Modulhandbuch

für den
Masterstudiengang

Electrical and
Microsystems Engineering
(M.Eng.)

SPO-Version ab: Wintersemester 2018

Sommersemester 2019
erstellt am 01.04.2019
von Sabrina Hildebrand

Fakultät Allgemeinwissenschaften
und Mikrosystemtechnik
Modulliste

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterarbeit</td>
<td>4</td>
</tr>
<tr>
<td>Disputation (Disputation)</td>
<td>5</td>
</tr>
<tr>
<td>Schriftliche Ausarbeitung (Written Paper)</td>
<td>6</td>
</tr>
<tr>
<td>Projektarbeit (Project Thesis)</td>
<td>8</td>
</tr>
<tr>
<td>Projektarbeit (Project Thesis)</td>
<td>9</td>
</tr>
<tr>
<td>BASIS</td>
<td></td>
</tr>
<tr>
<td>Basismodul 1 (Basic Module 1)</td>
<td>11</td>
</tr>
<tr>
<td>Vertiefte Ingenieurmathematik (Advanced Engineering Mathematics)</td>
<td>12</td>
</tr>
<tr>
<td>Basismodul 2 (Basic Module 2)</td>
<td>14</td>
</tr>
<tr>
<td>Advanced Optoelectronics</td>
<td>16</td>
</tr>
<tr>
<td>Ausgewählte Kapitel der Elektrotechnik (Selected Topics of Electronics)</td>
<td>18</td>
</tr>
<tr>
<td>Fortgeschrittene Signalverarbeitung</td>
<td>21</td>
</tr>
<tr>
<td>Mikromechanik (Micromachining)</td>
<td>23</td>
</tr>
<tr>
<td>Programmierbare Hardware mit Anwendungen in der digitalen Signalverarbeitung (Programmable Hardware with Applications in Digital Signal Processing)</td>
<td>26</td>
</tr>
<tr>
<td>Basismodul 3 (Basic Module 3)</td>
<td>29</td>
</tr>
<tr>
<td>Chemie für Ingenieure (Engineering Chemistry)</td>
<td>31</td>
</tr>
<tr>
<td>Digitaltechnik 2 (Digital Design 2)</td>
<td>34</td>
</tr>
<tr>
<td>Embedded Communication</td>
<td>36</td>
</tr>
<tr>
<td>Photonics and Laser Technology</td>
<td>39</td>
</tr>
<tr>
<td>Basismodul 4 (Basic Module 4)</td>
<td>43</td>
</tr>
<tr>
<td>Applied Optics</td>
<td>44</td>
</tr>
<tr>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>47</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>50</td>
</tr>
<tr>
<td>INTERDISZIPLINÄR</td>
<td></td>
</tr>
<tr>
<td>Betriebswirtschaft für Ingenieure (Business Management for Engineers)</td>
<td>52</td>
</tr>
<tr>
<td>Project Management</td>
<td>53</td>
</tr>
<tr>
<td>Zusatzausbildung Ingenieur als Unternehmer (Additional Training as Entrepreneur)</td>
<td>54</td>
</tr>
<tr>
<td>Zusatzausbildung Technischer Vertrieb (Additional Training in Technical Sales)</td>
<td>56</td>
</tr>
<tr>
<td>Internationale Handlungskompetenz (Intercultural Competence)</td>
<td>58</td>
</tr>
<tr>
<td>Analyse kulturell bedingter Konfliktsituationen (Analysis of Culturally Influenced Interactions)</td>
<td>60</td>
</tr>
<tr>
<td>Internationale Handlungskompetenz erkennen und fördern (Assessing and Advancing Intercultural Competence)</td>
<td>61</td>
</tr>
<tr>
<td>Kulturelle Differenz und interkulturelles Handeln (Cultural Differences and Intercultural Action)</td>
<td>62</td>
</tr>
<tr>
<td>Wissenschaftliche Grundlagen interkultureller Handlungskompetenz (Scientific basis of Intercultural Competence)</td>
<td>63</td>
</tr>
<tr>
<td>International Research Methodology and Communication</td>
<td>64</td>
</tr>
<tr>
<td>English for Master Students</td>
<td>65</td>
</tr>
<tr>
<td>German for International Students</td>
<td>66</td>
</tr>
<tr>
<td>Project Management</td>
<td>67</td>
</tr>
<tr>
<td>Research Methodology</td>
<td>68</td>
</tr>
<tr>
<td>Qualität und Zuverlässigkeit</td>
<td>69</td>
</tr>
<tr>
<td>Fortgeschrittene Methoden des Qualitätsmanagements (Advanced Methods of Quality Management)</td>
<td>70</td>
</tr>
<tr>
<td>Sicherheit und Zuverlässigkeit von Systemen (Safety und Reliability of Systems)</td>
<td>73</td>
</tr>
<tr>
<td>Statistik und Operations Research (Statistics and Operations Research)</td>
<td>77</td>
</tr>
<tr>
<td>Operations Research (Operations Research)</td>
<td>78</td>
</tr>
<tr>
<td>Statistische Versuchsverfahren (Design of Experiments)</td>
<td>80</td>
</tr>
<tr>
<td>Wahrscheinlichkeitsrechnung, Statistik und stochastische Prozesse (Probability, Statistics and Stochastic Processes)</td>
<td>83</td>
</tr>
</tbody>
</table>
Zusatzausbildung Fachkraft für Arbeitssicherheit - Sicherheitsingenieur (Module PI-III) (Additional Training in Specialist for Occupational Safety - Safety Engineer) ... 135
 Sicherheitsingenieur PI (Specialist for Occupational Safety - Safety Engineer PI) 137
 Sicherheitsingenieur PII (Specialist for Occupational Safety - Safety Engineer PII) 139
 Sicherheitsingenieur PIII (Specialist for Occupational Safety - Safety Engineer PIII). 140

VERTEIFUNG

Vertiefung ... 85
 Advanced Packaging .. 87
 Advanced Semiconductor Technology ... 89
 Analog/Digital- und Digital/Analog-Wandler (Analog/Digital and Digital/Analog Converter) 91
 Cybernetics ... 94
 Electronic Product Engineering .. 99
 Elektrodynamik (Electrodynamics) ... 101
 Elektromagnetische Verträglichkeit (Electromagnetic Compatibility) 104
 Embedded Linux ... 107
 Halbleiterchemie (Wet Chemical Processes in Semiconductors Manufacturing) 110
 HF-Schaltungstechnik (RF-Circuit Design) ... 112
 Laser Materials Processing ... 114
 LED Technology .. 116
 Master Optoelectronics Projects with LabVIEW ... 118
 Multi-processor and multi-core design for reliable embedded systems 120
 Physik der Halbleiterbauelemente (Physics of Semiconductor Devices) 123
 Quantentheorie 1 (Quantum Theory 1) ... 125
 Quantentheorie 2 (Quantum Theory 2) ... 127
 Spezielle Aspekte regenerativer Energien (Special Aspects of Renewable Energy) 129
 Vertiefung Microcontroller-technik für Master (Advanced Microcontroller Techniques for Master) ... 131
 Wireless Sensor/Actuator Networks .. 133
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Masterarbeit

Moduleinbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Masterarbeit | MA/M1

Modulverantwortliche/r	Fakultät
Allgemeinwissenschaften und Mikrosystemtechnik	

Vorsitzender der Prüfungskommission

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
Pflicht	26		

Verpflichtende Voraussetzungen

Die Ausgabe des Themas setzt voraus, dass im Studienfortschritt mindestens 40 Credits erreicht worden sind.

Inhalte

Siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Disputation (Disputation)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Schriftliche Ausarbeitung (Written Paper)</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Bearbeitungszeit und weitere Bestimmungen siehe auch SPO und APO

Stand: 01.04.2019
Ostbayerische Technische Hochschule Regensburg
Seite 4
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disputation (Disputation)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorsitzender der Prüfungskommission</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Betreuender Professor</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Selbständige Präsentation eines wissenschaftlichen Projektes (optional auf Englisch).

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>[SWS oder UE]</td>
<td>deutsch/englisch</td>
<td>6 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>180h</td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Schriftliche Aufarbeitung und Dokumentation der Masterarbeit. Dies erfordert sowohl die Durchführung von Literatur-Recherchen als auch das Verfassen wissenschaftlicher Texte.

Lernziele/Lernergebnisse/Kompetenzen

Die Studierenden sind in der Lage, die Ergebnisse der Masterarbeit, deren fachliche Grundlagen sowie fachübergreifende Zusammenhänge in Wort und Schrift darzustellen, zu präsentieren und selbständig zu begründen.

Literatur

Der zur Verfügung stehende Stand der Technik.

Weitere Informationen zur Lehrveranstaltung

Zulassungsvoraussetzung: *Schriftliche Ausarbeitung* (Modul M1.1) mindestens mit Note "ausreichend"
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)
Modulname: Masterarbeit

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Ausarbeitung (Written Paper)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorsitzender der Prüfungskommission</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Betreuender Professor</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform

Eigenständige Ingenieursarbeit nach wissenschaftlichen Methoden mit Dokumentation und unter fachlicher Anleitung der jeweils betreuenden Dozenten/innen (optional auf Englisch).

