (Scanning Microscopy)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>Security Studies</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>Sensorprinzipien (Fundamental Principles of Sensor Technology)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>Spurenanalytik auf Siliziumscheiben (Trace Analysis on Silicon Wafers)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>10.</td>
<td>Technische Optik (Engineering Optics)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>11.</td>
<td>Technologiefolgenabschätzung (Technology Assessment)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

- Im Studienschwerpunkt Optoelektronik ist ein fachbezogenes Wahlpflichtmodul aus dem Angebotskatalog zu wählen
- Pro Semester werden nicht alle Lehrveranstaltungen angeboten
- Das Nähere regelt der Studienplan

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg Seite 79
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytische Chemie</td>
<td>AC</td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Walter Rieger

Fakultät
- Angewandte Natur- und Kulturwissenschaften

Lehrende/r / Dozierende/r
- Prof. Dr. Walter Rieger

Angebotsfrequenz
- nur im Sommersemester

Lehrform
- Seminaristischer Unterricht

Studiensemester
- gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 60h
- Eigenstudium: 90h

Studien- und Prüfungsleistung
- Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
- Siehe Studienplantabelle

Inhalte

- Allgemeine und theoretische Grundlagen
- Grundbegriffe der Analytischen Chemie
- Fehler und Fehlerbetrachtung
- Analytische Qualitätskontrolle und Qualitätssicherung
- Probenvorbereitung
- Gravimetrie
- Titrimetrie: Säure-Basen-Titrationen, Komplexometrie, Redoxtitrationen
- Kinetische Analyse
- Enzymatische Analyse
- Immunchemische Analyse
- Polymerase Chain Reaction (PCR)
- Elektrochemische Analysenmethoden: Konduktometrie, Potentiometrie, Elektrolys, Elektrogravimetrie, Coulometrie, Polarographie, Voltametrie, Amperomet

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:
- Funktionsweisen, Bedeutung und Anwendungen chemisch-analytischer Methoden

Fertigkeiten:

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

- Fertigkeit, analytisch chemische Problemstellungen zu analysieren und geeignete Verfahren zur Lösung auszuwählen
- Fertigkeit Fehlerabschätzung und statistische Methoden anzuwenden

Kompetenzen:

- Verständnis und Anwendung analytisch-chemischer Methoden auf konkrete Problemstellungen
- Kompetenz der kritischen Beurteilung von Messwerten

Lehrmedien
Tafel, Notebook, Beamer

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
Bioanalytik und Genanalytik (Bioanalysis and Genetic Analyses) | BG

Verantwortliche/r	Fakultät
Dr. Petra Bastian (LB) | Angewandte Natur- und Kulturwissenschaften

Lehrende/r / Dozierende/r	Angebotsfrequenz
Dr. Petra Bastian (LB) | nur im Sommersemester

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium	Eigenstudium
60h | 90h

<table>
<thead>
<tr>
<th></th>
<th>Zeitfaktoren</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien- und Prüfungsleistung</td>
<td>Siehe Studienplantabelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugelassene Hilfsmittel für Leistungsnachweis</td>
<td>Siehe Studienplantabelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inhalte
- Einführung in Biologische und genetische Zusammenhänge: Grundlage der Analytik von und mit Biomolekülen
- Instrumentelle Analytik: Spektroskopische und mikroskopische Methoden, Chromatographie, Elektrophorese, Kapillarelektrophorese
- Enzymatische Analysemethoden mit katalytischen Interaktionen
- Immunologische Analysemethoden, Interaktionsanalytik
- Biosensorik
- Funktionsanalytik: Genom- und Sequenzanalyse, Proteomics, Metabolomics, Peptidomics, Interactomics, Toponomics, Ansatzpunkte moderner Simulationstechniken und informatischer Datenverarbeitung, Internationale Datenbanken
- Einsatz und Kombinationsmöglichkeiten zur Erforschung komplexer biologischer und genetischer Zusammenhänge anhand ausgewählter Beispiele

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Die Studierende verfügen über Kenntnisse von Biomolekülen und haben ein Verständnis von grundsätzlichen biologischen und genetischen Zusammenhängen
- Sie kennen moderne Bio- und Genanalytische Methoden, deren Einsatzmöglichkeiten und Anwendungsgebiete, sowie die Schnittpunkte zu Sensorik und der Mikrosystemtechnik
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

• Sie kennen die biologischen und genetischen Fortschritte, die durch die Entwicklung moderner analytischer Methoden gewonnen werden konnten, und die wiederum zur Weiterentwicklung dieser Methoden führten
• Sie haben Überblick über die Bio- und Genanalytik und die damit verbundenen Fortschritte

Kompetenzen:

• Grundlegende Kenntnisse, um sich als Ingenieur der Sensorik oder Mikrosystemtechnik zukünftig in dieses Gebiet einbringen zu können

Angebotene Lehrunterlagen

Skripite

Lehrmedien
Tafel, Notebook, Beamer

Literatur

Optional:
• Friedrich Lottspeich, Joachim W. Engels, Bioanalytik, Spektrum Akad. Verlag, 3. Auflage 2012
• Reinhard Renneberg, Bioanalytik für Einsteiger, Spektrum Akad. Verlag 2009
• Eberhard Passarge, Taschenatlas der Genetik, Thieme Verlag 2003

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernphysikalische Methoden in Sensorik und Analytik (Methods of Nuclear Physics in Sensorics and Analysis)</td>
<td>NUK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen Demonstrationsexperimente im Labor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
- Siehe Studienplantabelle
- Zugelassene Hilfsmittel für Leistungsnachweis
 - Siehe Studienplantabelle
Inhalte

Relativistik und Quantenphysik:
Zeitdilatation, Beziehung zwischen Energie sowie Impuls und Ruhemasse, Quantisierung, Unschärferelation, Tunneleffekt, quantenmechanische Drehimpulse und Spin

Der Atomkern:
Elementarteilchen, Kernbestandteile, Bindung, Isotopen, Kernmodelle, Weizsäckersche Massenformel, Massendefekt und Bindungsenergie, Wechselwirkung mit Atomhülle, Einfluss auf Spektren, Hyperfeinstruktur

Kernzerfall:
Arten, Mechanismen, Erhaltungssätze (wann ist Zerfall möglich ?), Emission, Energiespektren, Halbwertszeit und Lebensdauer, Nuklidkarte, Verzweigungen, Zerfallsketten und radioaktives Gleichgewicht, Röntgenphotonen, oft verwendete Strahlungsquellen, Kernreaktionen

Wechselwirkung Strahlung – Materie:
Streuung, Ionisation und Anregung, Bethe-Bloch-Formel, Reichweite, Bragg-Peak, Besonderheiten bei Photonen (Photoeffekt, Comptoneffekt, Paarbildung, exponentielle Schwächung) und Neutronen, strahleninduzierte Materialveränderungen
Aspekte des Strahlenschutzes: Wechselwirkung mit Biomolekülen, LET-Wert, Schadensmechanismen, Dosisbegriff, Grenzwerte, Schutzmaßnahmen, Abschirmung

Detektoren für Strahlung:
Gasgefüllte Detektoren, Ionisationskammer, Proportionalzählrohr, Geiger-Müller- Zähler, Szintillationsdetektoren (flüssig, Plastik, Kristalle), Halbleiterdetektoren (Si- Li, HPGe, Oberflächensperrschichtzähler), mikrostrukturierte Si-Detektoren, Dosimeter, Neutronennachweis

Messtechnik:
Energiespektren für Röntgenstrahlen, Gammas, Beta- und Alpha-Teilchen, Timing, Koinzidenz, Ortsauflösung, Signaturen, Elektronik, Shaping, Statistik, Untergrund

Wissenschaftliche Anwendungen:
Materialanalyse, Röntgenbeugung, EDX, WDX, XRF, Neutronenaktivierungsanalyse, Datierung, Tracing, Massenspektrometrie, Mößbauereffekt

Technische Anwendungen:
Dickenmessung, Dichtemessung, radioaktive Markierung, technische Röntgenuntersuchung (Schweissnahtuntersuchung u.a.), Modifikation von Materialien, Bestrahlung von Lebensmitteln, radioaktive „Batterien“

Medizinische Anwendungen:
Bildgebung, Röntgen, CT, Kernmagnetische Resonanz, Ultraschall, Nuklearmedizin (Diagnose und Therapie), PET, Tumorbestrahlung, Tele- und Brachytherapie

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Seite 85
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

• Quellen, Arten, Ausbreitung, Wirkung und Nachweis ionisierender Strahlung (inkl. Photonen und Neutronen) aus Kernen, der Atomhülle, dem Weltall, Teilchenbeschleunigern und Röntgenröhren
• Überblick über die Anwendungen ionisierender Strahlung, speziell für Sensorik und Analytik, sowie über die Strahlungsmesstechnik

Fertigkeiten:

• Interpretation von Gammaspektren

Kompetenzen:

• Die Studierenden haben Einsicht gewonnen in die besonderen Möglichkeiten und Grenzen kernphysikalischer Methoden und kennen evtl. konkurrierende Verfahren.
• Sie können das Risiko qualifiziert abschätzen.
• Sie verstehen, wie sich die Eigenschaften ionisierender Strahlung auf die Aussagekraft analytischer Methoden auswirken.

Angebotene Lehrunterlagen

Skript

Lehrmedien

Tafel, Notebook, Beamer, Demonstrationsexperimente im Labor

Literatur

• Stolz: Radioaktivität, Teubner 2005 (einführend)
• Hering: Angewandte Kernphysik, Teubner 1999 (weiterführend)
• Lilley: Nuclear Physics, Principles and Applications, Wiley 2001 (weiterführend)
• Shultis/Faw: Fundamentals of Nuclear Science and Engineering, Marcel Dekker 2002 (weiterführend, mit ausführlichem Tabellenteil)
• Knoll: Radiation Detection and Measurement, Wiley 2010 (behandelt Strahlungsdetektoren, sowohl einführend als auch umfassend)
• Tavernier: Experimental Techniques in Nuclear and Particle Physics, Springer 2010 (ähnlich Knoll, aber knapper)
• Bröcker: dtv-Atlas zur Atomphysik, Deutscher Taschenbuch-Verlag 1997 (viele erklärende Bilder, umfassende Thematik, aber nicht auf dem neuesten Stand)
• Goretzki: Medizinische Strahlenkunde, Urban & Fischer / Elsevier 2004 (verständlich gehaltener Überblick über die medizinischen Anwendungen)

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>Optische Sensorik (Optical Sensors)</th>
<th>OS</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Peter Bickel</th>
<th>Angewandte Natur- und Kulturwissenschaften</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminarietischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>7.</th>
<th>4 SWS</th>
<th>deutsch/englisch</th>
<th>5</th>
</tr>
</thead>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

1. Introduction
2. Foundations of Optics
 Physics of Light (Maxwell equation, wave propagation, electromagnetic waves, polarization, plane waves, Gaussian Beam (paraxial wave equation), energy (pointing vector), free-space and waveguide propagation)
 Scattering: Rayleigh and Mie Theory
 Interaction of radiation with matter:
 Laser basics, Fresnel equations, power transmission and reflection
 The dielectrical function und optical properties of matter:
 Refractive index and absorption, metal optics, Plasmafrequency, Photometry
2.1 Properties of natural and technical light sources
 Blackbody radiation: Plank’s laws of radiation
 Coherence (temporal, spatial)
2.2 Geometrical Optics (reflection and refraction, internal reflection)
 Lenses, microscopy, telescopes, special lenses e.g. telecentric lens...
 Controlling light: Pockels cell, optical diodes, Prisms, Birefringence
2.3 Interference and diffraction: Michelson, Mach-Zehnder, Speckles ...
3. Detection of Light
 Overview: Common detectors and their properties
 Noise in optical detection; S/N, NEP, Detectivity...
4. Optical measurement techniques
4.1 Distance measurement
 4.1.1 Time of flight
 4.1.2 Triangulation
 4.2.4 Confocal techniques
4.2 Velocity measurement, LDA Laser doppler anemometry
4.3 Meas. surface properties: Profile measurement, roughness measurement
4.4 Ellipsometry, Meas. Layer thickness ...
4.5 Interferometry (incl. Speckle interferometry)
4.6 Methods of spectroscopy
 4.6.1 IR spectroscopy
 4.6.2 Raman, CARS, BOXCARS ...
4.7 LIF and LIDAR
5. Image processing methods – basics of Fourier optics
5.1 Dark field and Schlieren fotography

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
Knowledge:
- The students have knowledge of light sources, the propagation of light through media and their properties to the detection of radiation.
- They have deeper knowledge about distance measurement and surface characterization.

Skills:
- The participants will learn to design optical ranging systems from some μm to some km.
- Radiometric calculation of optical sensing systems.
- The ability of designing optical system for measuring and detecting of radiation shall be acquired.
Competences:

- The participants should be able to understand a variety of optical sensing methods and metrology application.
- Selection of suitable techniques for solving applied measurement tasks.
- Understanding of the physics of radiation detectors and their properties like wavelength range, noise, sensitivity.

Angebotene Lehrunterlagen

The script is partially available in English and German. Full English script is in progress.

Lehrmedien

Board, Notebook, Beamer

Literatur

- Axel Donges, Reinhard Noll: „Lasermesstechnik“, Hüthig, Heidelberg
- Wolfgang Demtröder: „Laserspektroskopie“, Springer Verlag
- Jörg Hoffmann: „Handbuch der Messtechnik“, Hanser

Weitere Informationen zur Lehrveranstaltung

Previous knowledge:
Basic Physik lectures (TP1, TP2)
Electro-dynamics, Maxwell equations, Planck black body radiation
Linear algebra, matrix and vector calculus
Technical Optics (TO)

Preferable previous knowledge (optional and useful)
Basic facts of solid state physics
Photonics and laser technology (PL)
Basic knowledge of optoelectronics

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
Projektarbeit (Project Work) | PKT

Verantwortliche/r	Fakultät
Dekan Fakultät AM | Angewandte Natur- und Kulturwissenschaften
Lehrende/r / Dozierende/r | Angebotsfrequenz
Professoren und Professorinnen der OTH | nur im Sommersemester
Lehrform
Seminaristischer Unterricht mit 80% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
Je nach Projekt | Je nach Projekt

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Projektorganisation, Projektstrukturierung, Projekt-Controlling
- Fallbeispielorientierte Problem- und Zielanalyse
- Datenerhebung und -darstellung, Schwachstellenanalyse
- Zielorientierte Problembearbeitung und -lösung im Team unter Berücksichtigung von methodischen, systemtechnischen und wertanalytischen Vorgehensweisen
- Systematische Dokumentation der Ergebnisse und Präsentation des Projekts

Lernziele: Fachkompetenz

praktische Erfahrungen in Teamarbeit, Umgang mit projektinternen und externen Schnittstellen und zielorientierter Kommunikation durch den Abgleich mit anderen Akteuren.

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
<th>Je nach Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrmedien</td>
<td>Je nach Projekt</td>
</tr>
<tr>
<td>Literatur</td>
<td>Je nach Projekt</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rastermikroskopie (Scanning Microscopy)</td>
<td>RM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Pränzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Optische Mikroskopie
- Funktion und Aufbau eines Rasterelektronenmikroskops
- Wechselwirkung des Elektronenstrahls mit Materie
- Spezielle Verfahren in der Rasterelektronenmikroskopie
- Probenpräparation
- Funktion und Aufbau eines Rasterkraftmikroskops
- Betriebsarten eines Rasterkraftmikroskops
- Wechselwirkung der Spitze mit der Probenoberfläche

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Kenntnis der Abbe’schen Theorie bei der Bildentstehung der optischen Mikroskopie
- Kenntnis des Aufbaus eines Rasterelektronenmikroskops
- Kenntnis der physikalischen Prozesse bei der Bildentstehung
- Kenntnis der Röntgenfluoreszenz und des des Auger Effekts und deren Anwendung bei der Materialanalyse
- Kenntnisse zur Präparaton von anorganischen Proben
- Kenntnis des Aufbaus eines Rasterkraftmikroskops
- Kenntnis der Wechselwirkung zwischen Spitze und Probe

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Seite 92
- Kenntnis der Betriebsarten Rasterkraftmikroskops

Fertigkeiten:

- Fähigkeit zur praktischen Bedienung eines Rasterelektronenmikroskops
- Fähigkeit der Deutung rasterelektronenmikroskopischer Bilder
- Fähigkeit der Deutung von rasterkraftmikroskopischen Bildern
- Kenntnisse über Artefakte in der Abbildung

Lehrmedien

- Tafel, Notebook, Beamer

Literatur

- L. Reimer, G. Pfefferkorn, Rasterelektronenmikroskopie, Springer Verlag
- W. Schäfer, G. Terlecki, Halbleiterprüfung, Hüthig Verlag
- F. Beck, Präparationstechniken für die Fehleranalyse an integrierten Halbleiterschaltungen, VCH- Wiley Verlag
- E. Mayer, H. J. Hug, Scanning Probe Microscopy - The Lab on a Tip, Springer Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Studies</td>
<td>SES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Bresinsky</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Bresinsky</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Administration & Organization; Introduction
- Develop definition of security and security challenges
- Introduction into planning and analysis tools
- Definition of subject matter of interest
- Developing work plan and research design
- Work groups and plenum discussion
- Symposium

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, The classical school of Security Studies is concerned with the topic of nation states and their security in an international system characterized by anarchy, insecurity, crisis, and war. Nevertheless, there exists a series of so-called non-traditional security threats, which are no longer, stop at borders of nation states and are therefore subject of a more comprehensive approach in analysis and research. The SES course will address these challenges by focusing in an international topic, which is highly relevant for international security. This term we will analyze and discuss the domain of cyber security and their relevance for international relation, business and societies. The course is in cooperation with KPMG Cologne ‘Cyber Security’.
By using this topic as a case study, the course will address two aspects. Firstly students will learn to create a situational picture, assess the information and develop possible future scenarios of the ongoing events. Secondly students will apply methods, tools, and best practice for the analysis and the development of decision support products. The last aspect will address the processes of analysis as known in policy and business intelligence. Students are invited to develop their own problem statements and topics for research. As the course is designed as research based learning, students are expected to prepare information and reading outside the course sessions.