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>[SWS oder UE]</td>
<td>deutsch/englisch</td>
<td>20</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Masterarbeit

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Selbstständige ingenieurmäßige Bearbeitung eines praxisorientierten wissenschaftlichen Projekts.
- Theoretische, konstruktive experimentelle Aufgabenstellung mit ausführlicher Beschreibung und Erläuterung ihrer Lösung.
- Aufbereitung und Dokumentation der Ergebnisse in wissenschaftlicher Form

Lernziele/Lernergebnisse/Kompetenzen

Fertigkeiten:

- Die Fertigkeit zur Recherchearbeit und zur Einarbeitung in themenübergreifende Fachgebiete
- Die Fertigkeit, sachlich und konstruktiv auf mögliche Rückschläge zu reagieren, eventuell auftretende Schwierigkeiten zu lösen und sinnvolle Kompromisse zu schließen

Kompetenzen:

- Die Kompetenz, die im Studium erworbenen theoretischen Kenntnisse in einer selbständigen wissenschaftlichen Arbeit auf Projekte aus der Ingenieurspraxis anzuwenden
• Die Kompetenz, innerhalb eines vorgegebenen Zeitrahmens eine komplexe Problemstellung selbständig zu strukturieren, nach wissenschaftlichen Methoden systematisch zu bearbeiten und anschließend schriftlich in technisch-wissenschaftlicher Form zu dokumentieren und wissenschaftlich zu argumentieren

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sämtliche Manuskripte, Übungsaufgaben etc. des Studienverlaufs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle erforderlichen Unterlagen zur Themenbearbeitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der zur Verfügung stehende Stand der Technik</td>
</tr>
<tr>
<td>Modulbezeichnung (ggf. englische Bezeichnung)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Projektarbeit (Project Thesis)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>Pflicht</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen des ingenieurmäßigen Arbeitens aus einem vorhergehenden Bachelorstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hinweise zur Belegungspflicht oder zu Optionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jederzeit während des Masterstudiums</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
------------------|------------------
Projektarbeit (Project Thesis) | PA

Verantwortliche/r | Fakultät
Vorsitzender der Prüfungskommission | Allgemeinwissenschaften und Mikrosystemtechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
N.N. | in jedem Semester

Lehrform
Projekt

Studiensemester | Lehrumfang | Lehrsprache | Arbeitsaufwand
gemäß Studienplan | [SWS oder UE] | deutsch/englisch | [ECTS-Credits]
1.,2.,3. | 4 SWS | | 6

Zeitaufwand:
Präsenzstudium | Eigenstudium
60h | 120h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:
• Kenntnis der Art und Weise, wie Projekte strukturiert sind (Arbeitspakete, Meilensteine...).

Fertigkeiten:
• Fertigkeiten, umfangreiche Literaturrecherchen durchzuführen
• Fertigkeit zur Anfertigung von wissenschaftlichen Arbeiten
• Befähigung zur Dokumentation

Kompetenzen:
Fähigkeit zur Teamarbeit an einem Forschungs- oder Entwicklungsprojekt.
Fähigkeit, unter den Randbedingungen eines Projekts zu arbeiten, also z.B. Schnittstellendefinitionen und Termine einzuhalten.
Fähigkeit, Rückschläge hinzunehmen, sinnvolle Kompromisse zu schließen und Hindernisse zu überwinden.

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Projekt-, fallspezifische Arbeitsunterlagen und Fachbücher</th>
</tr>
</thead>
</table>

Lehrmedien

| Tafel, Notebook, Beamer, Exponate |

Literatur

| Franck, Norbert: "Die Technik wissenschaftlichen Arbeitens", UTB, 2011 |
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Basismodul 1 (Basic Module 1)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul 1 (Basic Module 1)</td>
<td>B1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Seidl</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Dr. Gabriela Tapken (LBA)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse

Inhalte
Siehe Folgeseite

Lernziele/Lernergebnisse/Kompetenzen
Siehe Folgeseite

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vertiefte Ingenieurmathematik (Advanced Engineering Mathematics)</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Die Lehrveranstaltung Höhere Mathematik wird im Wintersemester auf Deutsch (Dr. Gabriela Tapken) und im Sommersemester auf Englisch angeboten (Dr. Michael Seidl).
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Vertiefte Ingenieurmathematik (Advanced Engineering Mathematics)</th>
<th>MM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefte Ingenieurmathematik (Advanced Engineering Mathematics)</td>
<td>MM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Seidl</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Dr. Gabriela Tapken (LBA)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Seidl</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Dr. Gabriela Tapken (LBA)</td>
<td></td>
</tr>
</tbody>
</table>

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch/englisch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1., 2., 3.</td>
<td>6 SWS</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>150h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

Inhalte

Vektoranalysis:
Skalar- und Vektorfelder, Gradient, Divergenz, Rotation, Kurven- und Oberflächenintegrale, Volumenintegrale, Integralsätze.

Numerische Mathematik:

Lernziele/Lehrergebnisse/Kompetenzen

Kenntnisse:
- Methoden der Vektoranalysis und grundlegenden Verfahren der Numerischen Mathematik.

Fertigkeiten:

Kompetenzen:
• Selbstandige und flexible Umsetzung dieser mathematischen Methoden, etwa entsprechend den Anforderungen einer ggf. anschließenenden einschlägigen Promotion.

Lehrmedien
Tafel, Notebook, Beamer

Literatur
• Hermann, M.: Numerische Mathematik, Oldenbourg (2011)
• MatLab User’s Guide: Partial Differential Equations Toolbox
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul 2 (Basic Module 2)</td>
<td>B2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Peter Kuczynski</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Für MN: Grundlagen der Mathematik, der Physik und Werkstoffe
Für AKE: Kenntnisse in Mathematik, Physik, Elektronische Bauelemente und Schaltungstechnik, die in den Bachelorstudiengängen Elektro- und Informationstechnik, Mikrosystemtechnik oder Sensorik und Analytik vermittelt werden.
For AOE: Profound knowledge in Engineering Mathematics (calculus, partial differential equations) and College Physics: mechanics, electricity, optics (Bachelor level).

Inhalte
Siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen
Siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Advanced Optoelectronics</td>
<td>8 SWS</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Ausgewählte Kapitel der Elektrotechnik (Selected Topics of Electronics)</td>
<td>6 SWS</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>Fortgeschrittene Signalverarbeitung</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>Mikromechanik (Micromachining)</td>
<td>6 SWS</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Programmierbare Hardware mit Anwendungen in der digitalen Signalverarbeitung (Programmable Hardware with Applications in Digital Signal Processing)</td>
<td>4 SWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg
Hinweise zur Belegungspflicht oder zu Optionen

Das Modul "Mikromechanik" (MN/MT2) kann nicht gewählt werden mit einem einschlägigen Studiengang der Mikrosystemtechnik.
Das Modul "Ausgewählte Kapitel der Elektrotechnik" (AKE) kann nicht gewählt werden mit einem einschlägigen Studiengang der Elektrotechnik.
Das Modul "Advanced Optoelectronis" (AOE) kann nicht gewählt werden mit einem einschlägigen Studiengang der Mikrosystemtechnik.
Die Teilmodule "Fortgeschrittene Signalverarbeitung" (FSV) und "Programmierbare Hardware mit Anwendungen in der digitalen Signalverarbeitung" (PHDS) bilden das Modul "Verfahren der Signalverarbeitung und deren Implementierungen" (VSI). Für das Modul müssen beide Teile belegt werden.
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Optoelectronics</td>
<td>AOE</td>
</tr>
</tbody>
</table>

Verantwortliche/r
- **Prof. Dr. Rupert Schreiner**
- **Fakultät**: Allgemeinwissenschaften und Mikrosystemtechnik

Angebotsfrequenz
- Prof. Dr. Rupert Schreiner
- Nur im Wintersemester

Lehrform
- Seminaristischer Unterricht mit ca. 20% Übungsanteil

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>8 SWS</td>
<td>englisch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250h</td>
<td>140h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
- Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
- Siehe Studienplantabelle

Inhalte

Part I: Fundamentals
1. Light waves (Propagation of Light)
2. Photons (Emission and Detection of Light)
3. Opto-Semiconductors

Part II: Devices and Applications
4. LED’s
5. Optical Amplification and Semiconductor Lasers
6. Photodetectors, solar cells and semiconductor optical modulators
7. Colloquium MST (4 lectures)

Lernziele/Lernergebnisse/Kompetenzen

Knowledge:
- The students shall learn to know the fundamentals, the design, the technology and the operation of optoelectronic materials and modern optoelectronic devices (e.g. LED, Semiconductor Lasers, integrated optoelectronic circuits and photo-detectors).
Skills:

- Based on this knowledge they should be able to read scientific publications in this field and to understand the design, the fabrication process and the operation of optoelectronic devices.
- A high degree of personal contributions is expected from the master students. The basics of optics and physics must be repeated or worked out in self-study.

Competences:

- The students should be able to design parts of optoelectronic components and structures by themselves.
- They should be able to select and to choose suitable optoelectronic components for specific engineering applications.
- They should be able to join in and work together with an interdisciplinary team of physicists, chemists and engineers for the fabrication of modern optoelectronic devices.

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- S.M. Sze, K.K. Ng „Physics of Semiconductor Devices (3rd Ed.): Chapter 1, Chapter, Chapter 12 and Chapter 13“, Wiley, 2007
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Kapitel der Elektrotechnik (Selected Topics of Electronics)</td>
<td>AKE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht und Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Wiederholung Grundlagen:
Wechselstromnetzwerke, Mittelwerte und Leistungsangaben, Komplexe Darstellung, Magnetischer Kreis, Transformator, Übertragungsfunktion, Pole, Nullstellen.

Schaltungstechnik auf Operationsverstärkerbene:

Digitale Signalverarbeitung:

Schaltungstechnik auf Transistorbasis:

Leitungstheorie:
Herleitung der Telegraphengleichung, verlustbehaftete Leitung, verlustlose Leitung, Smith-Diagramm.

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:
- Verständnis der Grundlagen der analogen Schaltungstechnik
- Verständnis der Eigenschaften realer Operationsverstärker, Rückkopplung, Stabilität
- Verständnis der Wechselwirkung der Schaltungen mit Leitungen bei höheren Frequenzen
- Kenntnis der Konzepte der digitalen Signalverarbeitung

Fertigkeiten:
- Berechnung der analogen Grundschaltungen auf Operationsverstärker- und Einzeltransistorebene, Entwurf von FIR-Filtern

Kompetenzen:
- Beurteilung verschiedener Schaltungskonzepte zur Lösung schaltungstechnischer Problemstellungen
- Abschätzung der Leistungsfähigkeit von Analogbausteinen
- Partitionierung von Signalverarbeitungssystemen in Analog- und Digitalteil

Angebotene Lehrunterlagen
Lückenskript, Übungen, Musterlösungen, Literaturliste, Simulationsmodelle
<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grafiktablet, Lückenskript PDF, PDF Annotator,</td>
</tr>
<tr>
<td>Rechner/Beamer, Simulationssoftware, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grey, Meyer : „Analysis and Design of Analog</td>
</tr>
<tr>
<td>Hill 1998</td>
</tr>
<tr>
<td>• Tietze, Schenk: „Halbleiterschaltungstechnik“</td>
</tr>
<tr>
<td>“, Springer</td>
</tr>
<tr>
<td>• Siegl: „Schaltungstechnik“, Springer</td>
</tr>
</tbody>
</table>
| • Pennock, Shepherd: „Microwave Engineering“,
 New York: Mc Graw Hill |
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Fortgeschrittene Signalverarbeitung</th>
<th>FSV</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortgeschrittene Signalverarbeitung</td>
<td>FSV</td>
</tr>
</tbody>
</table>

Seminaristischer Unterricht mit Übungen

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Studienplan</th>
<th>Lehramt</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Zeitauflaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

Inhalte

- Abtastratenerhöhung (Oversampling), spezielle Entwurfsverfahren für digitale Filter
- spezielle Anwendungen der DFT in der Praxis (schnelle Faltung, Zweikanal-DFT, Spektralschätzung, Interpolation)
- Grundlagen der Signalverarbeitung stochastischer Signale
- Korrelation und Leistungsdichtespektrum
- Anwendung von Rauschen als Testsignal bzw. Referenzsignal
- Schätzung der Korrelationsfunktionen in der Praxis
- Adaptive Filter (Wiener-Filter), Optimierung nach der Methode der kleinsten mittleren Fehlerquadrate, spezielle Lösungsmethoden
- Anwendungen von adaptiven Filtern (Systemidentifikation, inverse Modellierung, Störunterdrückung, Unterdrückung periodischer Interferenz, LPC-Analyse, Sprachmodellierung)
- Wiener-Lee-Beziehungen und deren Anwendungen in der Praxis
- Anwendung von Simulationsprogrammen Matlab und Simulink
- Hilbert-Transformation, analytisches Signal

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

- Kenntnisse der Verfahren zur Abtastratenerhöhung (Oversampling) und deren praktische Anwendungen
• Kenntnisse spezieller Anwendungen der DFT
• Kenntnisse der Signalverarbeitung stochastischer Signale
• Kenntnisse der Theorie und der Anwendungen von adaptiven Filtern
• Kenntnisse der Wiener-Lee-Beziehungen und deren Anwendungen
• Kenntnisse der Hilbert-Transformation
• Kenntnisse der Anwendung von MATLAB und Simulink für spezielle Methoden der Signalverarbeitung

Fertigkeiten:

• Entwurf und Anwendung von Verfahren zur Abtastratenhöhung
• Anwendung der DFT für spezielle Problemstellungen in der Signalverarbeitung
• Anwendung von Rauschen als Testsignal
• Entwurf von adaptiven Systemen für verschiedene Anwendungsbereiche
• Anwendung der Wiener-Lee-Beziehungen in der Praxis
• Verständnis der Hilbert-Transformation

Kompetenzen:

• Entwicklung von Problemlösungen mithilfe der DFT in der Praxis
• Bewertung und Entwurf von Verfahren zur adaptiven Filterung
• Entwicklung von Problemlösungen mithilfe der Wiener-Lee-Beziehungen in der Praxis
• Vertiefung und Erweiterung der Kenntnisse der Systemtheorie durch das Verständnis der Hilbert-Transformation
• praktische Umsetzung einiger Lehrinhalte mithilfe von MATLAB und Simulink

Angebotene Lehrunterlagen
Hilfsblätter zur Vorlesung

Lehrmedien
Overheadprojektor, Tafel, Rechner/Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung
Die Lehrveranstaltung ist ein Teil des Moduls B2.4: Verfahren der Signalverarbeitung und deren Implementierungen (Methods of Signal Processing and their Implementations)
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Basismodul 2 (Basic Module 2)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikromechanik (Micromachining)</td>
<td>MT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit ca. 20% Übungsanteil

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehurmfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>160h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

I. Kontinuumsmechanik
1. Elastizität: Isotrope Festkörper, Anisotrope Festkörper
2. Effekte zur mechanisch-elektrischen Signalwandlung: Piezoelektrischer Effekt, Piezoresistiver Effekt
3. Analytische Näherungslösungen der Elastizitätstheorie für spezielle Fälle: Methode zur Bestimmung der mechanischen Verspannung einer dünnen Schicht auf einem runden Substrat, Verformung einer isotropen rechteckigen dünnen Platte, Einseitig eingespannte dünne Platte (Biegebalken), Allseitig eingespannte dünne Platte (Membran)

II. Einführung in die Mikrotechnologie mit Silizium und III–V–Halbleitern
1. Werkstoffe in der Mikrotechnologie: Werkstofftypen, Technologien, Einfluss des Kristallaufbaus auf die Strukturierungsmöglichkeiten
3. Trockenätzverfahren: Funktionsweise, Mittlere freie Weglänge, Anisotropie und Selektivität, Plasma- und Barrelätzen, Sputter- und Ionenstrahlätzen, RIBE und CAIBE, Reaktives Ionenätzen (RIE), DRIE, Erhöhung der Anisotropie durch Seitenwandpassivierung

III. Kolloquium Mikrosystemtechnik (4 Vorträge)

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:
- Kenntnis der grundlegenden mechanisch/physikalischen Eigenschaften von Si und III/V-HL.

Fertigkeiten:
- Anwendung dieser Kenntnisse für das Design und die Herstellung halbleiterbasierter Mikrosysteme, Bauelemente und Mikrostrukturen.
- Theoretisches Hintergrundwissen dahingehend anwenden können, um die Strukturen in der Praxis zu realisieren.
- Von den Masterstudierenden wird ein hohes Maß an Eigenleistung erwartet, da die fehlenden Grundlagen in Halbleitertechnologie und Physik im Selbststudium erarbeitet werden müssen.

Kompetenzen:
- Selbstständige Dimensionierung und Entwurf von Mikrostrukturen für Anwendungen in der Halbleitertechnologie.
- Selbstständiges Entwerfen von Prozessabläufen zur Herstellung der Strukturen und Bauelemente.

Lehrmedien
Tafel, Notebook, Beamer

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mescheder Ulrich: Mikrosystemtechnik, Teubner, Stuttgart, 2. Auflage 2004 (Mikromechanik und Technologie)</td>
</tr>
<tr>
<td>• Gerlach G., Dötz W.: Einführung in die Mikrosystemtechnik, Hanser, 2006 (sehr knapp aber umfassend, viele Anwendungen, ausführliche Herleitungen zur Kontinuumsmechanik, Tensorrechnung im Anhang)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Vorkenntnisse: Grundlagen Mathematik, Physik und Werkstoffe</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Programmierbare Hardware mit Anwendungen in der digitalen Signalverarbeitung</td>
</tr>
<tr>
<td>(Programmable Hardware with Applications in Digital Signal Processing)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>60h</td>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>
Inhalte

10 Doppelstunden seminaristischer Unterricht:
- Programmierbare Bausteine
- PLD: Programmable Logic Device, CPLD: Complex Programmable Logic Device, FPGA: Field Programmable Gate Array, ARTIX-7-Architektur
- Einführung in VHDL
- Hardware-Grundlagen
- Spikes, Synchrone Logik, Zustandsautomaten, Systematischer Entwurf komplexer Digitalschaltungen, AXI-Lite-Interface

20 Doppelstunden Laborpraxis:
- Hardwarebasis: NEXYS4-FPGA-Development Board
- Aufgaben gemeinsam:
 - Einarbeitung Entwicklungssystem VIVADO (XILINX Inc.)
 - Kombinatorischer 7-Segment-Decoder
 - 7-Segment-Decoder Multiplex
 - Register-Leser AXI-INTERFACE
 - Anwendung des "Register-Lesers" zur Kommunikation mit einer UART-Schnittstelle
- Einzelprojekte Projekte z. B.:
 - Ansteuerung 16-Bit-DA-Wandler SPI PMOD DA3
 - Testbench für PMODDA3 SPI-Output -> Analogdarstellung
 - Ansteuerung 2-fach-12-Bit-DA-Wandler SPI PMOD DA2
 - DA-Wandlung über PWM-Ausgang
 - AD-Wandler ON-Chip AXI-Lite-Interface
 - AXI-Register-Schreiber
 - FIR-Filter parallel
 - FIR-Filter seriell
 - Daten-Schieberegister mit Speicherung im Block-RAM
 - Weitere Projekte nach Bedarf

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:
- Kenntnis der grundlegenden Hardware-Konstrukte mit zugehörigen VHDL-Beschreibungen, Entwurfssoftware

Fertigkeiten:
- Umgang mit Entwurfssoftware VIVADO,
- Überblick über die Toolchain, Bedienung VHDL-Editor, Simulator, Synthese, Hardware-Download