Competencies:

- Understand the issues of non-traditional security challenges
- Know how to identify a non-traditional security challenge in specific domain of politics or business.
- Know how to analyze the actor, structures and processes of international security challenges
- Know how to support an analysis and intelligence cycle by creating intelligence products
- Know how to apply specific analysis procedures (e.g. Business Process Models, Scenario Technique)
- Know how to apply specific software tools (e.g. Visual Understanding Environment, Scenario Wizard, ARIS Express etc.)
- Know how to document and log results on e-learning platform
- Know how to present results to plenum and work groups
- Improve English conversation, reading and writing

Literatur

Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensorprinzipien (Fundamental Principles of Sensor Technology)</td>
<td>RM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Steffens</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

1. Einleitung – Grundbegriffe und Klassifikation von Sensoren
2. Kenngrößen von Sensoren
3. Systemtheorie/Fourier-Transformation; Grundstrukturen der Schaltungstechnik
4. Mechanisch-elektrische Wandler
5. Thermisch-elektrische Wandler
6. Opto-elektrische Wandler
7. Magneto-elektrische Wandler
8. Spezielle Sensoranwendungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Die Studierenden kennen eine breite Palette an Anwendungsfeldern für Sensoren und die zugrundeliegenden physikalischen Prinzipien sowie deren technische Umsetzung;
- Sie kennen Kenngrößen für industrielle Sensoren und deren Einflüsse auf das Sensorsignal

Fertigkeiten:
Sie können einfache Auswerte-Schaltungen und Signalverstärkerschaltungen analysieren und funktionale Zusammenhänge zwischen Sensorgröße und Signal berechnen;
Sie sind in der Lage, Signale zwischen Zeit- und Frequenzbereich zu transformieren und Übertragungsfunktionen zu berechnen.

Kompetenzen:

Die Studierenden können entscheiden, welche Sensorprinzipien für welche Sensoraufgaben geeignet sind und Vor- und Nachteile (z.B. Genauigkeit, Trägheit, Kosten, Baugröße) verschiedener Sensortechniken erkennen.
Sie sind in der Lage, die in der Veranstaltung vermittelten allgemeinen Prinzipien von den exemplarisch vorgestellten Beispielen auf weitere (nicht behandelte) Sensortechniken zu übertragen.

Angebotene Lehrunterlagen

Vorlesungsskript mit Übungen, Moodle-Kursraum

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Nach Möglichkeit wird während des Semesters eine Exkursion zu einer Sensormesse o.ä. angeboten.
Empfohlene Vorkenntnisse aus den Modulen: Mathematik 1 + 2 (Module Nr. 3+7), Elektronische Bauelemente (Modul Nr. 8), Technische Physik 1 + 2 (Module Nr. 4+10)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spurenanalytik auf Siliziumscheiben (Trace Analysis on Silicon Wafers)</td>
<td>SA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Siehe Studienplantabelle</th>
</tr>
</thead>
</table>

Zugelassene Hilfsmittel für Leistungsnachweis

<table>
<thead>
<tr>
<th>Siehe Studienplantabelle</th>
</tr>
</thead>
</table>
Inhalte

1. Einführung in die chemische Analytik
 - Lambert - Beer - Gesetz

2. Schwingungsspektroskopie
 - Infrarot - Spektroskopie
 - Raman - Spektroskopie
 - Gerätebeschreibungen
 - Interpretation der Spektren

3. Ultra - Visible - Spektroskopie
 - Russel - Saunders - Terme
 - Gerätebeschreibung
 - Spektren von Atomen
 - Spektren von Übergangskomplexen
 - Spektren von organischen Molekülen

4. Atomabsorptionsspektroskopie
 - Gerätebeschreibung
 - Quantitative Analyse von metallischen Kontaminationen
 - Oberflächenanalyse von Siliziumscheiben (V.P.D.)

5. Chromatographie
 - Prinzip der Chromatographie
 - Gaschromatographie
 - Gerätebeschreibung
 - Auswertung von Spektren (qualitativ und quantitativ)
 - Ionenchromatographie
 - Gerätebeschreibung
 - Quantitative Bestimmung von Ionen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Die Studierenden kennen die Wechselwirkung von Strahlung und Materie.
- Die Studierenden kennen die quantenmechanischen Zusammenhänge in der Schwingungsspektroskopie, Mikrowellen und UV-VIS Spektroskopie.
- Sie kennen die energetischen Schematas, wie z.B. "Russel Saunders Therme".
- Sie kennen die verschiedenen analytischen Geräte, die im Fachgebiet zum Einsatz kommen.

Fertigkeiten:

- Die Studierenden verfügen über vertiefte Fertigkeiten in der zielführenden Anwendung analytischer Gerätschaften auf dem Gebiet der Halbleitertechnologie.
Kompetenzen:

- Die Studierenden sind in der Lage Spektren zu interpretieren und Schlussfolgerungen zu ziehen.
- Sie verfügen über die Kompetenz zur quantitativen und qualitativen Bestimmung von Stoffen mittels wichtiger analytischer Geräte.
- Sie sind in der Lage mittels geeigneter Präsentationstechniken komplexe analytische Themen zu präsentieren.

Angebotene Lehrunterlagen

Skript

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Heese, Meier, Zech, Spektroskopische Methoden in der organischen Chemie; Georg Thieme Verlag, 1991
- Jürgen Böcker, Chromatographie; Vogel Verlag, 1997
- Joachim Weiß, Ionenchromatographie Wiley-VCH Verlag, 2001
- Dr. D. Jensen, Grundlagen der Ionenchromatographie; Dionex Eigenverlag; 2000
- Ulrich Hilleringmann, Silizium-Halbleitertechnologie
- Hubert Hein, W. Kunze Umweltanalytik mit Spektrometrie und Chromatographie; Wiley-VCH Verlag, 2004
- Welz, Atomabsorptionsspektroskopie; Wiley-VCH Verlag, 1998

Weitere Informationen zur Lehrveranstaltung

Die Lehrveranstaltung wird begleitet von einem Praktikum in Infrarot-Spektroskopie, Raman-Spektroskopie, UV/VIS Spektroskopie.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Optik (Engineering Optics)</td>
<td>TO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r: Prof. Dr. Peter Bickel

Angebotsfrequenz: nur im Sommersemester

Lehrform: Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Prüfungstätigkeit</th>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung:

- Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis:

- Siehe Studienplantabelle

Inhalte:

- Grundlagen - Maxwell und Fresnel Gleichungen
- Das Photon – Planck’sche Strahlungsformel
- Lichttechnische Berechnungen
- Optische Eigenschaften der Materie: Brechungsindex und Absorptionskoeffizient
- Metalloptik, Warum ist ein Stoff durchsichtig, ein anderer nicht?
- Polarisation, Reflexion und Streuung
- Welleneigenschaften: Wellengleichung Interferenz und Beugung
- Fresnel und Fraunhofer Beugung, Grundzüge der Fourieroptik
- Strahlenoptik und optische Abbildung, Diskussion der Abbildungsfehler
- Optische Komponenten: Linsen, Blenden, Aperturen, Spiegel, Prismen, Glasfasern und Mikrooptiken, Achromaten
- Aufbau und Design von Linsensystemen für besondere Aufgaben z.B: telezentrische Objektive
- Messung und Charakterisierung von Linsensystemen (MTF, Auflösung …)
- Optische Geräte: Fernrohr, Mikroskop, Projektor, Beleuchtungssysteme
- Einführung in die Designsoftware OSLO mit Problemstellungen
- Eigenschaften von Laserstrahlung: räumliche und zeitliche Kohärenz
- Optische Resonatoren, Entstehung und Ausbreitung von Gaußstrahlen und deren Besonderheiten bei der Fokussierung

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:
- Kenntnisse der Eigenschaften optischer Geräte und deren Eigenschaften
- Kenntniss der Erzeugung und Ausbreitungseigenschaften elektromagnetischer Strahlung und deren quantitative Berechnungsmethoden
- Grundlagen für aufbauende und weiterführende Vorlesungen aus dem Bereich der optischen Messtechnik

Fertigkeiten:
- Fähigkeit zur Anwendung der optischen Abbildung bis hin zu komplexen Linsensystemen
- Fähigkeit einfache optische Systeme zu designen und zu dimensionieren

Kompetenzen:
- Verständnis der Grundlagen der modernen Optik sowie der optischen Eigenschaften optischer Materialien

Lehrmedien
Tafel, Notebook, Beamer

Literatur
- Bergmann, Schäfer, „Lehrbuch der Experimentalphysik“ Band III, Optik, Walter de Gruyter Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Fachbezogenes Wahlpflichtmodul (Mandatory Subjectspecific Elective Module)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologiefolgenabschätzung (Technology Assessment)</td>
<td>TF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Karsten Weber</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Karsten Weber</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester gemäß Studienplan | Lehrumfang | Lehrsprache | Arbeitsaufwand |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Geschichte und Entwicklung der institutionalisierten Technikfolgenabschätzung (TA)
- Institutionen, Ziele und Aufgaben der TA
- Grundsätzliche Vorgehensweisen
- Methoden der TA
- Bearbeitung eines kleineren TA-Projekts in Teamarbeit mit Anwendung einiger Methoden
- Dokumentation und Vorstellung der Ergebnisse

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Kenntnisse über die gesellschaftlichen Auswirkungen von Technik
- Kenntnisse zu den Vorgehensweisen der TA

Fertigkeiten:
- Anwendung grundlegender Methoden der TA
- Einschätzung der Verlässlichkeit entsprechender Forschungsergebnisse
- Multimodale Präsentation von Forschungsergebnissen
Kompetenzen:

- Eigenständige Durchführung eines TA-Projekts
- Projektkoordination und Teamarbeit

Angebotene Lehrunterlagen

Foliensätze, Quellen, Übungsblätter

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachbezogenes Wahlpflichtmodul 1 (Mandatory Subjectspecific Elective Module 1)</td>
<td>WP 1 / Nr.19</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Lehrpersonen im FWPF-Modul</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Inhalte

Je nach Lehrveranstaltung

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Analytische Chemie (Analytical Chemistry)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Rastermikroskopie (Scanning Microscopy)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Security Studies</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Sensorprinzipien (Fundamental Principles of Sensor Technology)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Technikfolgenabschätzung (Technology Assessment)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

- Die Studierenden im Schwerpunkt Mikrotechnologie wählen aus dem Angebotskatalog im Modul Nr. 19 eine Lehrveranstaltung
- Pro Semester werden nicht alle Lehrveranstaltungen angeboten
- Das Nähere regelt der Studienplan
Teilmodul

Analytische Chemie (Analytical Chemistry)
AC

Verantwortliche/r
Prof. Dr. Walter Rieger
Allgemeinwissenschaftliches Programm

Lehrende/r / Dozierende/r
Prof. Dr. Walter Rieger
nur im Sommersemester

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester
gemäß Studienplan

Lehrumfang
6.
4 SWS

Lehrsprache
deutsch

Arbeitsaufwand
5

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Inhalte

- Allgemeine und theoretische Grundlagen
- Grundbegriffe der Analytischen Chemie
- Fehler und Fehlerbetrachtung
- Analytische Qualitätskontrolle und Qualitätssicherung
- Probenvorbereitung
- Gravimetrie
- Titrimetrie: Säure-Basen-Titrationen, Komplexometrie, Redoxtitrationen
- Kinetische Analyse
- Enzymatische Analyse
- Immunchemische Analyse
- Polymerase Chain Reaction (PCR)
- Elektrochemische Analysenmethoden: Konduktometrie, Potentiometrie, Elektrolys, Elektrograviometrie, Coulometrie, Polarographie, Voltametrie, Amperometrie

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:

- Funktionsweisen, Bedeutung und Anwendungen chemisch-analytischer Methoden

Fertigkeiten:
- Fertigkeit, analytisch chemische Problemstellungen zu analysieren und geeignete Verfahren zur Lösung auszuwählen
- Fertigkeit Fehlerabschätzung und statistische Methoden anzuwenden

Kompetenzen:
- Verständnis und Anwendung analytisch-chemischer Methoden auf konkrete Problemstellungen
- Kompetenz der kritischen Beurteilung von Messwerten

Lehrmedien
Tafel, Notebook, Beamer

Literatur
- Riedel, Erwin, Allgemeine und Anorganische Chemie, de Gruyter Berlin; 11. Auflage 2013

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul 1 (Mandatory Subjectspecific Elective Module 1)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rastermikroskopie (Scanning Microscopy)</td>
<td>RM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrenform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Optische Mikroskopie</td>
</tr>
<tr>
<td>• Funktion und Aufbau eines Rasterelektronenmikroskops</td>
</tr>
<tr>
<td>• Wechselwirkung des Elektronenstrahls mit Materie</td>
</tr>
<tr>
<td>• Spezielle Verfahren in der Rasterelektronenmikroskopie</td>
</tr>
<tr>
<td>• Probenpräparation</td>
</tr>
<tr>
<td>• Funktion und Aufbau eines Rasterkraftmikroskops</td>
</tr>
<tr>
<td>• Betriebsarten eines Rasterkraftmikroskops</td>
</tr>
<tr>
<td>• Wechselwirkung der Spitze mit der Probenoberfläche</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>Kenntnisse:</td>
</tr>
<tr>
<td>• Kenntnis der Abbe’schen Theorie bei der Bildentstehung der optischen Mikroskopie</td>
</tr>
<tr>
<td>• Kenntnis des Aufbaus eines Rasterelektronenmikroskops</td>
</tr>
<tr>
<td>• Kenntnis der physikalischen Prozesse bei der Bildentstehung</td>
</tr>
<tr>
<td>• Kenntnis der Röntgenfluoreszenz und des des Auger Effekts und deren Anwendung bei der Materialanalyse</td>
</tr>
<tr>
<td>• Kenntnisse zur Präparaton von anorganischen Proben</td>
</tr>
<tr>
<td>• Kenntnis des Aufbaus eines Rasterkraftmikroskops</td>
</tr>
<tr>
<td>• Kenntnis der Wechselwirkung zwischen Spitze und Probe</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Seite 108
- Kenntnis der Betriebsarten Rasterkraftmikroskops
- Kenntnisse über Artefakte in der Abbildung

Fertigkeiten:

- Fähigkeit zur praktischen Bedienung eines Rasterelektronenmikroskops
- Fähigkeit der Deutung rasterelektronenmikroskopischer Bilder

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. Reimer, G. Pfefferkorn Rasterelektronenmikroskopie, Springer Verlag</td>
</tr>
<tr>
<td>W. Schäfer, G. Terlecki, Halbleiterprüfung, Hüthig Verlag</td>
</tr>
<tr>
<td>F. Beck, Präparationstechniken für die Fehleranalyse an integrierten Halbleiterschaltungen, VCH- Wiley Verlag</td>
</tr>
<tr>
<td>E. Mayer, H. J. Hug, Scanning Probe Microscopy - The Lab on a Tip, Springer Verlag</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul 1 (Mandatory Subjectspecific Elective Module 1)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Studies</td>
<td>SES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Bresinsky</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Bresinsky</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Administration & Organization; Introduction
- Develop definition of security and security challenges
- Introduction into planning and analysis tools
- Definition of subject matter of interest
- Developing work plan and research design
- Work groups and plenum discussion
- Symposium

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, The classical school of Security Studies is concerned with the topic of nation states and their security in an international system characterized by anarchy, insecurity, crisis, and war. Nevertheless, there exists a series of so-called non-traditional security threats, which are no longer, stop at borders of nation states and are therefore subject of a more comprehensive approach in analysis and research. The SES course will address these challenges by focusing in an international topic, which is highly relevant for international security. This term we will analyze and discuss the domain of cyber security and their relevance for international relation, business and societies. The course is in cooperation with KPMG Cologne ‘Cyber Security’.

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg
Seite 110
By using this topic as a case study, the course will address two aspects. Firstly students will learn to create a situational picture, assess the information and develop possible future scenarios of the ongoing events. Secondly students will apply methods, tools, and best practice for the analysis and the development of decision support products. The last aspect will address the processes of analysis as known in policy and business intelligence.

Students are invited to develop their own problem statements and topics for research. As the course is designed as research based learning, students are expected to prepare information and reading outside the course sessions.

Competencies:

- Understand the issues of non-traditional security challenges
- Know how to identify a non-traditional security challenge in specific domain of politics or business.
- Know how to analyze the actor, structures and processes of international security challenges
- Know how to support an analysis and intelligence cycle by creating intelligence products
- Know how to apply specific analysis procedures (e.g. Business Process Models, Scenario Technique)
- Know how to apply specific software tools (e.g. Visual Understanding Environment, Scenario Wizard, ARIS Express etc.)
- Know how to document and log results on e-learning platform
- Know how to present results to plenum and work groups
- Improve English conversation, reading and writing

Angebotene Lehrunterlagen

Handapparat in der Bibliothek

Lehrmedien

Tafel, Notebook, Beamer, spezifische Softwaretools

Literatur

Weitere Informationen zur Lehrveranstaltung

Reading of literature, scientific working style and self-commitment to work groups is mandatory! The course will be held together with students of the study program “International Relations and Management”.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg

Seite 111
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Fachbezogenes Wahlpflichtmodul 1 (Mandatory Subjectspecific Elective Module 1)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensorprinzipien (Fundamental Principles of Sensor Technology)</td>
<td>RM</td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät
Prof. Dr. Oliver Steffens | Angewandte Natur- und Kulturwissenschaften
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Oliver Steffens | nur im Sommersemester

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte
1. Einleitung – Grundbegriffe und Klassifikation von Sensoren
2. Kenngrößen von Sensoren
3. Systemtheorie/Fourier-Transformation; Grundstrukturen der Schaltungstechnik
4. Mechanisch-elektrische Wandler
5. Thermisch-elektrische Wandler
6. Opto-elektrische Wandler
7. Magneto-elektrische Wandler
8. Spezielle Sensoranwendungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Die Studierenden kennen eine breite Palette an Anwendungsfeldern für Sensoren und die zugrundeliegenden physikalischen Prinzipien sowie deren technische Umsetzung;
- Sie kennen Kenngrößen für industrielle Sensoren und deren Einflüsse auf das Sensorsignal

Fertigkeiten:
- Sie können einfache Auswerteschaltungen und Signalverstärkerschaltungen analysieren und funktionale Zusammenhänge zwischen Sensorgröße und Signal berechnen;
- Sie sind in der Lage, Signale zwischen Zeit- und Frequenzbereich zu transformieren und Übertragungsfunktionen zu berechnen.