Kompetenzen:
- Selbstständiger Entwurf komplexer Digitalschaltungen auf VHDL/FPGA-Basis,
- Timingplanung, RTL-Partitionierung, VHDL-Codierung, Verifikation, Dokumentation

Angebotene Lehrunterlagen

Lückenskript, Anleitung für Laborübungen, Design-Beispiele, Literaturliste
Lehrmedien
Rechnerarbeitsplatz mit Entwurfssoftware VIVADO, NEXYS4-FPGA-Development Board, Testbenches, Messgeräte

Literatur
XILINX Inc.: HighLevel-Synthesis: UG871 (v2016.1) April 6, 2016
XILINX Inc.: UltraFast Design Methodology Guide for the Vivado Design Suite

Weitere Informationen zur Lehrveranstaltung
Die Lehrveranstaltung ist ein Teil des Moduls B2.4: *Verfahren der Signalverarbeitung und deren Implementierungen (Methods of Signal Processing and their Implementations)*
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Basismodul 3 (Basic Module 3)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul 3 (Basic Module 3)</td>
<td>B 3</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

Prof. Dr. Peter Bickel	Allgemeinwissenschaften und Mikrosystemtechnik
Prof. Dr. Dieter Kohlert	Elektro- und Informationstechnik
Prof. Dr. Alfred Lechner	Allgemeinwissenschaften und Mikrosystemtechnik
Prof. Dr. Jürgen Mottok	Elektro- und Informationstechnik
Prof. Dr. Walter Rieger	Allgemeinwissenschaften und Mikrosystemtechnik

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Für DT2: Digitaltechnik Grundlagen; insbesondere Zahlensysteme, Bool'sche Algebra, Schaltnetze, KV-Diagramm, einfache Zählerschaltungen
Für CI: Werkstoffe
Für LT: Basic Physic lectures (TP1, TP2), Electro-dynamics, Maxwell equations, Planck black body radiation, Basic facts of solid state physics, Linear algebra, matrix and vector calculus, Technical Optics
Für EMC: Digitaltechnik, Mikrocomputer, Informatik, Automatisierungssysteme

Inhalte

siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chemie für Ingenieure (Engineering Chemistry)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Digitaltechnik 2 (Digital Design 2)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Embedded Communication</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Photonics and Laser Technology</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Das Modul Chemie für Ingenieure (CI) kann nicht gewählt werden mit einem einschlägigen Studiengang der Mikrosystemtechnik bzw. Sensorik und Analytik.

Stand: 01.04.2019

Ostbayerische Technische Hochschule Regensburg
Das Modul Digitaltechnik 2 (DT2) kann nicht gewählt werden mit einem einschlägigen Studiengang der Elektrotechnik.
Das Modul "Photonics and Laser" (LT) kann nicht gewählt werden, wenn es im Bachelorstudiengang Mikrosystemtechnik der OTHR bereits belegt wurde.
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemie für Ingenieure (Engineering Chemistry)</td>
<td>CI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
</tr>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 60h
- Eigenstudium: 90h

Studien- und Prüfungsleistung
- Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
- Siehe Studienplantabelle
Inhalte

Anorganische Chemie

- Atommodelle: Rutherford, Bohr, Quantenmechanik, Quantenzahlen
- Periodensystem der Elemente: Metallcharakter, Ionisierungsenergie, Ionenradien, Elektroaffinität, Elektronegativität

Organische Chemie

- Orbitaltheorien und Atombindung
- Hybridisierung und Bindungstypen in der Organischen Chemie
- Alkane, Alkene, Alkine, Aromaten, Funktionelle Gruppen
- Reaktionsmechanismen: Nukleophile und Radikalische Substitution, Eliminierungsreaktionen, Additionsreaktionen, Oxidationen und Dehydrierungen, Reaktionen von Carbonylverbindungen, Säuren und Säurederivaten.

Kunststoffe

- Kunststoffklassen
- Strukturbedingte Eigenschaften von Kunststoffen
- Chemie der Kunststoffherstellung
- Verarbeitungsmethoden

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

- Aufbau der Materie, Bindungsverhältnisse, essentielle Stoffgruppen und Reaktionen in der Anorganischen und Organischen Chemie, Arten, Herstellung und Verarbeitung von Kunststoffen

Fertigkeiten:

- Fertigkeit, chemische Problemstellungen zu analysieren und geeignete Verfahren zur Lösung auszuwählen
- Fertigkeit der Berechnung von pH-Werten und Redoxpotentialen

Kompetenzen:

- Verständnis und Anwendung chemischer Grundlagen auf komplexere chemische Zusammenhänge
- Kompetenz der Interpretation und Steuerung chemischer Gleichgewichte
- Befähigung zum Verständnis der spezialisierenden Vorlesung „Halbleiterchemie“
Lehrmedien
Tafel, Notebook, Beamer

Literatur
- Riedel, Erwin, Allgemeine und Anorganische Chemie, de Gruyter Berlin; 11. Auflage 2013
- Erwin Riedel, Willm Grimmich, Atombau, Chemische Bindung, Chemische Reaktion, Grundlagen in Aufgaben und Lösungen, Gruyter Verlag 1992
- Michaeli, Walter (HRSG), Technologie der Kunststoffe, Hanse Verlag GmbH Co. KG; München, 4. Auflage 2015
- König, Burkhard, Organische Chemie, WILEY-VCH Weinheim 2007
- Annette Beck-Sickinger (Herausgeber), Ulrich Hahn (Herausgeber), Lehrbuch der Biochemie, 2. Auflage, WILEY-VCH Weinheim, 2010

Weitere Informationen zur Lehrveranstaltung
Empfohlene Vorkenntnisse: Werkstoffe
Das Modul befähigt zum Verständnis des Vertiefungsmoduls Halbleiterchemie.
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Basismodul 3 (Basic Module 3)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitaltechnik 2 (Digital Design 2)</td>
<td>DT2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übung

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- CMOS-Grundschatlungen kombinatorisch
- CMOS-Grundschatlungen sequentiell
- Bipolar-Grundschatlungen kombinatorisch
- Komplexe Grundfunktionen; Addierer, Multiplizierer
- Zustandsautomaten
- Systematischer Entwurf komplexer Digitalsysteme

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:
- Kenntnis der Grundschatlungen der digitalen Mikroelektronik
- Kenntnis der Grundblöcke komplexer Systeme

Fertigkeiten:
- Schaltungsentwurf digitaler integrierter Schaltungen
- Systemdesign digitaler integrierter Schaltungen

Kompetenzen:
- Systematischer Entwurf komplexer digitaler Systeme auf Gatter- und Register-Transfer-Ebene

Stand: 01. 04. 2019

Ostbayerische Technische Hochschule Regensburg

Seite 34
<table>
<thead>
<tr>
<th>Lehrmedien</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grafiktablett, Lückenskript PDF, PDF Annotator, Rechner/Beamer, Simulationssoftware, Tafel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
<td></td>
</tr>
<tr>
<td>Digitaltechnik Grundlagen:</td>
<td></td>
</tr>
<tr>
<td>Zahlensysteme, Bool'sche Algebra, Schaltnetze, KV-Diagramm, einfache Zählerschaltungen</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>LV-Kurzbezeichnung</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Embedded Communication</td>
<td>EMC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Jürgen Mottok</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminarisitischer Unterricht mit Elementen der aktivierenden Lehre:
- Nutzung konstruktivistischer Lernarrangements (beispielsweise Gruppenpuzzle)
- Selbstgesteuertes Lernen: Just in Time Teaching (JiTT aktiviert Studierende durch webbasierte Aufgaben [Leseaufträge und Übungsaufgaben], die diese zur Vorbereitung der nächsten Lehrveranstaltung bearbeiten. Studierenden wird ein Mehrwert geboten in der interaktiven Lehrveranstaltung zu erscheinen, in der Probleme und Fragen geklärt werden, die sie in ihrer eigentändigen Vorbereitung gefunden haben.)
- Situates Lernen (Übungen mit Embedded Systemen mit Buscontroller, Kommunikationssysteme)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

Inhalte:
Realtime Operating Systeme (OSEK)
- Scheduling Algorithmen
- Technische Aspekte von Realtime Operating Systemen
- Seminarvortrag durch die Studierenden: Analyse aktueller Veröffentlichungen zu Realtime Operating Systemen

Bussysteme für Echtzeitverarbeitung
- Übersicht über relevante Bussysteme
- aktuelles Beispielsystem, zur Zeit CAN
- Implementierung der ISO/OSI Schichten

Bussysteme im Bereich IT
- Übersicht über relevante Bussysteme
- aktuelles Beispielsystem, zur Zeit Ethernet
- Anwendungsbeispiele mit Bezug zu Energienetzen und Elektromobilität

Lernziele/Lernergebnisse/Kompetenzen
Vertiefte Kenntnisse über RT-OS vor allem bezüglich
- Anwendung
- Scheduling Verfahren
- Mehrprozessorsystemen
- Standardisierung

Fertigkeit, geeignete Bussysteme für die verschiedensten Anwendungsfälle auswählen und anwenden zu können, unter den Aspekten
- Realtime
- IT
- Sicherheit und Zuverlässigkeit
• Angriffe

Fachliche Kompetenzen (nach Bloom)

• eigenständige Auswahl einer geeigneten Bustechnologie
• eigenständige Auswahl eines geeigneten Schedulingverfahrens für Real-Time Embedded Systems

Angebotene Lehrunterlagen

Skript

Lehrmedien

elektronisches Skript, Simulationssoftware, Entwicklungsumgebung

Literatur

• Andy Wellings, Alan Burns: Real-Time Systems and Programming Languages - third edition, Pearson / Addison Wesely
• Andrew S. Tanenbaum: Moderne Betriebssysteme, 2., überarbeitete Auflage, Pearson Studium - Prentice Hall

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Digitaltechnik, Mikrocomputer, Informatik, Automatisierungssysteme
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photonics and Laser Technology</td>
<td>LT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übung

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>englisch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)
Modulname: Basismodul 3 (Basic Module 3)

Inhalte

1. Characterization of light
 Temporal and spatial coherence
 Photon statistic and blackbody radiator, Planck’s law
 Sources of radiation
2. Interaction of electromagnetic waves with atomic systems
 Radiation field
 Emission and absorption of electromagnetic radiation, Spontaneous and induced emission
 Two level system, thermal equilibrium
 Population density balance
3. Spectral lines and line shape
 Spectral line broadening
4. Physical elements of lasers
 Storage of light: Resonator types and their geometry
 Losses in resonators, optical resonators modes
 Wavelength and mode selection, princille of Quality switching
5. The laser principle
 Creation of a population inversion, three and four level system,
 amplification of light and feedback, theoretical efficiency of lasers,
 threshold condition, bandwidth and mode spectrum, dynamics of laser systems
6. Beam propagation
 The Gauss beam
 Focussing of laser beams
 Atmospheric transmission and turbulence
7. Example of real laser systems
 Gas Lasers: CO2 laser, Excimer laser, HeNe laser, Ar-Ion laser
 Diode lasers
 Solid state laser: NdYag laser, ErYag laser ...
 Diode pumped solid state lasers
 Dye lasers
8. Technical aspects of optical elements used in lasers
 Metal mirrors versus dielectric mirrors, Brewster – plates, Electro-optical active elements,
 Pockels- and Kerr cell, Polarizers, Beam steering elements – Laser optics
 Technical aspects of Q-switch,
 Short pulse creation: ps- and fs-lasers
9. Laser beam material interaction
 Dielectric function, Absorption and reflection, Plasma formation, Pl. frequency ...
10. Micro machining with lasers
11. Lasers for measuring
 Distance measurement, interferometry, ...
12. Other applications:
 Medical appl., CD player, laser gyro, ...
13. Eye Safety – Laser hazards

Lernziele/Lernergebnisse/Kompetenzen

Knowlege:
- Properties of electromagnetic waves and radiation
- Understanding basic physics and theory of laser operation.
- Knowledge of technical elements of lasers
- Laserbeam propagation
- Overview over most popular lasers and their application
- Basic physics of Laser material interaction
- Laser applications in machining, medicine and measurement
- Understanding the hazard of laser operation

Skills:

- The participants will learn the tools to design a laser system.
- Ability to calculate and design an optical resonator and predict the laser beam properties.

Competences:

- After the course, the attendant should be able to design a laser system and perform all necessary basic calculations for it, e.g. performance data like divergence, output power estimation, Gauß beam characterization, resonator layout ...
- The ability to choose an adequate laser system for a specific material processing task.
- Responsibility in handling laser hazard and maintain eye safety

Angebotene Lehrunterlagen

Script is available in English

Lehrmedien

Board, Notebook, Beamer, Experiments
Literatur

Literature for laser basics:
- N. Hodgeson, H.Weber: „Optische Resonatoren“, Springer Verlag

Special lasers:
- W.J. Witteman: “The CO2 Laser”, Springer Verlag

Laser material interaction:
- Martin von Allmen: “Laser-Beam Interactions with Materials” Springer Verlag
- P. Gibbon: "Short Pulse Laser Interactions with Matter"; Imperial College Press, 2005

Optics:

This is the standard reference for classical optics. It should be a part of every optics library. Although it does not deal with computer algorithms or numerical analysis, it covers most of the optical principles used in

Nonlinear optics:
- Y.R. Shen: Principles of Nonlinear Optics; Wiley, 1984
- P.N. Butcher, D. Cotter: The Elements of Nonlinear Optics; Wiley 1984
- D.L. Mills: Nonlinear Optics; Springer 1999
- M. Schubert, B. Wilhelmi: Nonlinear Optics and Quantum Electronics; Wiley 1986

Weitere Informationen zur Lehrveranstaltung

We will visit the laboratory "Photonics" for laser experiments.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul 4 (Basic Module 4)</td>
<td>B 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Franz Graf</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td></td>
<td>Schwerpunkt Pflichtmodul</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Keine

Empfohlene Vorkenntnisse

Für FK 2: Allgemeine Physik und Mathematik
Für MC: Digitaltechnik, Schaltungstechnik, Grundlagen der Programmierung in C oder C++
For TOM: Mathematics (vector analysis, differential and integral calculus, complex number, Fourier transformation) and physics (Engineering Optics), Microtechnology (Microfabrication)

Inhalte

Siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Applied Optics</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Microcontrollers</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Das Modul Festkörperphysik 2 (FK 2) kann nicht gewählt werden mit einem einschlägigen Studiengang der Mikrosystemtechnik.
Das Modul Mikrocomputertechnik (MC) kann nicht gewählt werden mit einem einschlägigen Studiengang der Elektrotechnik.
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Optics</td>
<td>A0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Bickel</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht; 15 bis 25% Übungsanteil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
<tr>
<td>Eigenstudium</td>
</tr>
<tr>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>
Inhalte

Elements of Mathematics
- Complex Numbers (mathematical representation of traveling waves)
- Fourier Transformation (complex notation, basic Fourier rules)
- Wave equation

Essential Optics
- Physics of Light (Maxwell equation, boundary conditions, wave propagation, electromagnetic waves, polarization, plane waves, wavefronts, Gaussian Beam (paraxial wave equation), energy (pointing vector), free-space and waveguide propagation)
- Optical Materials (refractive index, polarizability, atomic susceptibility, Lorentz Oscillator Model, dispersion, attenuation, glass, semiconductors, other materials)
- Optical interfaces (reflection and refraction, Fresnel equations, power transmission and reflection, internal reflection, evanescent field, optical multilayer coatings)

Microoptics
- Reflective Microoptics (reflection, planar mirrors, nonplanar mirrors, micromirrors)
- Refractive Microoptics (lens fundamentals, Imaging, Gaussian optics, primary aberrations, Chromatic aberrations, microlenses, planar GRIN microlenses, GRIN rod lens, ball lenses, micro-Fresnel lenses)
- Diffractive Microoptics (Diffraction, Fresnel-Krichhoff formula, practical apertures, gratings, diffractive microlenses)
- Guided-wave microoptics (waveguides, ray-optic model, electromagnetic model, integrated waveguide optics, waveguide characterization, waveguide components, optical fibers)

Microoptical Fabrication
- Basic Semiconductor Processing (lithography, deposition, etching, assembly)
- Fabrication of Microlenses (self-assembly lenses, microcontact printing, lithography for microlenses)
- MEMS Fabrication (bulk micromachining, surface micromachining, Deep reactive ion etching of silicon, LIGA process, micromolding techniques)

Compound and Integrated Free-Space Optics
- Microoptical Imaging (multi-aperture imaging, space-bandwidth product, microoptical imaging for interconnection, guiding of high power beam)
- Integrated Free-Space Optics (MEMS-based integrated free-space optics, stacked planar optics, planar integrated free-space optics, and design of free-space optical systems.)

Lernziele/Lernergebnisse/Kompetenzen

Knowledge:
- Knowledge about the physical background and the key areas of microoptics
- Knowledge about of the topics basic optics, optical materials, refraction,
- diffraction, micro mirrors, micro lenses and guided-wave micro optics.
- Knowledge about the fabrication technique of micromechanical components
- Knowledge about and the function, design and realization of compound and integrated free space optics
Skills:

- Correct use of technical termers,
- Correct application of the introduced methods

Competences:

- Correct application of the introduced formulas on problems of microoptics

Lehrmedien

- Tafel, Notebook, Beamer et al.

Literatur

- Jürgen Jahns, Stefan Helfert, Introduction to Micro and Nanooptics, WILEY-VCH GmbH & Co. KGaA, Weinheim (Germany) (2012)
- Stefan Sinzinger, Jürgen Jahns, Microoptics, WILEY-VCH GmbH & Co. KGaA, Weinheim (Germany) (2003)

Optics in common:

- Bergmann, Schäfer “Lehrbuch der Experimentalphysik” Band III, Optik, Walter de Gruyter Verlag
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festkörperphysik 2 (Solid State Physics 2)</td>
<td>FK2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit 15 bis 25% Übungsanteil

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg
Inhalte

1. Freie Elektronen im Festkörper
- Adiabatische Näherung (Born-Oppenheimer)
- Elektronen als Welle
- Elektron im Kastenpotential
- Einelektronennäherung
- Freies Elektronengas im Kastenpotential (Sommerfeld-Bethe)
- Zustandsdichte, tatsächliche Besetzungsdichte
- Fermi-Energie, - Temperatur, - Wellenlänge, - Geschwindigkeit
- Beitrag der Metallelektronen zur spezifischen Wärme
- Beitrag der Metallelektronen zur Wärmeleitfähigkeit
- Elektrische Leitfähigkeit von Metallen
- Fermi-Verteilung unter dem Einfluss äußerer Felder
- Vergleich Sommerfeld-Bethe Modell mit Drude Modell
- Ursache des elektrischen Widerstandes
- Zusammenhang zwischen elektrischer Leitfähigkeit und Wärmeleitfähigkeit von Metallen