Kompetenzen:

- Die Studierenden können entscheiden, welche Sensorprinzipien für welche Sensoraufgaben geeignet sind und Vor- und Nachteile (z.B. Genauigkeit, Trägheit, Kosten, Baugröße) verschiedener Sensortechniken erkennen.
- Sie sind in der Lage, in der Veranstaltung vermittelten allgemeinen Prinzipien von den exemplarisch vorgestellten Beispielen auf weitere (nicht behandelte) Sensortechniken zu übertragen.

Angebotene Lehrunterlagen

Vorlesungsskript mit Übungen, Moodle-Kursraum

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Nach Möglichkeit wird während des Semesters eine Exkursion zu einer Sensormesse o.ä. angeboten.
Empfohlene Vorkenntnisse aus den Modulen: Mathematik 1 + 2 (Modul Nr. 3+7), Elektronische Bauelemente (Modul Nr. 8), Technische Physik 1 + 2 (Modul Nr. 4+10)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technikfolgenabschätzung (Technology Assessment)</td>
<td>TF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Karsten Weber</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Karsten Weber (LB)</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachbezogenen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Geschichte und Entwicklung der institutionalisierten Technikfolgenabschätzung (TA)
- Institutionen, Ziele und Aufgaben der TA
- Grundsätzliche Vorgehensweisen
- Methoden der TA
- Bearbeitung eines kleineren TA-Projekts in Teamarbeit mit Anwendung einiger Methoden
- Dokumentation und Vorstellung der Ergebnisse

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:
- Kenntnisse über die gesellschaftlichen Auswirkungen von Technik
- Kenntnisse zu den Vorgehensweisen der TA

Fertigkeiten:
- Anwendung grundlegender Methoden der TA
- Einschätzung der Verlässlichkeit entsprechender Forschungsergebnisse
- Multimodale Präsentation von Forschungsergebnissen

Kompetenzen:
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Fachbezogenes Wahlpflichtmodul 1 (Mandatory Subjectspecific Elective Module 1)

- Eigenständige Durchführung eines TA-Projekts
- Projektkoordination und Teamarbeit

Angebotene Lehrunterlagen
Foliensätze, Quellen, Übungsblätter

Lehrmedien
Tafel, Notebook, Beamer

Literatur

Die Zahlen in Klammern geben die zu erreichenden Niveauastufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul 2 (Mandatory Subjectspecific Elective Module 2)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachbezogenes Wahlpflichtmodul 2 (Mandatory Subjectspecific Elective Module 2)</td>
<td>WP 2 / Nr.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrpersonen im FWPF-Modul</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse
Je nach Lehrveranstaltung

Inhalte
Je nach Lehrveranstaltung

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bioanalytik und Genanalytik (Bioanalysis and Genetic Analyses)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Kernphysikalische Methoden in Sensorik und Analytik (Methods of Nuclear Physics in Seonsorics and Analysis)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Optische Sensorik (Optical Sensors)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Projektarbeit (Project Work)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Sensors in Biotechnology</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>Spurenanalytik auf Siliziumscheiben (Trace Analysis on Silicon Wafers)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>Technische Optik (Applied Optics)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
- Die Studierenden im Schwerpunkt Mikrotechnologie wählen aus dem Angebotskatalog des Moduls Nr. 20 eine Lehrveranstaltung
- Pro Semester werden nicht alle Lehrveranstaltungen angeboten

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
• Das Nähere regelt der Studienplan
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul 2 (Mandatory Subjectspecific Elective Module 2)

Teilmodul: Bioanalytik und Genanalytik (Bioanalysis and Genetic Analyses)

TM-Kurzbezeichnung: BG

Verantwortliche/r: Dr. Petra Bastian (LB)

Fakultät: Angewandte Natur- und Kulturwissenschaften

Lehrende/r / Dozierende/r: Dr. Petra Bastian (LB)

Angebotsfrequenz: nur im Sommersemester

Lehrform: Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester: gemäß Studienplan

Lehrumfang: 4 SWS

Lehrsprache: deutsch

Arbeitsaufwand: 5 ECTS-Credits

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte:

- Einführung in Biologische und genetische Zusammenhänge: Grundlage der Analytik von und mit Biomolekülen
- Instrumentelle Analytik: Spektroskopische und mikroskopische Methoden, Chromatographie, Elektrophorese, Kapillarelektrophorese
- Enzymatische Analysemethoden mit katalytischen Interaktionen
- Immunologische Analysemethoden, Interaktionsanalytik
- Biosensorik
- Funktionsanalytik: Genom- und Sequenzanalyse, Proteomics, Metabolomics, Peptidomics, Interactomics, Toponomics; Ansatzpunkte moderner Simulationstechniken und informatischer Datenverarbeitung; Internationale Datenbanken
- Einsatz und Kombinationsmöglichkeiten zur Erforschung komplexer biologischer und genetischer Zusammenhänge anhand ausgewählter Beispiele

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Die Studierende verfügen über Kenntnisse von Biomolekülen und haben ein Verständnis von grundsätzlichen biologischen und genetischen Zusammenhängen
- Sie kennen moderne Bio- und Genanalytische Methoden, deren Einsatzmöglichkeiten und Anwendungsgebiete, sowie die Schnittpunkte zu Sensorik und der Mikrosystemtechnik

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg Seite 118
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul 2 (Mandatory Subjectspecific Elective Module 2)

- Sie kennen die biologischen und genetischen Fortschritte, die durch die Entwicklung moderner analytischer Methoden gewonnen werden konnten, und die wiederum zur Weiterentwicklung dieser Methoden führten;
- Sie haben Überblick über die Bio- und Genanalytik und die damit verbundenen Fortschritte

Kompetenzen:

- Grundlegende Kenntnisse, um sich als Ingenieur der Sensorik oder Mikrosystemtechnik zukünftig in dieses Gebiet einbringen zu können

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Skripte</th>
</tr>
</thead>
</table>

Lehrmedien

<table>
<thead>
<tr>
<th>Tafel, Notebook, Beamer</th>
</tr>
</thead>
</table>

Literatur

Optional:

- Reinhard Renneberg, Bioanalytik für Einsteiger, Spektrum Akad. Verlag 2009;
- Eberhard Passarge, Taschenatlas der Genetik, Thieme Verlag 2003;

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>Kernphysikalische Methoden in Sensorik und Analytik (Methods of Nuclear Physics in Sensorics and Analysis)</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen
Demonstrationsexperimente im Labor

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

Relativistik und Quantenphysik:
Zeitdilatation, Beziehung zwischen Energie sowie Impuls und Ruhemasse, Quantisierung, Unschärferelation, Tunneleffekt, quantenmechanische Drehimpulse und Spin

Der Atomkern:
Elementarteilchen, Kernbestandteile, Bindung, Isotopen, Kernmodelle, Weizsäckersche Massenformel, Massendefekt und Bindungsenergie, Wechselwirkung mit Atomhülle, Einfluss auf Spektren, Hyperfeinstruktur

Kernzerfall:
Arten, Mechanismen, Erhaltungssätze (wann ist Zerfall möglich?), Emission, Energiespektren, Halbwertszeit und Lebensdauer, Nuklidkarte, Verzweigungen, Zerfallsketten und radioaktives Gleichgewicht, Röntgenphotonen, oft verwendete Strahlungsquellen, Kernreaktionen

Wechselwirkung Strahlung – Materie:
Streuung, Ionisation und Anregung, Bethe-Bloch-Formel, Reichweite, Bragg-Peak, Besonderheiten bei Photonen (Photoeffekt, Comptoneffekt, Paarbildung, exponentielle Schwächung) und Neutronen, strahleninduzierte Materialveränderungen
Aspekte des Strahlenschutzes: Wechselwirkung mit Biomolekülen, LET-Wert, Schadensmechanismen, Dosisbegriff, Grenzwerte, Schutzmaßnahmen, Abschirmung

Detektoren für Strahlung:
Gasgefüllte Detektoren, Ionisationskammer, Proportionalzählrohr, Geiger-Müller- Zähler, Szintillationsdetektoren (flüssig, Plastik, Kristalle), Halbleiterdetektoren (Si, Li, HPGe, Oberflächensperrschichtzähler), mikrostrukturierte Si-Detektoren, Dosimeter, Neutronennachweis

Messtechnik:
Energiespektren für Röntgenstrahlen, Gammas, Beta- und Alpha-Teilchen, Timing, Koinzidenz, Ortsauflösung, Signaturen, Elektronik, Shaping, Statistik, Untergrund

Wissenschaftliche Anwendungen:
Materialanalyse, Röntgenbeugung, EDX, WDX, XRF, Neutronenaktivierungsanalyse, Datierung, Tracing, Massenspektrometrie, Mössbauereffekt

Technische Anwendungen:
Dickenmessung, Dichtemessung, radioaktive Markierung, technische Röntgenuntersuchung (Schweißnahtuntersuchung u.a.), Modifikation von Materialien, Bestrahlung von Lebensmitteln, radioaktive „Batterien“

Medizinische Anwendungen:
Bildgebung, Röntgen, CT, Kernmagnetische Resonanz, Ultraschall, Nuklearmedizin (Diagnose und Therapie), PET, Tumorbestrahlung, Tele- und Brachytherapie

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
Quellen, Arten, Ausbreitung, Wirkung und Nachweis ionisierender Strahlung (inkl. Photonen und Neutronen) aus Kernen, der Atomhülle, dem Weltall, Teilchenbeschleunigern und Röntgenröhren

Überblick über die Anwendungen ionisierender Strahlung, speziell für Sensorik und Analytik, sowie über die Strahlungsmesstechnik

Fähigkeiten:

- Interpretation von Gammaspektren

Kompetenzen:

- Die Studierenden haben Einsicht gewonnen in die besonderen Möglichkeiten und Grenzen kernphysikalischer Methoden und kennen evtl. konkurrierende Verfahren.
- Sie können das Risiko qualifiziert abschätzen.
- Sie verstehen, wie sich die Eigenschaften ionisierender Strahlung auf die Aussagekraft analytischer Methoden auswirken.

Angebotene Lehrunterlagen

Skript

Lehrmedien

Tafel, Notebook, Beamer, Demonstrationsexperimente im Labor

Literatur

- Stolz: Radioaktivität, Teubner 2005 (einführend)
- Hering: Angewandte Kernphysik, Teubner 1999 (weiterführend)
- Lilley: Nuclear Physics, Principles and Applications, Wiley 2001 (weiterführend)
- Shultis/Faw: Fundamentals of Nuclear Science and Engineering, Marcel Dekker 2002 (weiterführend, mit ausführlichem Tabellenteil)
- Knoll: Radiation Detection and Measurement, Wiley 2010 (behandelt Strahlungsdetektoren, sowohl einführend als auch umfassend)
- Tavernier: Experimental Techniques in Nuclear and Particle Physics, Springer 2010 (ähnlich Knoll, aber knapper)
- Bröcker: dtv-Atlas zur Atomphysik, Deutscher Taschenbuch-Verlag 1997 (viele erklärende Bilder, umfassende Thematik, aber nicht auf dem neuesten Stand)
- Goretzki: Medizinische Strahlenkunde, Urban & Fischer / Elsevier 2004 (verständlich gehaltener Überblick über die medizinischen Anwendungen)

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optische Sensorik (Optical Sensors)</td>
<td>OS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

1. Introduction
2. Foundations of Optics
 Physics of Light (Maxwell equation, wave propagation, electromagnetic waves, polarization, plane waves, Gaussian Beam (paraxial wave equation), energy (pointing vector), free-space and waveguide propagation)
 Scattering: Rayleigh and Mie Theory
 Interaction of radiation with matter:
 Laser basics, Fresnel equations, power transmission and reflection
 The dielectrical function und optical properties of matter:
 Refractive index and absorption, metal optics, Plasmapfrequency, Photometry
2.1 Properties of natural and technical light sources
 Blackbody radiation: Plank’s laws of radiation
 Coherence (temporal, spatial)
2.2 Geometrical Optics (reflection and refraction, internal reflection)
 Lenses, microscopy, telescopes, special lenses e.g. telecentric lens ...
 Controlling light: Pockels cell, optical diodes, Prisms, Birefringence
2.3 Interference and diffraction: Michelson, Mach-Zehnder, Speckles ...
3. Detection of Light
 Overview: Common detectors and their properties
 Noise in optical detection, S/N, NEP, Detectivity...
4. Optical measurement techniques
4.1 Distance measurement
 4.1.1 Time of flight
 4.1.2 Triangulation
 4.2.4 Confocal techniques
4.2 Velocity measurement, LDA Laser doppler anemometry
4.3 Meas. surface properties: Profile measurement, roughness measurement
4.4 Ellipsometry, Meas. Layer thickness ...
4.5 Interferometry (incl. Speckle interferometry)
4.6 Methods of spectroscopy
 4.6.1 IR spectroscopy
 4.6.2 Raman, CARS, BOXCARS ...
4.7 LIF and LIDAR
5. Image processing methods – basics of Fourier optics
5.1 Dark field and Schlieren fotography

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Knowledge:
- The students have knowledge of light sources, the propagation of light through media and their properties to the detection of radiation.
- They have deeper knowledge about distance measurement and surface characterization.

Skills:
- The participants will learn to design optical ranging systems from some μm to some km.
- Radiometric calculation of optical sensing systems.
- The ability of designing optical system for measuring and detecting of radiation shall be acquired.
Competences:

- The participants should be able to understand a variety of optical sensing methods and metrology application.
- Selection of suitable techniques for solving applied measurement tasks.
- Understanding of the physics of radiation detectors and their properties like wavelength range, noise, sensitivity.

Angebotene Lehrunterlagen

The script is partially available in English and German.
Full English script is in progress.

Lehrmedien

Board, Notebook, Beamer

Literatur

- Axel Donges, Reinhard Noll: „Lasermesstechnik“, Hüthig, Heidelberg
- Wolfgang Demtröder: „Laserspektroskopie“, Springer Verlag
- Jörg Hoffmann: „Handbuch der Messtechnik“, Hanser

Weitere Informationen zur Lehrveranstaltung

Previous knowledge:
Basic Physik lectures (TP1, TP2)
Electro-dynamics, Maxwell equations, Planck black body radiation
Linear algebra, matrix and vector calculus
Technical Optics (TO)

Preferable previous knowledge (optional and useful):
Basic facts of solid state physics
Photonics and laser technology (PL)
Basic knowledge of optoelectronics

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul

<table>
<thead>
<tr>
<th>Projektarbeit (Project Work)</th>
<th>PKT</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät AM</td>
</tr>
</tbody>
</table>

Angebotsfrequenz

Angewandte Natur- und Kulturwissenschaften

Lehrumfang

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrraufwand</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Projektorganisation, Projektstrukturierung, Projekt-Controlling
- Fallbeispielorientierte Problem- und Zielanalyse
- Datenerhebung und -darstellung, Schwachstellenanalyse
- Zielorientierte Problembearbeitung und -lösung im Team unter Berücksichtigung von methodischen, systemtechnischen und wertanalytischen Vorgehensweisen
- Systematische Dokumentation der Ergebnisse und Präsentation des Projekts

Lernziele: Fachkompetenz

praktische Erfahrungen in Teamarbeit, Umgang mit projektinternen und externen Schnittstellen und zielorientierter Kommunikation durch den Abgleich mit anderen Akteuren.

<table>
<thead>
<tr>
<th>Angebote Lehrunterlagen</th>
<th>je nach Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrmedien</td>
<td>je nach Projekt</td>
</tr>
<tr>
<td>Literatur</td>
<td>je nach Projekt</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Teilmodul	TM-Kurzbezeichnung
Sensors in Biotechnology | SB

Verantwortliche/r	Fakultät
Dr. Rezan Fahrioglu Yamaci (LB) | Angewandte Natur- und Kulturwissenschaften
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Dr. Rezan Fahrioglu Yamaci (LB)

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Take home exam

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Introduction to biological and chemical sensors
- Sensors in industry and agriculture
- Sensors in clinic; current and near future applications
- Biorobotics
- Artificial Intelligence
- Biosensors e.g.
- Cell based sensors
- DNA sensors
- Wearables
- Nanosensors
- Telemedicine
- Telehealth
- Cyber physical systems
- Discussing recent scientific publications in the field

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- The students will have an insight on how sensors are being used mainly for medical and biological investigations. Knowledge of the mechanism of action will guide them to work in the field of e.g. Medizintechnik (2).
• Understanding the basics of biosensors can help them develop new sensors, contributing to further improvements in the field (2).
• Using the knowledge obtained at the end of the course, the students will be able to diagnose the applicability of a specific sensor for a specific need (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• The courses will be held interactive enabling the contribution of the students as much as possible (3).
• They will do research in groups, on a topic of interest and learn to investigate deep as well as improve team building skills (3).
• Presentation and conviction skills as well as confidence will be enhanced (3).
• They will improve their level of English in understanding, reading, writing and communicating (3).

Angebotene Lehrunterlagen

Powerpoint slides, videos, articles published in scientific journals

Lehrmedien

Computer

Literatur

• Introduction to Sensors, J. Vetelino and A. Reghu. CRC press, 2011
• Telemedicine and Electronic Medicine, H. Eren and JG. Webster. CRC Press, 2017
• Smart Sensors and Systems ; Chong-Min Kyung, Hiroto Yasuura, Yongpan Liu, Youn-Long Lin Springer 2017
• Nanomaterials for Biosensors, C. Kumar. Wiley-VCH, 2007
• Implantable Medical Electronics; Vinod Kumar Khanna, Springer, 2016

Weitere Informationen zur Lehrveranstaltung

Recent publications relevant to the topic will be provided.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spurenanalytik auf Siliziumscheiben (Trace Analysis on Silicon Wafers)</td>
<td>SA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform: Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 60h
- Eigenstudium: 90h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle
Inhalte

1. Einführung in die chemische Analytik
 - Lambert - Beer - Gesetz

2. Schwingungsspektroskopie
 - Infrarot - Spektroskopie
 - Raman - Spektroskopie
 - Gerätebeschreibungen
 - Interpretation der Spektren

3. Ultra - Visible - Spektroskopie
 - Russel - Saunders - Terme
 - Gerätebeschreibung
 - Spektren von Atomen
 - Spektren von Übergangskomplexen
 - Spektren von organischen Molekülen

4. Atomabsorptionsspektroskopie
 - Gerätebeschreibung
 - Quantitative Analyse von metallischen Kontaminationen
 - Oberflächenanalyse von Siliziumscheiben (V.P.D.)