2. Bändermodell des Festkörpers
- Berücksichtigung der Wechselwirkung mit dem periodischen Gitterpotential
- Periodische Randbedingungen, Oberflächen
- Metallbindung, kovalente Bindung und Ionenbindung in Kristallen
- Ursache der Bildung von Kristallen
- Modell des fast freien Elektrons
- Stehende Elektronenwellen im Kristall
- Energiebänderdiagramm: ausgedehntes, periodisches und reduziertes Zonenschema
- Blochsches Theorem, Blochwellen
- Richtungsabhängigkeit der Dispersionskurven, Überlapp von Bändern
- Metalle, Halbleiter und Isolatoren
- Effektive Masse von Kristallelektronen
- Elektronenfehlstellen (Löcher)
- Darstellungsformen der Energiebänder von 2- und 3-dimensionalen periodischen Potentialen
- Brillouinzonen und reziprokes Gitter
- Visualisierung der Bandstruktur für 2-dim Strukturen am Beispiel von Graphen
- Flächen konstanter Energie im 3-dim Kristall, Fermi-Flächen von Metallen
- Bandstruktur von Halbleitern
- Indirekte und direkte Halbleiter
- Bandstruktur von Silizium und Germanium
- Bandstruktur von Galliumarsenid
- „schwere“ und „leichte“ Löcher
- Bandstruktur und Zustandsdichte
- Photoemissionsspektroskopie
- Kristallelektronen unter dem Einfluss äußerer Kräfte
- Effektiver Masse Tensor
- Parabelnäherung
- Dotierte und undotierte Halbleiter
- Elektrische Leitfähigkeit in Halbleitern
- Ladungsträgerbeweglichkeit, Hall-Effekt
- Modell des stark gebundenen Elektrons
LCAO-Methode, Hybridisierung, Kristallstruktur von Halbleitern

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

- Kenntnis physikalische Modelle zur Beschreibung der Eigenschaften von Elektronen in Festkörpern.
- Kenntnis der auf mikroskopischen Betrachtungen beruhenden Modelle zur Beschreibung folgender makroskopisch messbarer physikalischer Größen: z.B. Elektrische Leitfähigkeit, Thermische Leitfähigkeit, Wärmekapazität, Thermoelektrizität, Hall-Effekt, Ladungsträgerdichten bei Halbleitern
- Grundlagen elektrischer und dielektrischer Eigenschaften von Festkörpern

Fähigkeiten:

- Sicheren Umgang mit den Fachbegriffen beherrschen.
- Modelle der Festkörperphysik und die physikalische Bedeutung von Gleichungen erklären können.

Kompetenzen:

- Anwendung der im Rahmen der Modelle vorgestellten Gleichungen und mathematischen Methoden auf konkrete Problemstellungen der Festkörperphysik.

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Friedsam: Skript zur Vorlesung Festkörperphysik II
- Ibach, Lüth: Festkörperphysik
- Hunklinger: Festkörperphysik
- Kopitzki: Einführung in die Festkörperphysik
- Gross, Marx: Festkörperphysik

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Allgemeine Physik und Mathematik
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Modulname:</th>
<th>Basismodul 4 (Basic Module 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV-Kurzbezeichnung</td>
<td>MC</td>
</tr>
</tbody>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Fakultät</th>
<th>Elektro- und Informationstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Franz Graf</td>
<td></td>
</tr>
</tbody>
</table>

Lehrende/r / Dozierende/r

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
<th>nur im Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Franz Graf</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übung

Studiensemester

<table>
<thead>
<tr>
<th>Studienplan</th>
<th>[SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Einbettung von Mikrorechnern in Anwendungen (embedded control)
- Interne Aufbau, externe Erweiterungen,
- Speichersysteme, Speicheradressierung mit CS-Logik, Speichermapping
- Input-/Outputsysteme, Bussysteme mit parallelen und seriellen Schnittstellen, digitale und analoge Peripherie,
- prinzipielle Datenerfassungssysteme und -abläufe: polling, interrupt, DMA
- externe/interne Peripherieeinheiten wie Interruptsystem, GPT-Counter/Timer, PWM, ADC
- Assemblerprogrammierung: Sprachstruktur und -umfang,
- Strukturierte Programmierung und Dokumentation, Programmierwerkzeuge und Debugging

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

Fähigkeiten:
Fähigkeit zur Anwendung eines Mikrocontrollers und zur Anwendung der Assemblersprache.

Kompetenzen:

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- User Manual

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Digitaltechnik, Schaltungstechnik, Grundlagen der Programmierung in C oder C++
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Betriebswirtschaft für Ingenieure (Business Management for Engineers)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebswirtschaft für Ingenieure (Business Management for Engineers)</td>
<td>BI/I1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Bock (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
<tr>
<td>Prof. Dr. Josef Duttle</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Brigitte Kauer (LB)</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Eva Neumaier (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
<tr>
<td>Dr. Martin Winkler (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.,</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>12</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

See AW-Katalog

Empfohlene Vorkenntnisse

See AW-Katalog

Inhalte

See AW-Katalog

Lernziele/Lernergebnisse/Kompetenzen

See AW-Katalog

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Project Management</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Zusatzausbildung Ingenieur als Unternehmer (Additional Training as Engineer as Entrepreneur)</td>
<td>4 SWS</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Zusatzausbildung Technischer Vertrieb (Additional Training in Technical Sales)</td>
<td>6 SWS</td>
<td>6</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Das Modul "Betriebswirtschaft für Ingenieure" setzt sich aus Modulen des AW-Programms der OTH Regensburg zusammen. Modulbeschreibungen und Anmeldung über die Homepage des AW-Programms.

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg
Seite 52
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management</td>
<td>PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Martin Winkler (LB)</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Martin Winkler (LB)</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>2 SWS</td>
<td>englisch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe AW-Katalog

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe AW-Katalog

Inhalte

Siehe AW-Katalog

Lernziele/Lernergebnisse/Kompetenzen

Siehe AW-Katalog

Angebotene Lehrunterlagen

Siehe AW-Katalog

Lehrmedien

Siehe AW-Katalog

Literatur

Siehe AW-Katalog

Weitere Informationen zur Lehrveranstaltung

Näheres regelt der Kurskatalog des AW-Programms der OTH Regensburg.
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Modulname:</th>
<th>Zusatzausbildung Ingenieur als Unternehmer (Additional Training as Engineer as Entrepreneur)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigitte Kauer (LB)</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigitte Kauer (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Seminaristischer Unterricht</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
</tr>
</tbody>
</table>

Inhalte

<table>
<thead>
<tr>
<th>Siehe AW-Katalog</th>
</tr>
</thead>
</table>

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Siehe AW-Katalog</th>
</tr>
</thead>
</table>

Lehrmedien

<table>
<thead>
<tr>
<th>Siehe AW-Katalog</th>
</tr>
</thead>
</table>

Literatur

<table>
<thead>
<tr>
<th>Siehe AW-Katalog</th>
</tr>
</thead>
</table>
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Betriebswirtschaft für Ingenieure (Business Management for Engineers)

Weitere Informationen zur Lehrveranstaltung

Ziele dieser Zusatzausbildung sind:
- Unternehmerisches Denken und Handeln fördern
- Betriebswirtschaftliche Aspekte der Unternehmensgründung erläutern
- Unternehmensführung für Ingenieure vermitteln
- Unternehmerisches Handeln in der Gründungssituation trainieren

Näheres regelt der Kurskatalog des AW-Programms der OTH Regensburg.
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zusatzausbildung Technischer Vertrieb (Additional Training in Technical Sales)</td>
<td>ZTV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva Neumaier (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
<tr>
<td>Prof. Dr. Josef Duttle</td>
<td></td>
</tr>
<tr>
<td>Robert Bock (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Bock (LB)</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>Prof. Dr. Josef Duttle</td>
<td></td>
</tr>
<tr>
<td>Eva Neumaier (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrenform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
</tr>
</tbody>
</table>
Inhalte

Inhalte:

- Grundlagen des Marketing: Marktinformation, Marktsegmentierung, Kaufverhalten, Marketinginstrumente, Investitionsgütermarketing, Marketingplanung
- Grundlagen des Vertriebs: Vertriebsorganisation, Vertriebswege, Vertriebsorgane, Vertriebsingenieur, Angebotsbearbeitung, Auftragsbearbeitung, Angebotspreisbestimmung
- Grundlagen des Verkaufs: Verkaufsgespräch, Kommunikationstechnik (Fragetechnik, Einwandtechnik, Argumentationstechnik), Präsentation

Näheres regelt der Kurskatalog des AW-Programms der OTH Regensburg.

Lernziele/Lernergebnisse/Kompetenzen
Siehe AW-Katalog

Angebotene Lehrunterlagen
Siehe AW-Katalog

Lehrmedien
Siehe AW-Katalog

Literatur
Siehe AW-Katalog
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Internationale Handlungskompetenz (Intercultural Competence)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internationale Handlungskompetenz (Intercultural Competence)</td>
<td>IH/I3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrike de Ponte</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Wilfried Dreyer</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>12</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Siehe Homepage-IHaKo

Empfohlene Vorkenntnisse
Siehe Homepage-IHaKo

Inhalte
Nicht nur im wirtschaftlichen Sektor, sondern auch im technischen, sozialen und öffentlichen Betätigungsfeld sowie im Gesundheits-, Forschungs- und Bildungsbereich, hat man mit KollegenInnen, MitarbeiterInnen, Vorgesetzten, KundenInnen, KlientenInnen, SchülernInnen etc. aus unterschiedlichen Kulturen zu tun.
Daraus ergibt sich die Notwendigkeit, ein Bewusstsein dafür zu entwickeln, wie kulturspezifische Orientierungssysteme Wahrnehmung, Denken, Empfindungen sowie menschliches Verhalten beeinflussen.
Unterschiede zwischen dem eigenkulturellen und fremdkulturellen Orientierungssystemen zu kennen, zu verstehen und zu würdigen, und zudem darauf aufbauend die Fähigkeit zu entwickeln, produktiv und sozialverträglich damit umzugehen.
Kurzum: Die Entwicklung einer überfachlichen Schlüsselqualifikation "Internationale Handlungskompetenz" ist gefordert.
Dies gilt im Besonderen für Fach- und Führungskräfte und wird für HochschulabsolventenInnen immer mehr zum Einstellungskriterium.