5. Chromatographie
 - Prinzip der Chromatographie
 - Gaschromatographie
 - Gerätebeschreibung
 - Auswertung von Spektren (qualitativ und quantitativ)
 - Ionenchromatographie
 - Gerätebeschreibung
 - Quantitative Bestimmung von Ionen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
 - Die Studierenden kennen die Wechselwirkung von Strahlung und Materie.
 - Die Studierenden kennen die quantenmechanischen Zusammenhänge in der Schwingungsspektroskopie, Mikrowellen und UV-VIS Spektroskopie.
 - Sie kennen die energetischen Schematas, wie z.B. "Russel Saunders Therme".
 - Sie kennen die verschiedenen analytischen Geräte, die im Fachgebiet zum Einsatz kommen.

Fertigkeiten:
 - Die Studierenden verfügen über vertiefte Fertigkeiten in der ziel führenden Anwendung analytischer Gerätschaften auf dem Gebiet der Halbleitertechnologie.
Kompetenzen:

- Die Studierenden sind in der Lage Spektren zu interpretieren und Schlussfolgerungen zu ziehen.
- Sie verfügen über die Kompetenz zur quantitativen und qualitativen Bestimmung von Stoffen mittels wichtiger analytischer Geräte.
- Sie sind in der Lage mittels geeigneter Präsentationstechniken komplexe analytische Themen zu präsentieren.

Angebotene Lehrunterlagen

Skript

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Heese, Meier, Zech, Spektroskopische Methoden in der organischen Chemie; Georg Thieme Verlag, 1991
- Jürgen Böcker, Chromatographie; Vogel Verlag, 1997
- Joachim Weiß, Ionenchromatographie Wiley-VCH Verlag, 2001
- Dr. D. Jensen, Grundlagen der Ionenchromatographie; Dionex Eigenverlag; 2000
- Ulrich Hilleringmann, Silizium-Halbleitertechnologie
- Hubert Hein, W. Kunze Umweltanalytik mit Spektrometrie und Chromatographie; Wiley-VCH Verlag, 2004
- Welz, Atomabsorptionsspektroskopie; Wiley-VCH Verlag, 1998

Weitere Informationen zur Lehrveranstaltung

Die Lehrveranstaltung wird begleitet von einem Praktikum in Infrarot-Spektroskopie, Raman-Spektroskopie, UV/VIS Spektroskopie.

Die Zahlen in Klammern geben die zu erreichen Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Fachbezogenes Wahlpflichtmodul 2 (Mandatory Subjectspecific Elective Module 2)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Optik (Applied Optics)</td>
<td>TO</td>
</tr>
</tbody>
</table>

Verantwortliche/r	Fakultät
Prof. Dr. Peter Bickel | Angewandte Natur- und Kulturwissenschaften
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Peter Bickel | in jedem Semester

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
60h | 90h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Grundlagen - Maxwell und Fresnel Gleichungen
- Das Photon – Planck’sche Strahlungsformel
- Lichttechnische Berechnungen
- Optische Eigenschaften der Materie: Brechungsindex und Absorptionskoeffizient
- Metalloptik, Warum ist ein Stoff durchsichtig, ein anderer nicht?
- Polarisation, Reflexion und Streuung
- Welleneigenschaften: Wellengleichung Interferenz und Beugung
- Fresnel und Fraunhofer Beugung, Grundzüge der Fourieroptik
- Strahlenoptik und optische Abbildung, Diskussion der Abbildungsfehler
- Optische Komponenten: Linsen, Blenden, Aperturen, Spiegel, Prismen, Glasfasern und Mikrooptiken, Achromaten
- Aufbau und Design von Linsensystemen für besondere Aufgaben z.B. telezentrische Objektive
- Messung und Charakterisierung von Linsensystemen (MTF, Auflösung ...)
- Optische Geräte: Fernrohr, Mikroskop, Projektor, Beleuchtungssysteme
- Einführung in die Designsoftware OSLO mit Problemstellungen
- Eigenschaften von Laserstrahlung: räumliche und zeitliche Kohärenz
- Optische Resonatoren, Entstehung und Ausbreitung von Gaußstrahlen und deren Besonderheiten bei der Fokussierung

Stand: 23. 03. 2021
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:
- Kenntnisse der Eigenschaften optischer Geräte und deren Eigenschaften
- Kenntniss der Erzeugung und Ausbreitungseigenschaften elektromagnetischer Strahlung und deren quantitative Berechnungsmethoden
- Grundlagen für aufbauende und weiterführende Vorlesungen aus dem Bereich der optischen Messtechnik

Fertigkeiten:
- Fähigkeit zur Anwendung der optischen Abbildung bis hin zu komplexen Linsensystemen
- Fähigkeit einfache optische Systeme zu designen und zu dimensionieren

Kompetenzen:
- Verständnis der Grundlagen der modernen Optik sowie der optischen Eigenschaften optischer Materialien

Angebotene Lehrunterlagen
Skript

Lehrmedien
Tafel, Noteook, Beamer

Literatur
- Bergmann, Schäfer, “Lehrbuch der Experimentalphysik” Band III, Optik, Walter de Gruyter Verlag
Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse:
Mathematik 1+2 (Module Nr. 3+7), Technische Physik 1+2 (Module Nr. 4+10) speziell Elektrodynamik. Kenntnis der Maxwellgleichungen ist wünschenswert.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Festkörperphysik 1 (Solid State Physics 1) | FP 1 / Nr.11

### Modulverantwortliche/r	Fakultät
Prof. Dr. Martin Kammler | Angewandte Natur- und Kulturwissenschaften

### Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. | 2. | Schwerpunkt Pflichtmodul | 5

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Geometrie, Analysis, Mechanik, Elektrostatik, Schwingungen, chemische Bindungen, Halbleiter

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Festkörperphysik 1 (Solid State Physics 1)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festkörperphysik 1 (Solid State Physics 1)</td>
<td>FP 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Seminaristischer Unterricht</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

Kristallographische Grundlagen:
- Definition des Begriffs Kristall, Raumgitter, Basis, Einheitszelle, Elementarzelle und Wigner-Seitz-Zelle
- Gittersymmetrie und Bravaisgitter
- Kristallebenen, Millersche Indizes und Kristallrichtungen
- Beispiel: Die Kristallstruktur von Halbleitern

Reziprokes Gitter:
- Definition der reziproken Gittervektoren und reziproke Gittervektoren
- Eigenschaften des reziproken Gitters: Brillouin-Zone; Gitterebenen und Millersche Indizes, Fourier-Analyse
- Beispiel: Kubisches Kristallsystem

Strukturanalyse:
- Die Bragg-Bedingung
- Von Laue-Bedingung und Interpretation im reziproken Gitter
- Allgemeine Beugungstheorie
- Methoden der Strukturbestimmung mit Röntgenstrahlen: Laue-Verfahren, Pulververfahren und Drehkristallverfahren

Quantenphysikalische Grundbegriffe und Quantenstatistik:
- 1-dim, zeitunabhängige Schrödingergleichung und Kastenpotential
- Born’sche Interpretation der Wellenfunktion, Unschärferelation und Pauli-Prinzip
- Statistische Grundlagen: Boltzmann -, Fermi-Dirac- und Bose-Einstein-Verteilung

Gitterschwingungen
- Schwingungen der linearen Kette und Ableitung der Dispersionsrelation
- Quantisierung der Gitterschwingungen und Phononen
- Spezifische Wärme des Gitters (Debye-Modell)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Kenntnis der Modelle und Methoden zur Beschreibung und zur Analyse der Eigenschaften von Kristallen.
- Kenntnis der Grundlagen der Quantenmechanik und der Quantenstatistik
- Kenntnis der Modelle zur Beschreibung der Gitterdynamik
- Kenntnis des Quasiteilchenskonzepts
- Kenntnis grundlegender Gleichungen und mathematischer Methoden der Festkörperphysik

Fertigkeiten:
- Sicheren Umgang mit den Fachbegriffen beherrschen
- Modelle der Festkörperphysik und die physikalische Bedeutung von Gleichungen erklären können
Kompetenzen:

- Anwendung der im Rahmen der Modelle vorgestellten Gleichungen und mathematischer Methoden auf konkrete Problemstellungen der Festkörperphysik

Lehrmedien
Tafel, Notebook, Beamer

Literatur
- Kittel, Festkörperphysik, Oldenbourg Verlag
- Kopitzki, Einführung in die Festkörperphysik, Teubner Verlag
- Demtröder, Experimentalphysik 3, Springer Verlag
- Gross, Marx, Festkörperphysik, De Gruyter Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Festkörperphysik 2 (Solid State Physics 2)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>FP 2 / Nr.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Festkörperphysik 1 (Modul Nr. 17 im Schwerpunkt Mikrotechnologie)

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Festkörperphysik 2 (Solid State Physics 2)

Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>Festkörperphysik 2 (Solid State Physics 2)</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
<th>Prof. Dr. Rupert Schreiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Natur- und Kulturwissenschaften</td>
<td></td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
<th>nur im Sommersemester</th>
</tr>
</thead>
</table>

Lehrform

Seminaristischer Unterricht mit 15 bis 25% Übungsanteil

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Elektronische Eigenschaften der Metalle

- Drude Modell der elektrischen Leitfähigkeit und dessen Versagen
- Quantisiertes Elektronengas und Sommerfeld Modell der elektrischen Leitfähigkeit
- Hall Effekt
- Energiebänder: Ursache der Energielücke; Semiklassisches Modell der Elektronendynamik (Kristallelektronen); Löcherkonzept und Eigenschaften der Löcher; Konzept der Energiebänder – Darstellungsformen; Metalle und Isolatoren

Halbleiter

- Atomare Struktur der Halbleiter, Leitungsband, Valenzband und Energielücke
- Effektive-Masse-Näherung der Ladungsträger an den Bandkanten
- Eigenleitung: Besetzung von Leitungs- und Valenzband; Boltzmann-Näherung; Elektrische Leitfähigkeit bei Eigenleitung; Hall-Effekt bei Eigenleitung
- Störstellenleitung: n- und p-Leitung; Besetzung der Bänder bei N- und P-Leitung; Hall-Effekt bei Störstellenleitung
- Der pn-Übergang: Der pn-Übergang in Gleichgewicht Der pn-Übergang mit äußerer Spannung, Gleichrichterdiode

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg

Seite 141
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, **Kenntnisse:**

- Kenntnis physikalische Modelle zur Beschreibung der Eigenschaften von delokalisierten Elektronen in Festkörpern
- Kenntnis der auf mikroskopischen Betrachtungen beruhenden Modelle zur Beschreibung folgender makroskopisch messbarer physikalischer Größen: Elektrische Leitfähigkeit; Thermische Leitfähigkeit; Wärmekapazität; Seebeck-Effekt (Thermoeffekt); Ladungsträgerdichten bei Halbleitern; Kennlinien von Halbleiter-Bauelementen
- Kenntnis der physikalischen Prozesse an einem pn-Übergang

Fertigkeiten:

- Sicheren Umgang mit den Fachbegriffen beherrschen
- Modelle der Festkörperphysik und die physikalische Bedeutung von Gleichungen erklären können

Kompetenzen:

- Anwendung der im Rahmen der Modelle vorgestellten Gleichungen und mathematischer Methoden auf konkrete Problemstellungen der Festkörperphysik

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Kittel, Festkörperphysik, Oldenbourg Verlag
- Kopitzki, Einführung in die Festkörperphysik, Teubner Verlag
- Demtröder, Experimentalphysik 3, Springer Verlag
- Gross, Marx, Festkörperphysik, De Gruyter Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Festkörperphysik 2 (Solid State Physics 2)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>FP 2 / Nr.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Solid State Physics 1 (Modul Nr. 15 im Schwerpunkt Optoelektronik)

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Festkörperphysik 2 (Solid State Physics 2)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>FP 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit 15 bis 25% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte

Elektronische Eigenschaften der Metalle
- Drude Modell der elektrischen Leitfähigkeit und dessen Versagen
- Quantisiertes Elektronengas und Sommerfeld Modell der elektrischen Leitfähigkeit
- Hall Effekt
- Energiebänder: Ursache der Energielücke; Semiklassisches Modell der Elektronendynamik (Kristallelektronen); Löcherkonzept und Eigenschaften der Löcher; Konzept der Energiebänder – Darstellungsformen; Metalle und Isolatoren

Halbleiter
- Atomare Struktur der Halbleiter, Leitungsband, Valenzband und Energielücke
- Effektive-Masse-Näherung der Ladungsträger an den Bandkanten
- Eigenleitung: Besetzung von Leitungs- und Valenzband, Boltzmann-Näherung; Elektrische Leitfähigkeit bei Eigenleitung; Hall-Effekt bei Eigenleitung
- Störstellenleitung: n- und p-Leitung; Besetzung der Bänder bei N- und P-Leitung; Hall-Effekt bei Störstellenleitung
- Der pn-Übergang: Der pn-Übergang in Gleichgewicht Der pn-Übergang mit äußerer Spannung, Gleichrichterdiode

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Seite 144
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Kenntnis physikalische Modelle zur Beschreibung der Eigenschaften von delokalisierten Elektronen in Festkörpern
- Kenntnis der auf mikroskopischen Betrachtungen beruhenden Modelle zur Beschreibung folgender makroskopisch messbarer physikalischer Größen: Elektrische Leitfähigkeit; Thermische Leitfähigkeit; Wärmekapazität; Seebeck-Effekt (Thermoeffekt); Ladungsträgerdichten bei Halbleitern; Kennlinien von Halbleiter-Bauelementen
- Kenntnis der physikalischen Prozesse an einem pn-Übergang

Fertigkeiten:

- Sicheren Umgang mit den Fachbegriffen beherrschen
- Modelle der Festkörperphysik und die physikalische Bedeutung von Gleichungen erklären können

Kompetenzen:

- Anwendung der im Rahmen der Modelle vorgestellten Gleichungen und mathematischer Methoden auf konkrete Problemstellungen der Festkörperphysik

Lehrmedien
Tafel, Notebook, Beamer

Literatur

- Kittel, Festkörperphysik, Oldenbourg Verlag
- Kopitzki, Einführung in die Festkörperphysik, Teubner Verlag
- Demtröder, Experimentalphysik 3, Springer Verlag
- Gross, Marx, Festkörperphysik, De Gruyter Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Fiberoptics

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberoptics</td>
<td>FO / Nr.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Prof. Dr. Roland Schiek</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fiberoptics</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Das Modul Fiberoptics besteht aus 2 Teilen:
Fiberoptics 2 SWS und Optische Sensorik 4 SWS

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberoptics</td>
<td>FO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Prof. Dr. Roland Schiek</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Roland Schiek</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehreform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit 15 bis 25% Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>6 SWS</td>
<td>englisch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

Optical fiber
- Geometrical-optics description
- Fiber modes
- Material characteristics of fibers
- Fiber manufacturing

Signal Degradation in Optical Fibers
- Attenuation
- Signal distortion in optical waveguides

Power Launching and Coupling
- Coupling loss
- Source to fiber power launching
- Fiber optic connectors

Alignment metrology and techniques
- Alignment techniques
- Examples of micro-optic based components

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, **Knowledge:**
- Knowledge about the physical background and the key areas of fiber optics those are necessary to design fiber optic transmission paths
- Knowledge about technical characteristics of step-index fibers, gradient index fibers and single mode fiber
- Knowledge about the meaning and background of the terms waveguide modes, absorption and dispersion
- Knowledge about assembly and packaging techniques

Skills:
- Correct use of technical termers
- Correct application of the introduced methods

Competences:
- Correct application of the introduced formulas on problems of fiber optics

Lehrmedien
- Tafel, Notebook, Beamer
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Optics in common:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bergmann, Schäfer “Lehrbuch der Experimentalphysik” Band III, Optik, Walter de Gruyter Verlag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung und Prüfung in Englisch</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Foreign Language / Culture | FL / Nr.13

Modulverantwortliche/r	Fakultät
Prof. Dr. Rupert Schreiner | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreicher Eintritt in den 2. Studienabschnitt

Empfohlene Vorkenntnisse

Keine

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Foreign Language/Culture</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3.+ 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. In beiden Semestern ist ein Kurs in der jeweiligen LandesSprache und -kunde zu belegen.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign Language/Culture</td>
<td>FL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>englisch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>3. und 4.</td>
<td>6 SWS</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung

| Je nach Partnerhochschule |

Zugelassene Hilfsmittel für Leistungsnachweis

| Je nach Partnerhochschule |

Inhalte

| Je nach Partnerhochschule |

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule und Vorkenntnissen

Lehrmedien

| Je nach Partnerhochschule |

Literatur

| Je nach Partnerhochschule |

Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg Seite 151
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Konstruktion (Mechanical Component Design)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstruktion (Mechanical Component Design)</td>
<td>KO / Nr.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Module: Mechanik aus Technische Physik 1 (Modul Nr. 4), Mathematik 1 (Modul Nr. 3)

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Konstruktion (Mechanical Component Design)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)
Modulname:
Konstruktion (Mechanical Component Design)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstruktion (Mechanical Component Design)</td>
<td>KO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
1) Regeln des Technischen Zeichnens; freihändiges Skizzieren, perspektivische Darstellungen
2) Grundzüge der Darstellenden Geometrie: Projektionen, wahre Länge, Durchstoßpunkte, Durchdringungen, Abwicklungen, Hilfsebenenverfahren, Hilfskugelverfahren
3) Toleranzen für Oberflächen, Maße, Form und Lage, freie Toleranzen, Allgemeintoleranzen, Hüllprinzip, Unabhängigkeitsprinzip
4) Zusammenwirken von Toleranzen; Passungen
5) Normung, Normenwerke
6) Grundbegriffe der Festigkeitslehre, Beanspruchungsarten: Zug, Druck, Schub, Knickung, Biegung, Torsion, Spannungs-Dehnungs-Diagramme, Grenzwerte, Sicherheit gegen Versagen
7) Balkenbiegung: Lagerreaktionen, Schnittreaktionen, Biegemoment, Verformung, Biegelinie
8) Klassen, Eigenschaften und Bezeichnungen häufig verwendeter Konstruktionswerkstoffe

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Regeln des technischen Zeichnens, Normenwerke.