Lernziele/Lernergebnisse/Kompetenzen
Siehe Homepage-IHaKo

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg Seite 58
Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Analyse kulturell bedingter Konfliktsituationen (Analysis of Culturally Influenced Interactions)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Internationale Handlungskompetenz erkennen und fördern (Assessing and Advancing Intercultural Competence)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Kulturelle Differenz und interkulturelles Handeln (Cultural Differences and Intercultural Action)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Wissenschaftliche Grundlagen interkultureller Handlungskompetenz (Scientific basis of Intercultural Competence)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Das interdisziplinäre Wahlpflichtmodul "Internationale Handlungskompetenz" (IHaKo) ist als Zusatzqualifikation Teil des AW-Programms der OTH Regensburg. Modulbeschreibungen und Anmeldung über die IHaKo Homepage: www.oth-regensburg.de/ihako
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse kulturell bedingter Konfliktsituationen (Analysis of Culturally Influenced Interactions)</td>
<td>AK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrike de Ponte</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrike de Ponte</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe IHaKo-Homepage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe IHaKo-Homepage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe IHaKo-Homepage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe IHaKo-Homepage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe IHaKo-Homepage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe IHaKo-Homepage</td>
</tr>
</tbody>
</table>
Modulname:
Internationale Handlungskompetenz (Intercultural Competence)

Lehrveranstaltung

<table>
<thead>
<tr>
<th>Internationale Handlungskompetenz erkennen und fördern (Assessing and Advancing Intercultural Competence)</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IHE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrike de Ponte</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Wilfried Dreyer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrike de Ponte</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Prüfungsleistung und Zulassungsvoraussetzung siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
Siehe IHaKo-Homepage

Lernziele/Lernergebnisse/Kompetenzen
Siehe IHaKo-Homepage

Angebotene Lehrunterlagen
Siehe IHaKo-Homepage

Lehrmedien
Siehe IHaKo-Homepage

Literatur
Siehe IHaKo-Homepage

Weitere Informationen zur Lehrveranstaltung
Siehe IHaKo-Homepage
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulturelle Differenz und interkulturelles Handeln (Cultural Differences and Intercultural Action)</td>
<td>KD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wilfried Dreyer</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wilfried Dreyer</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Dozententeam IHaKo</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Siehe IHaKo-Homepage

Lernziele/Lernergebnisse/Kompetenzen

Siehe IHaKo-Homepage

Angebotene Lehrunterlagen

Siehe IHaKo-Homepage

Lehrmedien

Siehe IHaKo-Homepage

Literatur

Siehe IHaKo-Homepage

Weitere Informationen zur Lehrveranstaltung

Siehe IHaKo-Homepage
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Internationale Handlungskompetenz (Intercultural Competence)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissenschaftliche Grundlagen interkultureller Handlungskompetenz (Scientific basis of Intercultural Competence)</td>
<td>WGH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wilfried Dreyer</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wilfried Dreyer</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform: Seminaristischer Unterricht

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Siehe IHaKo-Homepage

Lernziele/Lernergebnisse/Kompetenzen

Siehe IHaKo-Homepage

Angebotene Lehrunterlagen

Siehe IHaKo-Homepage

Lehrmedien

Siehe IHaKo-Homepage

Literatur

Siehe IHaKo-Homepage

Weitere Informationen zur Lehrveranstaltung

Siehe IHaKo-Homepage

Stand: 01. 04. 2019

Ostbayerische Technische Hochschule Regensburg
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
International Research Methodology and Communication | I 6

Modulverantwortliche/r	**Fakultät**
Vorsitzender der Prüfungskommission | Allgemeinwissenschaften und Mikrosystemtechnik

Studiensemester gemäß Studienplan	**Studienabschnitt**	**Modultyp**	**Arbeitsaufwand [ECTS-Credits]**
1., 2., 3. | | Schwerpunkt Wahlpflichtmodul | 12

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Je nach Modul

Inhalte
Siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen
Siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>English for Master Students</td>
<td>7 SWS</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>German for International Students</td>
<td>7 SWS</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>Project Management</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Research Methodology</td>
<td>3 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Eine Belegung von Lehrveranstaltungen im Rahmen der Module *English for Master Students* und *German for International Students*, kann erst nach Antrag und Beschluss durch die PK erfolgen.
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: International Research Methodology and Communication

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>English for Master Students</td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorsitzender der Prüfungskommission</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Lehrende im AW-Programm (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>7 SWS</td>
<td>englisch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>105h</td>
<td>105h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe AW-Katalog

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe AW-Katalog

Inhalte
Siehe AW-Katalog

Lernziele/Lernergebnisse/Kompetenzen
Siehe AW-Katalog

angebotene Lehrunterlagen
Siehe AW-Katalog

Lehrmedien
Siehe AW-Katalog

Literatur
Siehe AW-Katalog

Weitere Informationen zur Lehrveranstaltung
Die Studierenden wählen aus dem Sprachangebot des AW-Programms der OTH Regensburg Englischkurse im Umfang von 7 SWS und 7 ECTS.
Die Belegung eines Sprachkurses kann erst nach Antrag und Beschluss durch die PK erfolgen.

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg Seite 65
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>German for International Students</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorsitzender der Prüfungskommission</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Lehrende im AW-Programm (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache deutsch/englisch</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>7 SWS</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>105h</td>
<td>105h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe AW-Katalog</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausländische Studierende wählen aus dem Sprachangebot des AW-Programms der OTH Regensburg Deutschkurse im Umfang von 7 SWS und 7 ECTS. Die Belegung eines Sprachkurses kann erst nach Antrag und Beschluss durch die PK erfolgen.</td>
<td></td>
</tr>
</tbody>
</table>
Lehrveranstaltung | **LV-Kurzbezeichnung**
---|---
Project Management | PM

Verantwortliche/r	**Fakultät**
Vorsitzender der Prüfungskommission | Allgemeinwissenschaften und Mikrosystemtechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Dr. Martin Winkler (LB) | nur im Wintersemester

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>2 SWS</td>
<td>englisch</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe AW-Katalog

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe AW-Katalog

Inhalte
Siehe AW-Katalog

Lernziele/Lernergebnisse/Kompetenzen
Siehe AW-Katalog

Angebotene Lehrunterlagen
Siehe AW-Katalog

Lehrmedien
Siehe AW-Katalog

Literatur
Siehe AW-Katalog

Weitere Informationen zur Lehrveranstaltung
Näheres regelt der Kurskatalog des AW-Programms der OTH Regensburg.
<table>
<thead>
<tr>
<th>Name des Studiengangs:</th>
<th>Master Electrical and Microsystems Engineering (PO: 20182)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname:</td>
<td>International Research Methodology and Communication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Methodology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorsitzender der Prüfungskommission</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Gudrun Seebauer (LB)</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>3 SWS</td>
<td>englisch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>45h</td>
<td>45h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe AW-Katalog

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe AW-Katalog

Inhalte
Siehe AW-Katalog

Lernziele/Lernergebnisse/Kompetenzen
Siehe AW-Katalog

Angebotene Lehrunterlagen
Siehe AW-Katalog

Lehrmedien
Siehe AW-Katalog

Literatur
Siehe AW-Katalog

Weitere Informationen zur Lehrveranstaltung
Näheres regelt der Kurskatalog des AW-Programms der OTH Regensburg.

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg Seite 68
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualität und Zuverlässigkeit</td>
<td>QZ/I4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Hopfenmüller</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Schwerpunkt Wahlpflichtmodul | 12 |

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen
Siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fortgeschrittene Methoden des Qualitätsmanagements (Advanced Methods of Quality Management)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Sicherheit und Zuverlässigkeit von Systemen (Safety and Reliability of Systems)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

Fortgeschrittene Methoden des Qualitätsmanagements (Advanced Methods of Quality Management)

LV-Kurzbezeichnung: FQM

Verantwortliche/r:

Prof. Dr. Manfred Hopfenmüller

Fakultät:

Allgemeinwissenschaften und Mikrosystemtechnik

Lehrende/r / Dozierende/r:

Prof. Dr. Manfred Hopfenmüller

Angebotsfrequenz:

nur im Sommersemester

Lehrform:

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester gemäß Studienplan

Lehrumfang

[SWS oder UE]

Lehrsprache

deutsch

Arbeitsaufwand
[ECTS-Credits]

1., 2., 3.
4 SWS
5

Zeitaufwand:

Präsenzstudium: 60h

Eigenstudium: 90h

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- QM - Grundlagen und Begriffe (Wiederholung und gemeinsame Basis zur Verständigung)
- Qualitätsmanagement in unterschiedlichen Branchen
- Total Quality Management (TQM) mit einschlägigen Modellen zur Umsetzung (z.B. EFQM)
- Managementsysteme in verschiedenen Ausprägungen, Gemeinsamkeiten und Unterschiede
- Verwandte Ansätze und Konzepte (Prozessmanagement, Innovationsmanagement, Wissensmanagement, Lean, Reifegradmodelle u.v.a.)
- Stand der Forschung zum Thema QM und Managementsysteme
- Methoden und Werkzeuge (Balanced Score Card, Six Sigma, Risikomanagement/FMEA, Audits, KVP/Kaizen, Problemlösungsmethodik u.a.)