Fertigkeiten:
Lesen und Erstellen mittelschwerer technischer Zeichnungen, Anfertigung von Handskizzen und perspektivischen Darstellungen.
Geschultes dreidimensionales Vorstellungsvermögen.
Überschlägige Festigkeitsrechnung für einfache Belastungsfälle, vertiefte Beherrschung der Balkenbiegung.
Fähigkeit zur Auswahl des geeigneten Konstruktionswerkstoffs.

Kompetenzen:

Die Studierenden können einfache mechanische Bauteile z.B. für Anlagen der Mikrotechnik konstruieren.
Die Studierenden verstehen, dass nichts „ganz genau“ hergestellt werden kann, wie sich die unvermeidlichen Toleranzen auswirken und wie eng man deren Grenzen unter wirtschaftlichen Gesichtspunkten setzen kann.
Die Studierenden kennen die Grenzen der Festigkeitsrechnung, die aufgrund der zahlreichen mehr oder weniger gut erfüllten Annahmen gesetzt sind.

Lehrmedien
Tafel, Notebook, Beamer

Literatur

- Hoischen/Hesser: Technisches Zeichnen, Cornelsen
- Böttcher/Forberg: Technisches Zeichnen, Vieweg-Teubner
- Labisch/Weber: Technisches Zeichnen, Vieweg-Teubner
- Krause: Grundlagen der Konstruktion, Hanser
- Conrad u.a.: Taschenbuch der Konstruktionstechnik, Fachbuchverlag Leipzig
- Kurz/Hintzen/Laufenberg: Konstruieren, Gestalten, Entwerfen, Vieweg
- Geupel: Konstruktionslehre, Springer
- Assmann/Selke: Technische Mechanik 2: Festigkeitslehre, Oldenbourg
- Schnell/Gross/Hauger: Technische Mechanik 2: Elastostatik, Springer
- Jacobs: Werkstoffkunde, Vogel Fachbuch Verlag Ilschner/Singer: Werkstoffwissenschaften und Fertigungstechnik, Springer

Weitere Informationen zur Lehrveranstaltung

Je nach den schulischen Vorkenntnissen variiert der individuelle Aufwand für dieses Modul stark.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 3</td>
<td>AC / Nr.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreicher Eintritt in den 2. Studienabschnitt

Empfohlene Vorkenntnisse

Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,

Je nach Partnerhochschule

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematics 3</td>
<td>3 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3.+ 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. In einem der beiden Auslandssemester ist u.a. das Fach Mathematics 3 an der Partnerhochschule zu belegen.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 3</td>
<td>AC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
<th>Prüfungsform je nach Partnerhochschule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zugelassene Hilfsmittel für Leistungsnachweis</td>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischsprachiger Leistungsnachweis</td>
</tr>
<tr>
<td>Prüfungsform je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Mathematics 3

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul wird an einer ausländischen Partnerhochschule der OTH Regensburg erbracht.</td>
</tr>
<tr>
<td>Gesamtarbeitsaufwand in Zeitstunden: je nach internationaler Hochschule</td>
</tr>
<tr>
<td>Die Anrechnung erfolgt an der OTH Regensburg nach abgestimmter Notenumrechnungstabelle.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mess- und Prüftechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratatory Exercises)</td>
<td>MPP / Nr.12</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r	Fakultät
Prof. Dr. Martin Kammler | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Grundlegende Kenntnisse aus der Physik

Inhalte

Siehe Folgeseiten

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseiten

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mess- und Prüftechnik (Engineering Metrology and Test Engineering)</td>
<td>4 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Mess- und Prüftechnik (Laboratory Exercises: Engineering Metrology and Test Engineering)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Mess- und Prüftechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory Exercises)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mess- und Prüftechnik (Engineering Metrology and Test Engineering)</td>
<td>MP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. + 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

Inhalte

- Einheiten, SI Einheitensystem
- Messung der elektrischen Parameter Spannung Strom und Widerstand
- Wechselstromkreise und Oszilloskop
- Grundschaltungen mit dem Operationsverstärker
- Fehler bei der Digitalisierung von Spannungsverläufen
- Flip Flops und Zählerschaltungen
- Digital- Analog und Analog- Digital Wandler
- Sensoren und spezielle Messmethoden

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:

- Kenntnisse über Gleichspannungskreise
- Kenntnisse über die Schaltungsböcke eines Oszilloskops und Kompetenz über den Einsatz eines Oszilloskops bei allgemeinen Messaufgaben
- Kenntnisse über ideale Operationsverstärker mit externer Beschaltung
- Kenntnisse über Fehlermöglichkeiten bei der Digitalisierung
- Kenntnisse über Zählerschaltungen und deren zeitliches Verhalten
- Kenntnis der Grundschaltungen von Digital- Analog und Analog- Digital Wandlern
- Kenntnisse über die Anwendung von Sensoren
Kompetenzen:

- Kompetenz zur Messung von Strom und Spannung in einem Gleichstromkreis
- Kompetenz zur Anwendung von Brückenschaltungen
- Kompetenz zur Verwendung komplexer Größen in Wechselspannungskreisen

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- E. Schrüfer, elektrische Messtechnik, Hanser Verlag
- W. D. Cooper, A. D. Helfrick, elektrische Messtechnik, Wiley-VCH Verlag
- W. Schäfer, G. Terlecki, Halbleiterprüfung, Hüthig Verlag
- U. Tietze, Ch. Schenk, Halbleiter Schaltungstechnik, Springer Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Mess- und Prüftechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory Exercises)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Mess- und Prüftechnik (Laboratory Exercises: Engineering Metrology and Test Engineering)</td>
<td>PMP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrauftrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einheiten, SI Einheitensystem</td>
</tr>
<tr>
<td>• Messung der elektrischen Parameter Spannung Strom und Widerstand</td>
</tr>
<tr>
<td>• Wechselstromkreise und Oszilloskop</td>
</tr>
<tr>
<td>• Grundschaltungen mit dem Operationsverstärker</td>
</tr>
<tr>
<td>• Fehler bei der Digitalisierung von Spannungsverläufen</td>
</tr>
<tr>
<td>• Flip Flops und Zählerschaltungen</td>
</tr>
<tr>
<td>• Digital- Analog und Analog- Digital Wandler</td>
</tr>
<tr>
<td>• Sensoren und spezielle Messmethoden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:</td>
</tr>
<tr>
<td>• Kenntnisse über Gleichspannungskreise</td>
</tr>
<tr>
<td>• Kenntnisse über die Schaltungsböcke eines Oszilloskops und Kompetenz über den Einsatz eines Oszilloskops bei allgemeinen Messaufgaben</td>
</tr>
<tr>
<td>• Kenntnisse über ideale Operationsverstärker mit externer Beschaltung</td>
</tr>
<tr>
<td>• Kenntnisse über Fehlermöglichkeiten bei der Digitalisierung</td>
</tr>
<tr>
<td>• Kenntnisse über Zählerschaltungen und deren zeitliches Verhalten</td>
</tr>
<tr>
<td>• Kenntnis der Grundschaltungen von Digital- Analog und Analog- Digital Wandlern</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Name des Moduls: Mess- und Prüftechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory Exercises)

- Kenntnisse über die Anwendung von Sensoren

Fertigkeiten:

- Praktischer Aufbau einfacher Schaltungen
- Praktischer Umgang mit einfachen Bauelementen
- Durchführung elektrischer Messverfahren
- Umgang mit Multimeter, Oszilloskop, Pulsgenerator und rechnerunterstützten Auswerteverfahren

Kompetenzen:

- Kompetenz zur Anwendung von Brückenschaltungen.
- Kompetenz zur Verwendung komplexer Größen in Wechselspannungskreisen.
- Kompetenz zur Messung von Strom und Spannung in einem Gleichstromkreis

Lehrmedien

- Tafel, Notebook, Beamer

Literatur

- E. Schrüfer, elektrische Messtechnik, Hanser Verlag
- W. D. Cooper, A. D. Helfrick, elektrische Messtechnik, Wiley-VCH Verlag
- W. Schäfer, G. Terlecki, Halbleiterprüfung, Hüthig Verlag
- U. Tietze, Ch. Schenk, Halbleiter Schaltungstechnik, Springer Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Mikroelektroniktechnologie mit Praktikum (Microelectronics Technology with Laboratory Exercises)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikroelektroniktechnologie mit Praktikum (Microelectronics Technology with Laboratory Exercises)</td>
<td>MEP / Nr.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.+ 4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>9</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Module: Technische Physik 1 (Modul Nr. 4), Mathematik 1 (Modul Nr. 3), Werkstoffe 1 (Modul Nr. 6), Elektronische Bauelemente (Modul Nr. 8)

Empfohlene Vorkenntnisse

Mechanik, Elektrostatik, Thermodynamik, chemische Bindungen, Radikale, elektronische Bauelemente, Halbleiterphysik und physikalischen Funktionsprinzipien von FETs

Inhalte

Siehe Folgeseiten

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseiten

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mikroelektroniktechnologie (Microelectronics Technology)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Mikroelektroniktechnologie (Laboratory Exercises: Microelectronics Technology)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikroelektroniktechnologie (Microelectronics Technology)</td>
<td>ME</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit 10 – 15% Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. + 4.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

- Hintergründe und zeitliche Entwicklung der Halbleitertechnologie
- Technologieknoten, Skalierungsfaktor und Roadmap
- Halbleitertechnologische Grundlagen: Dotierung von Halbleitern, Ladungsträgerdichte und Fermi-Niveau; Der spezifischer Widerstand und der Schichtwiderstand
- Grundmaterial: Kristallstruktur und Kristalldefekte; Herstellung von Einkristallen und Wafern; Spezialwafer und Nomenklatur
- Thermische Oxidation: Modell nach Deal und Grove, Experimentelle Bestimmung der Parameter, Temperaturabhängigkeit der Oxidationsparameter; Weitere Einflüsse auf die Wachstumsrate, Segregation, Reaktortypen (Ofentechnik), Dünne Oxide
- Lithographie
- Fotolack / Photoresist, Resistprofil: Prozessablauf; Belichtungsverfahren
- Ätztechnik: Grundlagen, Plasmaätzen, Chemisches Ätzen
- Diffusion: Belegung und Eindiffusion, Atomistisches Modell und die Diffusionsgleichung, Diffusion bei konstanter Oberflächenkonzentration, Thermische Eindiffusion (konstante Dosis)
- Implantation: Grundlagen der Ionenimplantation, Implantertypen, Implantationsschäden, Strukturierung / Maskierung und Defekte
- Chemische Abscheidung aus der Gasphase: Grundlagen, CVD-Reaktortypen und CVD-Prozesse, Atomic Layer Deposition (ALD)
- Physikalische Abscheidung aus der Gasphase (PVD): Hochvakuum, Aufdampfen, Sputtern
- Chemisch Mechanisches Polieren (CMP): CMP-Prozessierung, Reinigung post CMP und Defekte post CMP
- Metallisierung: Silicide, Aluminium (Al), Kupfer (Cu), Dual-Damascene-Prozess
- CMOS-Gesamtprozess: SOI + STI + Cu-Technologie
- Fertigung und Yield

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Kenntnisse gängiger und progressiver Technologieprozesse auf Waferebene zur Herstellung integrierter mikroelektronischer Schaltungen
- Verständnis der physikalisch-chemischen Vorgänge bei den Einzelprozessen
- Kenntnis wichtiger Prozessparameter
- Überblick über aktuelle CMOS-Gesamtprozesse
- Kenntnisse von Messmethoden zur Charakterisierung mikroelektronischer Schaltungen und in der Prozesskontrolle

Fertigkeiten:
- Auswahl geeigneter Technologieprozesse für die Herstellung mikroelektronischer Strukturen
- Fähigkeit wichtige Prozessparameter zu berechnen oder abzuschätzen

Kompetenzen:
- Fähigkeit Technologieprozesse im Gesamtprozess zu verstehen und wichtige Parameter abzuleiten
- Fähigkeit Technologieprozessen auf neuartige Produkte zu adaptieren
Angebotene Lehrunterlagen

Skript zur Vorlesung Mikroelektroniktechnologie

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Münch W.: Einführung in die Halbleitertechnologie, Teubner Verlag, Stuttgart, 1993
- Xiao H.: Introduction to Semiconductor Manufacturing Technology
- Sze S.M.: VLSI Technology, McGraw Hill
- Sze S.M.: Physics of Semiconductor Devices, J.Wiley&Sons

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Mikroelektroniktechnologie mit Praktikum (Microelectronics Technology with Laboratory Exercises)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Mikroelektroniktechnologie (Laboratory Exercises: Microelectronics Technology)</td>
<td>PME</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform: Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Durchführung von 5 Versuchen aus folgendem Katalog:
- Optische Mikroskopie
- CV-Analyse
- MOSFET-Parameter
- Ellipsometrie
- Schichtwiderstand
- Weißlichtinterferenz
- Solarzellenkennlinien

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Kenntnisse von Messmethoden zur Charakterisierung mikroelektronischer Schaltungen und Halbleiterstrukturen sowie in der Prozesskontrolle

Fertigkeiten:
- Anwendung von theoretischen Kenntnissen anhand experimenteller Untersuchungen
- Praktische Fertigkeiten in ausgewählten Messmethoden

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg
Seite 167
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Mikroelektroniktechnologie mit Praktikum (Microelectronics Technology with Laboratory Exercises)

- Auswertung und Deutung von Messergebnissen
- Fachgerechte Anfertigung von Versuchsberichten
- Fähigkeit zur grafischen Darstellung und statistischen Beurteilung von Messwerten

Kompetenzen:

- Durchführung von Messungen, Beurteilung von Messergebnissen
- Teamarbeit

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript zur Vorlesung Mikroelektroniktechnologie</td>
</tr>
<tr>
<td>Anleitungen zum Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anleitungen zum Praktikum und dort enthaltende Literaturhinweise</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Optoelectronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul-KzBez. oder Nr.</td>
<td>SO / Nr.25</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
</tr>
<tr>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

Studiensemester

<table>
<thead>
<tr>
<th>gemäß Studienplan</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Engineering Mathematics, Physics, Material Science, Electronic Properties of Solids (Solid State Physics)

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Optoelectronics</td>
<td>8 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Optoelectronics

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optoelectronics</td>
<td>S0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminartischer Unterricht mit ca. 20% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>8 SWS</td>
<td>englisch</td>
<td>8 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>80h</td>
<td>80h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle
Inhalte

Part I: Fundamentals
1. Light waves (Propagation of Light)
 1.1. Ray Tracing
 1.2. Light waves
 1.3. Maxwell-Theory of EM-waves
 1.4. Dielectric waveguides
2. Photons (Emission and Detection of Light)
 2.1. Discrepancies between Maxwell’s Theory and Experiments
 2.2. Light as a particle (Photon), Light-Particle dualism
 2.3. Emission and absorption of light
 2.4. Illumination and color perception
 2.5. Optical gain and laser radiation
3. Opto-Semiconductors
 3.1. Energy band model; direct and indirect semiconductors
 3.2. Undoped and doped opto-Semiconductors
 3.3. Semiconductor diode theory
 3.4. Heterostructures / Technology of III-V-semiconductors

Part II: Devices and Applications
4. LED’s
 4.1. Excess recombination
 4.2. Electro-optical characteristics
 4.3. Radiative and non-radiative recombination
 4.4. Measures for increasing efficiency
 4.5. Emission spectrum
 4.6. Modulation behavior
5. Optical Amplification and Semiconductor Lasers
 5.1. First Laser condition (inversion condition)
 5.2. Second laser condition (optical gain)
 5.3. Technical realization of inversion
 5.4. Electro-optical characteristic in cw-mode
 5.5. Emission spectrum
 5.6. Wavelength tunable lasers
 5.7. Modulation behavior
6. Photodetectors, solar cells and semiconductor optical modulators
 6.1. Internal photoeffect
 6.2. Electrical characteristics of illuminated pn-junctions („photo elements“)
 6.3. Solar cells
 6.4. Pin-photo diodes
 6.5. Electro-optic modulators

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Knowledge:
- The students shall learn to know the fundamentals, the design, the technology and the operation of optoelectronic materials and modern optoelectronic devices (e.g. LED, Semiconductor Lasers, integrated optoelectronic circuits and photo-detectors).
Skills:

- Based on this knowledge they should be able to read scientific publications in this field and to understand the design, the fabrication process and the operation of optoelectronic devices.

Competences:

- The students should be able to design parts of optoelectronic components and structures by themselves. The students should be able to select and to choose suitable optoelectronic components for specific engineering applications. They should be able to join in and work together with an interdisciplinary team of physicists, chemists and engineers for the fabrication of modern optoelectronic devices.

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- S.M. Sze, K.K. Ng „Physics of Semiconductor Devices (3rd Ed.): Chapter 1, Chapter, Chapter 12 and Chapter 13“, Wiley, 2007

Weitere Informationen zur Lehrveranstaltung

Lehrveranstaltung und Prüfung in englischer Sprache. Lecture and Exam in english.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Packaging | PA/ Nr.17

Modulverantwortliche/r	Fakultät
Prof. Dr. Rupert Schreiner | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreicher Eintritt in den 2. Studienabschnitt

Empfohlene Vorkenntnisse

Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Packaging</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3. + 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. Im Auslandssemester (4.) ist u.a. das Fach Packaging an der Partnerhochschule zu belegen.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging</td>
<td>PA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsentstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung

- Englischsprachiger Leistungsnachweis
- Prüfungsform je nach Partnerhochschule

Zugelassene Hilfsmittel für Leistungsnachweis

- Je nach Partnerhochschule

Inhalte

- Je nach Partnerhochschule

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Angebotene Lehrunterlagen

- Je nach Partnerhochschule

Lehrmedien

- Je nach Partnerhochschule

Literatur

- Je nach Partnerhochschule
Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)	**Modul-KzBez. oder Nr.**
Packaging (Electronics Packaging) | PA / Nr.16

Modulverantwortliche/r	**Fakultät**
Prof. Dr. Thomas Peterreins | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Technische Physik 1 (Modul Nr. 4), Technische Physik 2 mit Praktikum (Modul Nr. 10), Allgemeine und Anorganische Chemie mit Praktikum (Modul Nr. 2), Werkstoffe 1 (Modul Nr. 6), Mathematik 1+2 (Module Nr. 3 +7)

Inhalte

Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,

Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Packaging (Electronics Packaging)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Modulname</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging (Electronics Packaging)</td>
<td>PA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

1. Aufgaben des Packaging
2. Tendenzen im Packaging: Rent’s Rule, Wafer Level Packaging, Chip Size Packaging, Stacking
3. Materialien im Packaging
 3.1. Kunststoffe, Keramik, Gläser und Metalle im Packaging
 3.2. Materialdaten: thermischer Ausdehnungskoeffizient, Glasübergangstemperatur, Wärmeleitfähigkeit, Dielektrizitätskonstante, Hochfrequenzverluste
4. Einblick in die Fügetechnik
 4.1. Kleben: Klebstoffe, Verfahren, Regeln für gute Klebung
 4.2. Löten: Lote, Verfahren, Regeln für gutes Löten
 4.3. Andere Fügetechniken: Schweißen, Stecken, Klemmen usw.
5. Prozesse im Packaging:
 5.1. Preassembly: Abdünnen und Vereinzeln (Thinning and Dicing)
 5.2. Mechanische Befestigung: Die Bonding (Kleben, Löten)
 5.3. Elektrische Kontaktierung
 5.3.1. Wire bonding
 5.3.2. Flip Chip
 5.3.3. Alternativen
 5.4. Gehäusetecnologien
 5.4.1. Molden von Plastic Packages
 5.4.2. Genormte Gehäuseformen
 5.4.3. Keramische und metallische Gehäuse, Siebdruck
5.5. Montage auf Leiterplatten
6. Ausfallursachen von Packages, Prüf- und Testverfahren
9. Exkursionen, Vorträge externer Referenten und/oder internes Seminar

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

Fertigkeiten:
- Thermische Berechnungen für eindimensionale Geometrie im stationären Zustand.
- Umgang mit hochfrequenztechnischen Größen.

Kompetenzen:
- Die Studierenden erkennen, wie Back End und Wafer Processing („Front End“) bei modernen Bauelementen verzahnt sind.
Sie können ein Package im Hinblick auf Funktion, Kosten, Zuverlässigkeit und Zukunftstauglichkeit in den Grundzügen beurteilen.

Angebotene Lehrunterlagen

Skript

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Ergänzend zum Skript wird folgende Literatur empfohlen:
- Globisch u.a., Lehrbuch Mikrotechnologie, Hanser
- Tummala/Rymaszewski/Klopfenstein, Microelectronics Packaging Handbook, Academic Publishing
- Hacke, Montage integrierter Schaltungen, Springer
- Hanke/Scheel u.a., Baugruppentechnologie der Elektronik, Verlag Technik
- Habenicht, Kleben – erfolgreich und fehlerfrei, Vieweg+Teubner
- Bliedtner/Gräfe, Optiktechnologie, Fachbuchverlag Leipzig und Hanser
- Detlefsen/Siart, Hochfrequenztechnik, Oldenbourg
- Infineon Technologies, Halbleiter
- Herwig/Moschalski, Wärmeübertragung, Vieweg

Weitere Informationen zur Lehrveranstaltung

Exkursionen, Vorträge externer Referenten/innen und/oder internes Seminar

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Photonics and Laser Technology

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photonics and Laser Technology</td>
<td>PL / Nr.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Physic lectures (TP1, TP2)</td>
</tr>
<tr>
<td>Electro-dynamics, Maxwell equations, Planck black body radiation</td>
</tr>
<tr>
<td>Basic facts of solid state physics</td>
</tr>
<tr>
<td>Linear algebra, matrix and vector calculus</td>
</tr>
<tr>
<td>Technical Optics (TO)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite</td>
</tr>
</tbody>
</table>

| Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden |

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Seite 180
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Photonics and Laser Technology

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photonics and Laser</td>
<td>PL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

1. **Characterization of light**
 - Temporal and spatial coherence
 - Photon statistic and blackbody radiator, Planck’s law
 - Sources of radiation

2. **Interaction of electromagnetic waves with atomic systems**
 - Radiation field
 - Emission and absorption of electromagnetic radiation, Spontaneous and induced emission
 - Two level system, thermal equilibrium
 - Population density balance

3. **Spectral lines and line shape**
 - Spectral line broadening

4. **Physical elements of lasers**
 - Storage of light: Resonator types and their geometry
 - Losses in resonators, optical resonators modes
 - Wavelength and mode selection, principle of Quality switching

5. **The laser principle**
 - Creation of a population inversion, three and four level system,
 - amplification of light and feedback, theoretical efficiency of lasers,
 - threshold condition, bandwidth and mode spectrum, dynamics of laser systems

6. **Beam propagation**
 - The Gauss beam
 - Focussing of laser beams
 - Atmospheric transmission and turbulence

7. **Example of real laser systems**
 - Gas Lasers: CO2 laser, Excimer laser, HeNe laser, Ar-Ion laser
 - Diode lasers
 - Solid state laser: NdYag laser, ErYag laser ...
 - Diode pumped solid state lasers
 - Dye lasers

8. **Technical aspects of optical elements used in lasers**
 - Metal mirrors versus dielectric mirrors, Brewster – plates, Electro-optical active elements,
 - Pockels- and Kerr cell, Polarizers, Beam steering elements – Laser optics
 - Technical aspects of Q-switch,
 - Short pulse creation: ps- and fs-lasers

9. **Laser beam material interaction**
• Dielectric function, Absorption and reflection, Plasma formation, Pl. frequency ...

10. Micro machining with lasers

11. Lasers for measuring

• Distance measurement, interferometry, ...

12. Other applications

• Medical appl., CD player, laser gyro, ...

13. Eye Safety – Laser hazards

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Knowledge, Skills, Competences:

• Understanding basic physics and theory of laser operation.
• Students have knowledge of technical elements of lasers
• Laserbeam propagation
• Overview over most popular lasers and their application
• Basic physics of Laser material interaction
• Laser applications in machining, medicine and measurement
• Understanding the hazard of laser operation
• After the course, the attendant should be able to design a laser system and perform all necessary basic calculations for it, e.g. performance data like divergence, output power estimation, Gauß beam characterization, resonator layout ...
• They have gained the ability to choose an adequate lasersystem for a specific material processing task.
• The have the responsibility in handling laser hazard and maintain eye safety
• The participants will learn the tools to design a laser system.
• Ability to calculate and design an optical resonator and predict the laser beam properties.
• Insight in the basic physics of light interaction with matter.
• Understanding the functionality and the elements of laser systems.
• Discrimination of the properties of different laser systems and choosing the right system for applications like sensing and material processing.

Lehrmedien

Tafel, Notebook, Beamer
Literatur

1. Literature for laser basics:
 - N. Hodgeson, H. Weber: „Optische Resonatoren“ Springer Verlag

Special lasers:
 - W. J. Witteman: “The CO2 Laser”, Springer Verlag

2. Laser material interaction
 - P. Gibbon: Short Pulse Laser Interactions with Matter, Imperial College Press, 2005

3. Optics
 This is the standard reference for classical optics. It should be a part of every optics library. Although it does not deal with computer algorithms or numerical analysis, it covers most of the optical principles used in

4. Nonlinear optics:
 - P.N. Butcher, D. Cotter: The Elements of Nonlinear Optics, Wiley, 1984
 - M. Schubert, B. Wilhelmi: Nonlinear Optics and Quantum Electronics, Wiley 1986

Weitere Informationen zur Lehrveranstaltung

Laborvorführungen und Experimente
„Kleines Laserpraktikum“ im Labor ist geplant

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und verwenden

Stand: 23. 03. 2021
<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreicher Eintritt in den 2. Studienabschnitt

Empfohlene Vorkenntnisse

Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Physical Optics</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3. + 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. Im Auslandssemester (4.) ist u.a. das Fach *Physical Optics* an der Partnerhochschule zu belegen.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Optics</td>
<td>PO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>4 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung

Englischsprachiger Leistungsnachweis
Prüfungsform je nach Partnerhochschule

Zugelassene Hilfsmittel für Leistungsnachweis
Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Angebotene Lehrunterlagen
Je nach Partnerhochschule

Lehrmedien
Je nach Partnerhochschule

Literatur
Je nach Partnerhochschule

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Seite 186
Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Physikalische Chemie mit Praktikum (Physical Chemistry with Laboratory Exercises)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Physikalische Chemie mit Praktikum (Physical Chemistry with Laboratory Exercises) | PCP / Nr.23

Modulverantwortliche/r	Fakultät
Prof. Dr. Alfred Lechner | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td></td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Allgemeine und Anorganische Chemie (Modul Nr. 2), Werkstoffe 1 (Modul Nr. 6)

Inhalte

Siehe Folgeseiten

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Seminaristischer Unterricht:

Praktikum:

Im Praktikum erwerben die Studierenden Fertigkeiten und Kompetenzen, um Problemstellungen mit Hilfe praktischer Versuche auf dem Gebiet der thermodynamischen und kinetischen Halbleiterprozesse eigenständig zu lösen. Des Weiteren können sie spektroskopische Verfahren in der Halbleitertechnik anwenden und interpretieren.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Physikalische Chemie mit Praktikum (Physical Chemistry with Laboratory Exercises)

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Physikalische Chemie (Physical Chemistry)</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Praktikum Physikalische Chemie (Laboratory Exercises: Physical Chemistry)</td>
<td>1 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physikalische Chemie (Physical Chemistry)</td>
<td>PC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Gasgesetze
- Ideales Gas
- Reales Gas

Thermodynamik
- 1. Hauptsatz
- Volumenarbeit
- Isotherme, Isobare, Isochore, adiabatische Prozesse
- Thermochemie
- Reaktionsenergien, Reaktionsenthalpien
- 2. Hauptsatz und 3. Hauptsatz
- Entropie * Gebundene Energie
- Freie Reaktionsenergie und Reaktionsenthalpie

Reaktionskinetik
- verschiedene Reaktionsordnungen
- Aktivierungsenergie
- kinetisch und diffusionskontrollierte Prozesse

Wechselwirkung zwischen Strahlung und Materie
- Lambert - Beer
- Mikrowellen - Spektroskopie
- Infrarot - Spektroskopie
- UV-Vis-Spektroskopie
- kinetisch und diffusionskontrollierte Prozesse

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Die Studierenden verfügen über thermodynamische, kinetische und spektroskopische Kenntnisse: Sie kennen die thermodynamischen Hauptsätze, verfügen über Kenntnisse in der Thermochemie und kennen Reaktionskinetiken verschiedener Ordnungen und die daraus resultierenden Aktivierungsenergien.

Kompetenzen:
- Kompetenz zur Quantitativen und Qualitativen Bestimmung von Stoffen mittels wichtiger analytische Geräte
- Kompetenz zur Bestimmung und Berechnung von thermodynamischen Größen wie Reaktionswärme, freien Reaktionsenthalpien und Gleichgewichtskonstanten

Lehrmedien
- Tafel, Notebook, Beamer
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Physikalische Chemie mit Praktikum (Physical Chemistry with Laboratory Exercises)

Literatur
- Gordon M. Barrow, Physikalische Chemie Verlag Vieweg und Verlag Bohman
- Peter W. Atkins, Physikalische Chemie Verlag Wiley-VCH

Weitere Informationen zur Lehrveranstaltung
Die Vorlesung wird von einem Praktikum und Übungen begleitet.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Physikalische Chemie mit Praktikum (Physical Chemistry with Laboratory Exercises)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Physikalische Chemie (Laboratory Exercises: Physical Chemistry)</td>
<td>PPC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>1 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>15h</td>
<td>45h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Reaktionsenthalpie-Bestimmung beim Zersetzen von Wasserstoffperoxid
- Bestimmung der Verbrennungsenthalpie von Ethanol mittels Kalorimetrie
- Bestimmung der Geschwindigkeitskonstanten beim Verseifen Benzoesäureylester
- Bestimmung der Aktivierungsenergie bei der Ätzung von Glas mit Flusssäure

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Die Studierenden kennen die Wechselwirkung von Strahlung und Materie.
- Sie kennen die thermodynamischen Hauptsätze und die Thermochemie.
- Sie kennen den Aufbau von Batterien.
- Sie verfügen über Kenntnisse der Reaktionskinetiken sowie der daraus resultierenden Aktivierungsgenergien.

Fertigkeiten:
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Physikalische Chemie mit Praktikum (Physical Chemistry with Laboratory Exercises)

- Im Praktikum erlangen die Studierenden die Fertigkeiten, Problemstellungen mit Hilfe praktischer Versuche auf dem Gebiet der thermodynamischen und kinetischen Halbleiterprozesse eigenständig lösen zu können.
- Sie können spektroskopische Verfahren in der Halbleitertechnik anwenden und interpretieren.

Kompetenzen:

- Sie verfügen über die Kompetenz zur Bestimmung und Berechnung von thermodynamischen Größen wie Reaktionswärme, freien Reaktionsenthalpien und Gleichgewichtskonstanten.
- Sie sind in der Lage Spannungen mit Hilfe von Nernst-Gleichungen zu berechnen.
- Sie haben die Kompetenz zur quantitativen und qualitativen Bestimmung von Stoffen mittels wichtiger analytischer Geräte.
- Kompetenz zur Berechnung von Reaktionsordnungen, Reaktionsarten und Reaktionskonstanten und Aktivierungsenergien.

Angebotene Lehrunterlagen
Skript

Lehrmedien

Literatur
- Gordon M. Barrow, Physikalische Chemie Verlag Vieweg und Verlag Bohman
- Peter W. Atkins, Physikalische Chemie Verlag Wiley-VCH

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Physikalische Technologien (Technological Physics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physikalische Technologien (Technological Physics)</td>
<td>PT / Nr.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. und 7.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse

Mathematik 1+2 (Module Nr. 3+7), Technische Physik 1+2 (Module Nr. 4+10) und Werkstoffe 1 (Modul Nr. 6)

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Laser und Optoelektronik (Laser Technology and Optoelectronics)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Mikromechanik (Micromachining)</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Physikalische Technologien (Technological Physics)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser und Optoelektronik (Laser Technology and Optoelectronics)</td>
<td>LO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehramtungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagen der Optik (Strahlenoptik, Wellenmodell, Gauß-Strahlen)</td>
</tr>
<tr>
<td>• Detektion und Erzeugung von Licht</td>
</tr>
<tr>
<td>• Design & Herstellung optoelektronischer Bauelemente</td>
</tr>
<tr>
<td>• Bauformen, Eigenschaften und Anwendungen verschiedener Lasertypen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

<table>
<thead>
<tr>
<th>Kenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kenntnis der grundlegenden Eigenschaften verschiedener Lasertypen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertigkeiten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fähigkeit zur Analyse & Design optischer Aufbauten</td>
</tr>
<tr>
<td>• Fähigkeit, Schaltungen mit optoelektronischen Bauelementen zu analysieren und zu entwerfen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundverständnis der Funktionsweise und Herstellungsverfahren optoelektronischer Bauelemente</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg Seite 196
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)
Modulname:
Physikalische Technologien (Technological Physics)

- Kompetenz zur Auswahl geeigneter Laser für konkrete Anwendung

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meschede: "Optik, Licht und Laser", Vieweg+Teubner Ver., 3. Auflage</td>
</tr>
<tr>
<td>Schubert: "Light, Emitting Diodes", Cambr. Univ. Press, 2005</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Seite 197
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikromechanik (Micromachining)</td>
<td>MN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit ca. 20% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>120h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle
Inhalte

Kontinuumsmechanik
1. Elastizität
 1.1 Isotrope Festkörper
 1.1.1 Mechanische Spannungen
 1.1.2 Deformationen
 1.2 Anisotrope Festkörper
 1.2.1 Aufbau von Kristallen
 1.2.2 Deformationen
2. Effekte zur mechanisch-elektrischen Signalwandlung
 2.1 Piezoelektrischer Effekt
 2.1.1 Piezoelektrische Materialien
 2.1.2 Mathematische Beschreibung
 2.2 Piezoresistiver Effekt
 2.2.1 Isotrope Festkörper
 2.2.2 Anisotrope Festkörper
3. Analytische Näherungslösungen der Elastizitätstheorie für spezielle Fälle
 3.1. Methode zur Bestimmung der mechanischen Verspannung einer dünnen Schicht auf einem runden Substrat
 3.2. Verformung einer isotropen rechteckigen dünnen Platte
 3.2.1 Allseitig eingespannte dünne Platte (Membran)
 3.2.2 Einseitig eingespannte dünne Platte (Biegebalken)

Einführung in die Mikrotechnologie mit Silizium und III-V-Halbleitern
1. Werkstoffe in der Mikrotechnologie
 1.1 Werkstofftypen
 1.2 Technologien
 1.3 Einfluss des Kristallaufbaus auf die Strukturierungsmöglichkeiten
2. Anisotropes nasschemisches Ätzen von Silizium und III-V-Halbleitern
 2.1 Anisotrope Nassätzlösungen
 2.2 Konzentrations- und Temperaturabhängigkeit
 2.3 Lage von Kristallebenen relativ zur Waferoberfläche
 2.4 Kantenätzraten auf Waferoberflächen
 2.5 Ätzgeometrien bei vorgegebenen Ätzmaskengeometrien
 2.6 Ätzgeometrien für lochartige Strukturen nach langer Ätzzeit
 2.7 Kompensationsstrukturen zum Schutz konvexer Ecken
 2.8 Ätzstoppschichten
3. Trockenätzverfahren
 3.1 Funktionsweise
 3.2. Mittlere freie Weglänge
 3.3 Anisotropie und Selektivität
 3.4 Plasma- und Barrelätzen
 3.5 Sputter- und Ionenstrahlaufstäuben
 3.6 RIBE und CAIBE
 3.7 Reaktives Ionenätzen (RIE)
 3.8 DRIE
 3.9 Erhöhung der Anisotropie durch Seitenwandpassivierung
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:
- Kenntnis der grundlegenden mechanisch/physikalischen Eigenschaften von Si und III/V-HL

Fertigkeiten:
- Anwendung dieser Kenntnisse für das Design und die Herstellung halbleiterbasierter Mikrosysteme, Bauelemente und Mikrostrukturen
- Theoretisches Hintergrundwissen dahingehend anwenden können, um die Strukturen in der Praxis zu realisieren

Kompetenzen:
- Selbstständige Dimensionierung und Entwurf von Mikrostrukturen für Anwendungen in der Halbleitertechnologie. Selbständiges Entwerfen von Prozessabläufen zur Herstellung der Strukturen und Bauelemente.

Lehrmedien

- Tafel, Notebook, Beamer

Literatur

- Gerlach G., Dötzel W.: Einführung in die Mikrosystemtechnik, Hanser, 2006 (sehr knapp aber umfassend, viele Anwendungen, ausführliche Herleitungen zur Kontinuumsmechanik (Tensorrechnung) im Anhang)

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Mathematik 1+2 (Module Nr. 3+7) Technische Physik 1+2 (Module Nr. 4+10) und Werkstoffe 1 (Modul Nr. 6)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Prüf- und Messtechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory Exercises) | PMP / Nr.23

Modulverantwortliche/r	Fakultät
Prof. Dr. Martin Kammler | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Grundlegende Kenntnisse aus der Physik

Inhalte
Siehe Folgeseiten

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseiten

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Prüf- und Messtechnik (Laboratory Exercises: Engineering Metrology and Test Engineering)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Prüf- und Messtechnik (Engineering Metrology and Test Engineering)</td>
<td>4 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Prüf- und Messtechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory Exercises)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Prüf- und Messtechnik (Laboratory Exercises: Engineering Metrology and Test Engineering)</td>
<td>PMP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform: Praktikum

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeit- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einheiten, SI Einheitensystem</td>
</tr>
<tr>
<td>• Messung der elektrischen Parameter Spannung Strom und Widerstand</td>
</tr>
<tr>
<td>• Wechselstromkreise und Oszilloskop</td>
</tr>
<tr>
<td>• Grundschaltungen mit dem Operationsverstärker</td>
</tr>
<tr>
<td>• Fehler bei der Digitalisierung von Spannungsverläufen</td>
</tr>
<tr>
<td>• Flip Flops und Zählerschaltungen</td>
</tr>
<tr>
<td>• Digital- Analog und Analog- Digital Wandler</td>
</tr>
<tr>
<td>• Sensoren und spezielle Messmethoden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:</td>
</tr>
<tr>
<td>• Kenntnisse über Gleichspannungskreise</td>
</tr>
<tr>
<td>• Kenntnisse über die Schaltungsböcke eines Oszilloskops und Kompetenz über den Einsatz eines Oszilloskops bei allgemeinen Messaufgaben</td>
</tr>
<tr>
<td>• Kenntnisse über ideale Operationsverstärker mit externer Beschaltung</td>
</tr>
<tr>
<td>• Kenntnisse über Fehlermöglichkeiten bei der Digitalisierung</td>
</tr>
<tr>
<td>• Kenntnisse über Zählerschaltungen und deren zeitliches Verhalten</td>
</tr>
<tr>
<td>• Kenntnis der Grundschaltungen von Digital- Analog und Analog- Digital Wandlern</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Seite 202
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Prüf- und Messtechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory Exercises)

- Kenntnisse über die Anwendung von Sensoren

Fertigkeiten:

- Praktischer Aufbau einfacher Schaltungen
- Praktischer Umgang mit einfachen Bauelementen
- Durchführung elektrischer Messverfahren
- Umgang mit Multimeter, Oszilloskop, Pulsgenerator und rechnerunterstützten Auswerteverfahren

Kompetenzen:

- Kompetenz zur Anwendung von Brückenschaltungen.
- Kompetenz zur Verwendung komplexer Größen in Wechselspannungskreisen.
- Kompetenz zur Messung von Strom und Spannung in einem Gleichstromkreis

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- E. Schrüfer, elektrische Messtechnik, Hanser Verlag
- W. D. Cooper, A. D. Helfrick, elektrische Messtechnik, Wiley- VCH Verlag
- W. Schäfer, G. Terlecki, Halbleiterprüfung, Hüthig Verlag
- U. Tietze, Ch. Schenk, Halbleiter Schaltungstechnik, Springer Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveautufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Prüf- und Messtechnik mit Praktikum (Engineering Metrology and Test Engineering with Laboratory Exercises)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüf- und Messtechnik (Engineering Metrology and Test Engineering)</td>
<td>PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Kammler</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. + 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

Inhalte
- Einheiten, SI Einheitensystem
- Messung der elektrischen Parameter Spannung Strom und Widerstand
- Wechselstromkreise und Oszilloskop
- Grundschaltungen mit dem Operationsverstärker
- Fehler bei der Digitalisierung von Spannungsverläufen
- Flip Flops und Zählerschaltungen
- Digital- Analog und Analog- Digital Wandler
- Sensoren und spezielle Messmethoden

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Kenntnisse über Gleichspannungskreise
- Kenntnisse über die Schaltungsböcke eines Oszilloskops und Kompetenz über den Einsatz eines Oszilloskops bei allgemeinen Messaufgaben
- Kenntnisse über ideale Operationsverstärker mit externer Beschaltung
- Kenntnisse über Fehlermöglichkeiten bei der Digitalisierung
- Kenntnisse über Zählerschaltungen und deren zeitliches Verhalten
- Kenntnis der Grundschaltungen von Digital- Analog und Analog- Digital Wandlern

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg Seite 204
- Kenntnisse über die Anwendung von Sensoren

Fertigkeiten:

- Praktischer Aufbau einfacher Schaltungen
- Praktischer Umgang mit einfachen Bauelementen
- Durchführung elektrischer Messverfahren
- Umgang mit Multimeter, Oszilloskop, Pulsgenerator und rechnerunterstützten Auswerteverfahren

Kompetenzen:

- Kompetenz zur Messung von Strom und Spannung in einem Gleichstromkreis
- Kompetenz zur Anwendung von Brückenschaltungen
- Kompetenz zur Verwendung komplexer Größen in Wechselspannungskreisen

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- E. Schrüfer, elektrische Messtechnik, Hanser Verlag
- W. D. Cooper, A. D. Helfrick, elektrische Messtechnik, Wiley- VCH Verlag
- W. Schäfer, G. Terlecki, Halbleiterprüfung, Hüthig Verlag
- U. Tietze, Ch. Schenk, Halbleiter Schaltungstechnik, Springer Verlag

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Qualitätsmanagement (Quality Management)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitätsmanagement (Quality Management)</td>
<td>QM / Nr.18</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
Dr. Martin Winkler (LB)
Fakultät: Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Sprachliche Kompetenz in Wort und Schrift, Praxiserfahrung (zumindest aus dem praktischen Studiensemester), Grundkenntnisse der Statistik und der Betriebswirtschaft.

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,
Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Qualitätsmanagement (Quality Management)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Qualitätsmanagement (Quality Management)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitätsmanagement (Quality Management)</td>
<td>QM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Martin Winkler (LB)</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Martin Winkler (LB)</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Gruppenübungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Grundlagen und Begriffe:
Qualität, Qualitätsmanagement, Managementsystem, Prozessorientierung

Werkzeuge und Methoden:
Statistische Methoden, Failure Modes and Effects Analysis (FMEA), Verbesserungs- und Problemlösungstechniken (KVP, PDCA, 8D, Poka Yoke, Ishikawa, 5 why, DMAIC / Six Sigma), Teamorientierte Arbeitstechniken, Kommunikation und Information (u.a. 4 Seiten einer Nachricht, Feedback geben)

Management-Systeme:

Umfassendes Qualitätsmanagement (TQM – Total Quality Management):
Grundlagen und Geschichte von TQM, Zielsetzung von TQM, Modelle zur Umsetzung und Bewertung von TQM-Systemen: Deming (Japan), Malcolm Baldridge (USA), EFQM (Europa), Vorgehen bei der Selbstbewertung, CMMI.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
Die Teilnehmer/innen kennen die grundlegenden Begriffe und wichtigsten Methoden des Qualitätsmanagements unter besonderer Berücksichtigung des ganzheitlichen Ansatzes von Total Quality Management (TQM) und allgemein die Systematik prozessorientierter Managementsysteme.

Fertigkeiten:
• Sie können im betrieblichen Alltag beim Einsatz der wesentlichen QM-Methoden und bei der (Weiter-) Entwicklung eines Qualitäts-Managementsystems mitwirken.

Kompetenzen:
• Die Studierenden verstehen die Notwendigkeit systematischen Qualitätsmanagements und prozessorientierter Managementsysteme.
• Die Basis zur eigenständigen Vertiefung ist vorhanden.

Lehrmedien
Tafel, Notebook, Beamer

Literatur
• Bläsing, Praxishandbuch Qualitätssicherung, Band 2, Baustein F1, Mai 1987
• Crosby, Ph. B., Quality Is Free, New York 1979
• Crosby, Ph. B., Quality Without Tears, New York 1984
• DGQ-Band 13-21, Quality Function Deployment, Beuth Verlag Berlin 2001
• Diemer, R., Memory-Moderation (DGQ-Band 15-51), Beuth Verlag 1996
• Hammer, Michael, Das prozesszentrierte Unternehmen, Campus Verlag
• Hering, E., Triemel, J., Blank, H.-P., Qualitätssicherung für Ingenieure, VDI-Verlag 1993
• Kamiske, G. F., Brauer, J.-P., Qualitätsmanagement von A – Z, 1999
• Pfeifer, T., Qualitätsmanagement, Hanser Verlag München 1993
• Rinne, H.; Mittag H. J., Statistische Methoden der Qualitätssicherung, Hanser Verlag München 1989
• Schmelzer/Sesselmann, Geschäftsprozessmanagement in der Praxis, Hanser Verlag
• Taguchi, Genichi, Einführung in Quality Engineering, 1989, Neuausgabe 2004
• CMMI® für Entwicklung, Version 1.3 (bzw. die jeweils aktuellste Version); SEI-sanctioned GERMAN translation of CMMI-DEV, V1.3 (Internet, kostenloser pdf-download)
• http://www.efqm.de/

Weitere Informationen zur Lehrveranstaltung
Seminaristischer Unterricht mit Gruppenübungen (inkl. häuslicher Vorbereitung)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
### Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Regelungstechnik und Signalverarbeitung (Control Engineering and Signal Processing with Laboratory Exercises) | RSP / Nr.30

Modulverantwortliche/r
- Prof. Dr. Christoph Höller
- Angewandte Natur- und Kulturwissenschaften

### Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7. | 2 | Schwerpunkt Pflichtmodul | 5

Verpflichtende Voraussetzungen
- Keine

Empfohlene Vorkenntnisse
- Mathematik 1 (Modul Nr. 3), Mathematik 2 (Modul Nr 4), Informationsverarbeitung mit Praktikum (Modul Nr.1), Technische Physik 1+2 (Module Nr. 4+10)

Inhalte
- Siehe Folgeseiten

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Regelungstechnik und Signalverarbeitung (Control Engineering and Signal Processing)</td>
<td>6 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regelungstechnik und Signalverarbeitung</td>
<td>RSP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Control Engineering and Signal Processing)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Höller</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Höller</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Analoge Signale und Systeme im Zeitbereich
- Signaleigenschaften und Systemeigenschaften
- Elementaroperationen und Elementarsignale
- Faltung

Analoge Signale und Systeme im Frequenzbereich
- Fourierreihe
- Fourier-Transformation
- Laplace-Transformation
- Kontinuierliche LTI-Systeme

Grundbegriffe der Regelungstechnik
- Vergleich von Steuerung und Regelung
- Struktur des einfachen Regelkreises
- Eigenschaften wichtiger Übertragungsglieder
- Reglerwahl und Reglerauslegung

AD-Wandlung und DA-Wandlung
- Abtastung und Interpolation
- Quantisierung

Zeitdiskrete Signale und Systeme im Zeitbereich
- Eigenschaften zeitdiskreter Signale und Systeme
- Diskrete Faltung

Zeitdiskrete Signale und Systeme im Frequenzbereich
- Zeitdiskrete Fourier-Transformation (DTFT)
- z-Transformation
- Diskrete LTI-Systeme
- Diskrete Fourier-Transformation (DFT)

Digitale Filter
- IIR-Filter
- FIR-Filter

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- analoge und digitale Signale und Systeme zu beschreiben (1) und anhand ihrer Eigenschaften zu klassifizieren (1)
- verschiedene Transformationen zwischen Zeit- und Frequenzbereich zu benennen (1), zu benutzen (2), und zu beurteilen in welchem Fall welche Transformation geeignet ist (3)
- die Zusammenhänge zwischen den verschiedenen Transformationen zu erläutern (2)
• die Zusammenhänge zwischen analogen und digitalen Signalen und Systemen zu erläutern (2)
• analoge und digitale Signale im Zeit- und Frequenzbereich mit verschiedenen Methoden zu beschreiben (2), darzustellen (2), zu analysieren (3)
• lineare, zeitinvariante Systeme im Zeit- und Frequenzbereich mit verschiedenen Methoden zu beschreiben (2), darzustellen (2), zu analysieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• die Notwendigkeit zu erkennen, Übungsaufgaben selbstständig durchzurechnen und bei Bedarf Fragen an den Dozenten zu stellen (2)
• mit dem Dozenten und anderen Studierenden fachlich korrekt und präzise über die Inhalte der Lehrveranstaltung zu diskutieren (3)
• technische Zusammenhänge in korrekter Fachsprache wiederzugeben (3)

Angebotene Lehrunterlagen

Vorlesungsskript mit Übungen, Powerpoint-Folien, weitere Dateien im Moodle-Lernraum (z.B. MATLAB, Simulink, Animationen und Videos)

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Literatur zur Signalverarbeitung
• D. Ch. von Grünigen: Digitale Signalverarbeitung. Carl Hanser Verlag.
• M. Werner: Signale und Systeme. Vieweg Verlag.

Literatur zur Regelungstechnik

• J. Lunze: Regelungstechnik 1. Springer Vieweg Verlag.
• H. Mann et al.: Einführung in die Regelungstechnik. Carl Hanser Verlag.
• H. Walter: Grundkurs Regelungstechnik. Springer Vieweg Verlag.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 23. 03. 2021 Ostbayerische Technische Hochschule Regensburg Seite 212
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Signals and Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signals and Systems</td>
<td>SSY / Nr.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>4</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreicher Eintritt in den 2. Studienabschnitt

Empfohlene Vorkenntnisse

Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signals and Systems</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3. + 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. Im Auslandssemester (4.) ist u.a. das Fach Signals and Systems an der Partnerhochschule zu belegen.

Stand: 23. 03. 2021

Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signals and Systems</td>
<td>SSY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung

Englischsprachiger Leistungsnachweis
Prüfungsform je nach Partnerhochschule

Zugelassene Hilfsmittel für Leistungsnachweis
Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Angebotene Lehrunterlagen
Je nach Partnerhochschule

Lehrmedien
Je nach Partnerhochschule

Literatur
Je nach Partnerhochschule
Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Modulbezeichnung (ggf. englische Bezeichnung)	**Modul-KzBez. oder Nr.**
Solid State Physics 1 | SSP / Nr.15

Modulverantwortliche/r	**Fakultät**
Prof. Dr. Rupert Schreiner | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Erfolgreicher Eintritt in den 2. Studienabschnitt

Empfohlene Vorkenntnisse

Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Solid State Physics 1</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Der Studienschwerpunkt Optoelektronik ist international ausgerichtet. Zwei Semester (3. + 4.) absolvieren die Studierenden an einer Partnerhochschule der OTH Regensburg im Ausland. In beiden Semestern ist das Fach *Solid State Physic 1* an der Partnerhochschule zu belegen.
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kürzel/Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Physics 1</td>
<td>SSP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.N.</td>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je nach Partnerhochschule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. und 4.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
</table>

Studien- und Prüfungsleistung

Englischsprachiger Leistungsnachweis
Prüfungsform je nach Partnerhochschule

Zugelassene Hilfsmittel für Leistungsnachweis
Je nach Partnerhochschule

Inhalte

Je nach Partnerhochschule

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Partnerhochschule

Angebotene Lehrunterlagen
Je nach Partnerhochschule

Lehrmedien
Je nach Partnerhochschule

Literatur
Je nach Partnerhochschule
Weitere Informationen zur Lehrveranstaltung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemintegration und Simulation (Systems: Integration and Simulation)</td>
<td>SN / Nr.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joana Serban</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Grundlegende Kenntnisse aus der Physik und Mathematik

Inhalte
Siehe Folgeseite

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemintegration und Simulation (Systems: Integration and Simulation)</td>
<td>SN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joana Serban</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Joana Serban</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehreform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Aufbau und Integration von Mikrosystemen
- Optoelektronische Mikrosysteme
- Verbindungstechniken
- Theoretische und experimentelle Systemanalyse
- Mathematische Modelle und rechnergestützte Simulation von Mikrosystemen
- Einführung in den CMOS Schaltungsentwurf

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Kenntnisse über die Probleme und Lösungskonzepte bei der Integration mikroelektrischer, mechanischer und optischer Komponenten.
- Kenntnisse der Methoden zum Entwerfen, Modellieren, Simulieren und Testen von heterogenen Mikrosystemen.
- Kenntnisse der Methoden des Entwurfes integrierter Schaltungen.

Kompetenzen:
- Kompetenz der ganzheitlich-systematischen Denkweise der Systemtechnik.

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemers: „Hardware Modellierung“, Hanser (2001)</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Systemintegration und Simulation (Systems Integration and Simulation) | SN / Nr.24

Modulverantwortliche/r	Fakultät
Prof. Dr. Joana Serban | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Grundlegende Kenntnisse aus der Physik und Mathematik

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Systemintegration und Simulation (Systems: Integration and Simulation)</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Mikrosystemtechnik (PO: 20152)

Modulname:
Systemintegration und Simulation (Systems Integration and Simulation)

Teilmodul
Systemintegration und Simulation (Systems: Integration and Simulation)

Verantwortliche/r: Prof. Dr. Joana Serban
Fakultät: Angewandte Natur- und Kulturwissenschaften

Lehrende/r / Dozierende/r: Prof. Dr. Joana Serban
Angebotsfrequenz: nur im Sommersemester

Lehrform: Seminaristischer Unterricht

Studiensemester
gemäß Studienplan
6.
Lehrumfang
[SWS oder UE]
6 SWS
Lehrsprache: deutsch
Arbeitsaufwand: [ECTS-Credits] 6

Zeitaufwand:
Präsenzstudium
90h
Eigenstudium
90h

Prüfungsleistung
Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Aufbau und Integration von Mikrosystemen
- Optoelektronische Mikrosysteme
- Verbindungstechniken
- Theoretische und experimentelle Systemanalyse
- Mathematische Modelle und rechnergestützte Simulation von Mikrosystemen
- Einführung in den CMOS Schaltungsentwurf

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
- Kenntnisse über die Probleme und Lösungskonzepte bei der Integration mikroelektrischer, mechanischer und optischer Komponenten
- Kenntnisse der Methoden zum Entwerfen, Modellieren, Simulieren und Testen von heterogenen Mikrosystemen
- Kenntnisse der Methoden des Entwurfes integrierter Schaltungen

Kompetenzen:
Kompetenz der ganzheitlich-systematischen Denkweise der Systemtechnik

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Siemers: „Hardware Modellierung“, Hanser (2001)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Technische Physik 2 mit Praktikum (Engineering Physics with Laboratory Exercises)

Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Technische Physik 2 mit Praktikum (Engineering Physics with Laboratory Exercises) | TPP / Nr. 10

Modulverantwortliche/r	Fakultät
Prof. Dr. Peter Bickel | Angewandte Natur- und Kulturwissenschaften

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. | 2. | Schwerpunkt Pflichtmodul | 8

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse

Technische Physik 1 (Modul Nr. 4); vor allem Mechanik und Elektrostatik

Inhalte
Siehe Folgeseiten

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseiten

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum Technische Physik 2 (Engineering Physics 2)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Technische Physik 2 (Engineering Physics 2)</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Technische Physik 2 mit Praktikum (Engineering Physics with Laboratory Exercises)

Teilmodul	TM-Kurzbezeichnung
Praktikum Technische Physik 2 (Engineering Physics 2) | PTP 2

Verantwortliche/r	Fakultät
Prof. Dr. Peter Bickel | Angewandte Natur- und Kulturwissenschaften |
Lehrende/r / Dozierende/r | Angebotsfrequenz |
Prof. Dr. Peter Bickel | nur im Wintersemester |

Lehrform
Seminaristischer Unterricht und Praktikum

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
3. | 2 SWS | deutsch | 2 |

Zeitaufwand:
Präsenzstudium | Eigenstudium |
30h | 30h |

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
I. Schwingungen Ursache von Schwingungen; Freie und erzwungene Schwingungen; Dämpfung; Überlagerung von harmonischen Schwingungen; gekoppelte Systeme
II. Wellenlehre – Grundlagen Begriffe und Definitionen; Prinzip von Huygens; Polarisation; Wellengleichung; Ausbreitungsgeschwindigkeit, Dispersion; Überlagerung von Wellen; stehende Wellen
III. Geometrische Optik Reflexion und Brechung; optische Materialien und ihre Eigenschaften, Frequenzgang der Dielektrizitätskonstante; Abbildung durch Linsen und Spiegel; Abbildungsfehler; Linsensysteme; Hauptebenen; optische Instrumente (Auge, Brille, Lupe, Mikroskop, Fernrohr, Projektor, Kamera)
IV. Licht als elektromagnetische Welle Absorption von Licht; Beugung und Interferenz (Spalt, Gitter, Lochblende); Kohärenz; Auflösungsvermögen optischer Geräte und seine wellentheoretische Begrenzung
V. Akustik, Schallausbreitung
VI. Quantenoptik Lichtquantum; Dualismus Welle / Teilchen; Photoeffekt; Laser
VII. Photometrie - Grundgrößen und Berechnungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg Seite 226
Einsicht in die Universalität des Schwingungsbegriff in der modernen Physik und dessen Bedeutung in der techn. Anwendung
- Grundkenntnisse der geometrischen Optik, Eigenschaften und Einsatzgebiete optischer Materialien, sowie Kenntnis der wichtigsten optischen Instrumente
- Verständnis der Energieausbreitung durch Wellen und Beherrschung der mathematischen Methoden deren Beschreibung
- Erkenntnis der Universalität der prinzipiellen Wellenerscheinungen unabhängig vom jeweiligen Medium
- Verständnis elektromagnetischer Wellen, deren Entstehung sowie die wichtigsten quantenoptischen Erscheinungen, Dualismus von Welle und Teilchen

Fertigkeiten:
- Die Grundlagen des Verständnisses für darauf aufbauende Spezialgebietes sind geschaffen

Kompetenzen:
- Die Inhalte sind soweit internalisiert, dass sie auf für Ingenieure/innen typische komplexe Problemstellungen lösungsbezogen angewandt werden können

Lehrmedien
- Tafel, Notebook, Beamer

Literatur
- W. Demtröder, „Experimentalphysik 1 und 2“, Springer-Verlag, Berlin
- G. Schröder, „Technische Optik“, Vogel-Verlag
- F. Kuypers, „Physik für Ingenieure 1 und 2“, Wiley-VCH
- Gehrtsen, „Physik“, Springer Verlag

Aufgabensammlungen:

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul
Technische Physik 2 (Engineering Physics 2)

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r
Prof. Dr. Peter Bickel
nur im Wintersemester

Lehrform
Seminaristischer Unterricht und Praktikum

Lehrumfang

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte

I. Schwingungen Ursache von Schwingungen; Freie und erzwungene Schwingungen; Dämpfung; Überlagerung von harmonischen Schwingungen; gekoppelte Systeme
II. Wellenlehre – Grundlagen Begriffe und Definitionen; Prinzip von Huygens; Polarisation; Wellengleichung; Ausbreitungsgeschwindigkeit, Dispersion; Überlagerung von Wellen; stehende Wellen
III. Geometrische Optik Reflexion und Brechung; optische Materialien und ihre Eigenschaften, Frequenzgang der Dielektrizitätskonstante; Abbildung durch Linsen und Spiegel; Abbildungsfehler; Linsensysteme; Hauptebenen; optische Instrumente (Auge, Brille, Lupe, Mikroskop, Fernrohr, Projektor, Kamera)
IV. Licht als elektromagnetische Welle Absorption von Licht; Beugung und Interferenz (Spalt, Gitter, Lochblende); Kohärenz; Auflösungsvermögen optischer Geräte und seine wellentheoretische Begrenzung
V. Akustik, Schallausbreitung
VI. Quantenoptik Lichtquantum; Dualismus Welle / Teilchen; Photoeffekt; Laser
VII. Photometrie - Grundgrößen und Berechnungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg
• Einsicht in die Universalität des Schwingungsbegriff in der modernen Physik und dessen Bedeutung in der techn. Anwendung
• Grundkenntnisse der geometrischen Optik, Eigenschaften und Einsatzgebiete optischer Materialien, sowie Kenntnis der wichtigsten optischen Instrumente
• Verständnis der Energieausbreitung durch Wellen und Beherrschung der mathematischen Methoden deren Beschreibung
• Erkenntnis der Universalität der prinzipiellen Wellenerscheinungen unabhängig vom jeweiligen Medium
• Verständnis elektromagnetischer Wellen, deren Entstehung sowie die wichtigsten quantenoptischen Erscheinungen, Dualismus von Welle und Teilchen

Fertigkeiten:

• Die Grundlagen des Verständnisses für darauf aufbauende Spezialgebiete sind geschaffen

Kompetenzen:

• Die Inhalte sind soweit internalisiert, dass sie auf für Ingenieure/innen typische komplexe Problemstellungen lösungsbezogen angewandt werden können

Lehrmedien
Tafel, Notebook, Beamer

Literatur

- W. Demtröder, „Experimentalphysik 1 und 2“, Springer-Verlag, Berlin
- G. Schröder, „Technische Optik“, Vogel-Verlag
- F. Kuypers, „Physik für Ingenieure 1 und 2“, Wiley-VCH
- Gehrtsen, „Physik“, Springer Verlag

Aufgabensammlungen:

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Vakuumtechnik (Vacuum Physics and Technology)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vakuumtechnik (Vacuum Physics and Technology)</td>
<td>VT / Nr.25</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r | Fakultät
Prof. Dr. Thomas Peterreins | Angewandte Natur- und Kulturwissenschaften |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Vorkenntnisse

Technische Physik 1 (Modul Nr. 4), Werkstoffe 1, Mikroelektroniktechnologie mit Praktikum (1.Teil) (Modul Nr. 15)

Inhalte

Physikalische Vorgänge im Vakuum; Technik der Vakuumerzeugung und -messung

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Fundiertes Verständnis des Einflusses vakuumtechnischer Größen auf mikrotechnologische Prozesse und Analyseverfahren

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vakuumtechnik (Vacuum Physics and Technology)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vakuumtechnik (Vacuum Physics and Technology)</td>
<td>VT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Peterreins</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle
Inhalte

1. Bedeutung und historische Entwicklung der Vakuumtechnik
2. Grundbegriffe: Totaldruck, Partialdruck, Enddruck, Dampfdruck, Saugvermögen, Saugleistung, Gasflussraten, Einheiten
3. Vakuumphysik
 3.1. Ideales Gasgesetz
 3.2. Maxwellsche Geschwindigkeitsverteilung, mittlere freie Weglänge, Flächenstoßrate, Bedeckungszeit
 3.3. Transportvorgänge im Vakuum: Viskosität und Wärmeleitung
3.5. Leitwerte
3.6. Oberflächen im Vakuum: Physisorption, Chemisorption, Ausgasen, Permeation
3.7. Wachstum dünner Schichten auf Oberflächen im Vakuum
4. Vakuum-Anlagen: Aufbau, Materialien, Bauelemente, Durchführungen, Flanschsysteme, Sicherheitsaspekte
5. Vakuum-Erzeugung:
 5.1. ölgedichtete und ölfreie Vorpumpen, Drehschieberpumpe, Membranpumpe, Schraubenpumpe, Scrollpumpe, Hubkolbenpumpe, Klauenpumpe, Sorptionspumpe
 5.2. HV- und UHV-Pumpen: Turbomolekularpumpe, Holweckstufen, Ionengetterpumpe, Titan-Sublimationspumpe, Kryopumpe, Diffusionspumpe, Rootspumpe
6. Druckmessung im Vakuum
 6.1. Totaldruckmessung: mechanische Vakuummeter (Bourdon, McLeod), Pirani, Penning, Bayard-Alpert, Radiometer
 6.2. Partialdruckmessung, Massenspektrometer
 6.3. Lecksuche, Leckratenbestimmung
7. Rechnungen zur Vakuumtechnik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:
• Überblick über die Methoden der Vakuumerzeugung, Pumpen, Total- und Partialdruckmessung sowie Lecksuche, Bauelemente und Dichtungssysteme.
• Vertrautheit mit vakuumphysikalischen Begriffen.

Fertigkeiten:
• Fähigkeit zur qualifizierten Abschätzung bzw. Berechnung vakuumtechnischer Größen und Parameter.

Kompetenzen:
• Verständnis des Einflusses vakuumtechnischer Größen auf die Prozesse der Mikrotechnologie.
• Befähigung zur Planung / Auslegung einer vakuumtechnischen Anlage für die Mikrotechnik.

Lehrmedien
Tafel, Notebook, Beamer
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)
Modulname: Vakuumtechnik (Vacuum Physics and Technology)

Literatur

- Vakuumtechnik, Berechnungen und Tabellen, Leybold AG (jetzt Oerlikon Vacuum)
- Vakuum Know-How, Pfeiffer Vacuum AG
- Jousten (Hrsg.), Wutz Handbuch Vakuumtechnik, Vieweg Verlag
- Reuschling, Konzepte und Komponenten für Vakuum-Beschichtungsanlagen, Beilage zu Vakuum in Forschung und Praxis, VCH Verlag
- Chambers/Fitch/Halliday, Basic Vacuum Technology, IOP Publishing
- Delchar, Vacuum Physics and Techniques, Chapman & Hall
- Nigel S. Harris, Modern Vacuum Practice
- Pupp/Hartmann, Vakuumtechnik, Hanser Verlag
- Lafferty, Foundations of Vacuum Science and Technology, Wiley-Interscience

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Werkstoffe 2, OLEDs (Material Sciences 2, OLEDs)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstoffe 2, OLEDs (Material Sciences 2, OLEDs)</td>
<td>WEO / Nr.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Allgemeine und Anorganische Chemie mit Praktikum (Modul Nr. 2), Werkstoffe 1 (Modul Nr. 6), Elektronische Bauelemente (Modul Nr. 8)

Inhalte
Siehe Folgeseiten

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseiten

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OLEDs</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Werkstoffe 2 (Material Sciences 2)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Werkstoffe 2, OLEDs (Material Sciences 2, OLEDs)

Teilmodul	TM-Kurzbezeichnung
OLEDs | OL

Verantwortliche/r	Fakultät
Prof. Dr. Alfred Lechner | Angewandte Natur- und Kulturwissenschaften

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Dr. Alfred Lechner | nur im Sommersemester

Lehrform
Seminaristischer Unterricht

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
6. | 4 SWS | deutsch | 4

Zeitaufwand:
Präsenzstudium	Eigenstudium
60h | 60h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Lacke in der Fotolitographie
- Homo-Lumo Übergänge
- Funktionsweisen von OLEDs
- Anwendung und Berechnung von Small- and Large-Molecules

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Kenntnisse:
- Die Studierenden kennen die Grundreaktionen der organischen Chemie
- Sie kennen die in der Fotolitographie verwendeten Lacke und kennen deren Funktionsweisen.
- Die Studierenden verfügen über Kenntnisse der Homo-Lumo-Übergänge in organischen fotoaktiven Schichten.
- Sie kennen die Funktionsweise von OLED´s.

Fertigkeiten:
- Die Studierenden können Small- und Large-Molecules in entsprechenden Abscheideanlagen unter Inert-Atmosphäre anwenden.

Stand: 23. 03. 2021
Ostbayerische Technische Hochschule Regensburg Seite 235
Kompetenz:

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Es ist geplant, die Lehrveranstaltung mit einem Praktikum in der Industrie zu begleiten. Die Lehrveranstaltung findet erstmals im SoSe 2018 statt.

Empfohlene Vorkenntnisse: Allgemeine und Anorganische Chemie mit Praktikum (Modul Nr. 2), Werkstoffe 1 (Modul Nr. 6), Elektronische Bauelemente (Modul Nr. 8)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
Werkstoffe 2 (Material Sciences 2) | WE 2

Verantwortliche/r	Fakultät
Prof. Dr. Alfred Lechner | Angewandte Natur- und Kulturwissenschaften
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Alfred Lechner | nur im Sommersemester

Lehrform
Seminartistischer Unterricht

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td></td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
30h | 30h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Grundlagen und Nomenklatur der Organischen Chemie
- Grundlegende Reaktionen der Organischen Chemie
- Positiv und negativ arbeitende Lacke
- Polymere Reste beim Trockenätzen
- Grundlagen der OLED-Technologie

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
Kenntnisse:
- Die Studierenden kennen die Grundreaktionen der organischen Chemie
- Sie kennen die in der Fotolitographie verwendeten Lacke und kennen deren Funktionsweisen.
- Die Studierenden verfügen über Kenntnisse der Homo-Lumo-Übergänge in organischen fotoaktiven Schichten.
- Sie kennen die Funktionsweise von OLED’s.

Fertigkeiten:
- Die Studierenden können Voraussagen über die Produkte treffen, wenn organische Edukte miteinander reagieren.
• Sie können positiv und negativ arbeitende Lacke in der Mikrotechnologie anwenden.

Kompetenzen:

• Sie können entscheiden welche Lacke für eine bestimmte Chip-Technologie am besten geeignet sind.
• Sie sind in der Lage, geeignete organische Halbleiterschichten für organische LEDs oder organische Fotodioden für eine bestimmte Anwendung auszuwählen.

Angebotene Lehrunterlagen

Skript

Lehrmedien

Tafel, Notebook, Beamer

Literatur

• B.Morrison/Boyd, Lehrbuch der Organischen Chemie, VCH Verlag.
• Bargel/Schulze, Werkstoffkunde, VDI Verlag
• T.L.Brown, H.E. LeMay, B.B. Bursteb, Chemie, die zentrale Wissenschaft, Pearson Studium, 10. Auflage.

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Allgemeine und Anorganische Chemie mit Praktikum (Modul Nr. 2), Werkstoffe 1 (Modul Nr. 6), Elektronische Bauelemente (Modul Nr. 8)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Modulname: Werkstoffe 2 (Material Sciences 2)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstoffe 2 (Material Sciences 2)</td>
<td>WE 2 / Nr.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Allgemeine und Anorganische Chemie mit Praktikum (Modul Nr. 2), *Werkstoffe 1* (Modul Nr. 6), *Elektronische Bauelemente* (Modul Nr. 8)

Inhalte
Siehe Folgeseite

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, Siehe Folgeseite

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Werkstoffe 2 (Material Sciences 2)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Mikrosystemtechnik (PO: 20152)

Name des Moduls: Werkstoffe 2 (Material Sciences 2)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstoffe 2 (Material Sciences 2)</td>
<td>WE 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminariistischer Unterricht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6.</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Prüfungseinheit</th>
<th>Zeitaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>30h</td>
</tr>
<tr>
<td>Eigenstudium</td>
<td>30h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Grundlagen und Nomenklatur der Organischen Chemie
- Grundlegende Reaktionen der Organischen Chemie
- Positiv und negativ arbeitende Lacke
- Polymere Reste beim Trocknätzen
- Grundlagen der OLED-Technologie

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Kenntnisse:

- Die Studierenden kennen die Grundreaktionen der organischen Chemie
- Sie kennen die in der Fotolitographie verwendeten Lacke und kennen deren Funktionsweisen.
- Die Studierenden verfügen über Kenntnisse der Homo-Lumo-Übergänge in organischen fotoaktiven Schichten.
- Sie kennen die Funktionsweise von OLED´s.

Fertigkeiten:
- Die Studierenden können Voraussagen über die Produkte treffen, wenn organische Edukte miteinander reagieren.
- Sie können positiv und negativ arbeitende Lacke in der Mikrotechnologie anwenden.

Kompetenzen:

- Sie können entscheiden welche Lacke für eine bestimmte Chip-Technologie am besten geeignet sind.
- Sie sind in der Lage, geeignete organische Halbleiterschichten für organische LEDs oder organische Fotodioden für eine bestimmte Anwendung auszuwählen.

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Skript</th>
</tr>
</thead>
</table>

| Lehrmedien | Tafel, Notebook, Beamer |

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Morrison/Boyd, Lehrbuch der Organischen Chemie, VCH Verlag.</td>
</tr>
<tr>
<td>Bargel/Schulze, Werkstoffkunde, VDI Verlag</td>
</tr>
<tr>
<td>E. Ivers-Tiffee, W. von Münch, Werkstoffe der Elektrotechnik, Teubner Verlag, Stuttgart, 2004</td>
</tr>
<tr>
<td>T.L. Brown, H.E. LeMay, B.B. Bursteb, Chemie, die zentrale Wissenschaft, Pearson Studium, 10. Auflage</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