Lernziele/Lernergebnisse/Kompetenzen

Im Einzelnen haben die Studierenden nach Abschluss des Moduls auf Basis wissenschaftlicher Methoden die folgenden Lernziele erreicht:

Fachkompetenz:

- Die Studierenden können aufbauend auf Grundkenntnissen des Qualitäts- und Prozessmanagement sowie der betrieblichen Organisation ihr Wissen auf dem Gebiet der Managementsysteme, insb. der Qualitätsmanagementsysteme (QM-Systeme) und einschlägiger Methoden des Qualitätsmanagement gezielt und auf dem aktuellen Stand der Wissenschaft vertiefen.

Stand: 01. 04. 2019

Ostbayerische Technische Hochschule Regensburg
• Sie werden damit befähigt, Managementsysteme im Unternehmen zu verbessern und in enger Zusammenarbeit mit allen betrieblichen Funktionsbereichen zur Exzellenz weiterzuentwickeln.

Methodenkompetenz:

• Die Studierenden können das QM-System eines Unternehmens gezielt charakterisieren, sein Zusammenwirken mit anderen Ansätzen wie z.B. Lean, Prozessmanagement, Innovationsmanagement analysieren und durch effektiven und effizienten Methodeneinsatz eine nachhaltige Verbesserung des gesamten Managementsystems in die Wege leiten.
• Darüber hinaus wird im Rahmen der Seminararbeiten die Kompetenz in wissenschaftlicher Methodik und schriftlicher Aufbereitung von Arbeitsergebnissen vertieft.

Sozialkompetenz:

• Im Rahmen der Themenabgrenzung und teilweise gemeinsamen Erarbeitung lernen die Studierenden die zielorientierte Kooperation mit anderen (Teamfähigkeit und Kommunikation). Im Rahmen der Präsentationen wird die Fähigkeit zur zielgruppengerechten Darstellung von Arbeitsergebnissen, zu deren fachlicher Verteidigung sowie zur Kommunikation allgemein (Präsentation, Argumentation, Geben und Annehmen von Feedback) vertieft.

Persönliche Kompetenz:

• Die Studierenden werden sich der Rolle des modernen Qualitätsmanagements im Unternehmen bewusst, insb. der Tatsache, dass QM und andere Ansätze einander ergänzen, und dass die Mitwirkung im Qualitätsmanagement nicht auf Zugehörigkeit zu einer entsprechenden Organisationseinheit beschränkt ist.

Angebotene Lehrunterlagen

Skriptum

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Pflichtliteratur:
Skriptum zu „QM – Grundlagen und Begriffe“

Zusätzlich empfohlene Literatur:

• Crosby, Ph. B., Quality Is Free, New York, 1979
• Crosby, Ph. B., Quality Without Tears, New York, 1984
• Hammer, Michael, Das prozesszentrierte Unternehmen, Campus Verlag, 1997
• Kamiske, G. F., Brauer, J.-P., Qualitätsmanagement von A-Z , Carl Hanser Verlag 2011
• Masing, W., Handbuch Qualitätsmanagement, Hanser, 2014
• Müller, E., Qualitätsmanagement für Unternehmer und Führungskräfte, Springer Gabler 2014
• Schmelzer, H., Sesselmann, W., Geschäftsprozessmanagement in der Praxis, Hanser, 2013
• Zollondz, H.-D., Grundlagen Qualitätsmanagement, Oldenbourg, 2011
• Zollondz, H.-D., Grundlagen Lean Management, Oldenbourg, 2013
Weitere Informationen zur Lehrveranstaltung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherheit und Zuverlässigkeit von Systemen (Safety and Reliability of Systems)</td>
<td>SZS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Hopfenmüller</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Hopfenmüller Prof. Georg Scharfenberg</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen und teilweise Einsatz / Demonstration von einschlägiger Software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium 90h
- Eigenstudium 120h

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

Zugelassene Hilfsmittel für Leistungsnachweis
- Siehe Studienplantabelle
Inhalte

Teil I: Zuverlässigkeit und Risikomanagement
1. Einführung
1.1 Begriffe: u.a. Definitionen nach EN 61508-4 („Begriffe und Abkürzungen“)
1.2 Bedeutung von Sicherheit und Zuverlässigkeit
1.3 Produkthaftung
2. Werkzeuge des Risikomanagements
2.1 Überblick über Methoden, die in EN 61508-7 Anhang B genannt werden
2.2 Eingehende Behandlung allgemein verbreiteter Methoden: FMEA, FTA u.a.
3. Zuverlässigkeit von Einzelkomponenten
3.1 Zuverlässigkeitskenngrößen
3.2 Ermittlung und Auswertung von Lebensdauerdaten
3.3 Konstante Ausfallrate
3.4 Zeitabhängige Ausfallrate
4. Systembetrachtungen
4.1 Grundlagen und Begriffe
4.2 Ausfallverhalten von Systemen
4.3 Zuverlässigkeitsplanung
4.4 Systemstruktur aus Sicht der Zuverlässigkeit
4.5 Beschreibung eines Systems mit der Systemfunktion
4.6 Betrachtung komplexer Strukturen
4.7 Wahrscheinlichkeitstheoretische Beschreibung
4.8 Zeitabhängigtes Verhalten

Teil II: Sichere Rechnersysteme

1 Was bedeutet Sicherheit?
1) Challenges
2) Human errors
3) The need for safety
4) Failure modes in electronics
5) HW System Architekturmaßnahmen

2 Beherrschung von Fehlern
1) Fehlertoleranz und Absicherung
2) Risiken durch Fehlfunktionen
3) Beispiele zu redundanten/abgesicherten Strukturen

3 Automotive Norm ISO 26262
1) Rechtslage und Normeneinstieg
2) Ausgewählte Kapitel der ISO 26262

4 Ausgewählte Kapitel der FuSi
1) Automotive Multicontroller mit Lock Step Mode
2) Common-Mode-Failure (CMF)
3) Diverse Hardware
4) Diversität in der Software
5) Datenkommunikation in E/E/PE-Systemen
6) Security in E/E/PE-Systemen
7) Proven-in-Use (PIU) Argumentation
8) Standard-FuSI-Konzept für E-Gas

5 Sicherheitsnachweis (Safety Case)
Anhang

Lernziele/Lernergebnisse/Kompetenzen

Zuverlässigkeit und Risikomanagement:
- Die Studierenden haben einen Überblick über relevante Fragestellungen des Zuverlässigkeits- und Risikomanagements.
- Sie kennen die relevanten Werkzeuge und Methoden und können über deren zweckmäßigen Einsatz entscheiden.

Sichere Rechnersysteme:
- Studierenden haben einen Überblick über grundlegende Begriffe und Normen zu sicherheitsrelevanten Rechneranwendungen.
- Die Studierenden sind in der Lage, ein sicherheitsrelevantes Rechnersystem aus der Anwendung heraus in die korrekte Risikoklasse einzuordnen und ein normkonformes Architekturdesign durchzuführen.

Angebotene Lehrunterlagen

Skriptum, Praktikumsanleitungen

Lehrmedien

Tafel, Notebook, Beamer, Software

Literatur

- Skript, ausgegeben von den Dozenten
- Praktikumsanleitungen, ausgegeben von den Dozenten
- EN 61508 Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/ programmierbarer elektronischer Systeme DIN EN 61508 Teil 1 bis 7
Weitere Informationen zur Lehrveranstaltung

Die Lehrveranstaltung gliedert sich in zwei Teile:
Teil I: Zuverlässigkeit und Risikomanagement - Prof. Dr. Hopfenmüller, Fak. AM
Teil II: Sichere Rechnersysteme, Prof. Dr. Scharfenberg, Fak. EI
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Statistik und Operations Research (Statistics and Operations Research)

Studienabschnitt:
1., 2., 3.

Modulverantwortliche/r
Prof. Dr. Manfred Hopfenmüller

Fakultät
Allgemeinwissenschaften und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistik und Operations Research (Statistics and Operations Research)</td>
<td>SOR/I5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Keine

Empfohlene Vorkenntnisse
Keine

Inhalte
Siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen
Siehe Folgeseiten

Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Operations Research (Operations Research)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Statistische Versuchsmethodik (Design of Experiments)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Wahrscheinlichkeitsrechnung, Statistik und stochastische Prozesse (Probability, Statistics and Stochastic Processes)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Statistik und Operations Research (Statistics and Operations Research)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Research (Operations Research)</td>
<td>OR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Manfred Hopfenmüller</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Erich Müller (LB)</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>2 SWS</td>
<td>englisch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
30h | 30h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Grundlagen linearer Optimierungsverfahren
- Unterscheidung von nichtlinearen Verfahren zur Optimierung
- Formulierung linearer Optimierungsprobleme in der Grund und Normalform
- Graphische Lösung und Lösung mittels Simplex-Algorithmus
- Transportprobleme
- Reihenfolgeprobleme
- Einblick in weitere Problemstellungen des OR, z.B. Netzplantechnik, Warteschlangentheorie

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:
- Die Teilnehmer kennen die Teilgebiete des Operations Research sowie die grundlegenden Problemstellungen und Methoden der linearen Optimierung.

Fertigkeiten:
- Sie können die Anwendbarkeit dieser Methoden in der Praxis beurteilen und einfachere Probleme selbständig bearbeiten.

Lehrmedien
Tafel, Notebook, Beamer
Literatur
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Statistik und Operations Research (Statistics and Operations Research)

Lehrveranstaltung	LV-Kurzbezeichnung
Statistische Versuchsmethodik (Design of Experiments) | VM

Verantwortliche/r	Fakultät
Prof. Dr. Manfred Hopfenmüller | Allgemeinwissenschaften und Mikrosystemtechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Manfred Hopfenmüller | nur im Sommersemester

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
1., 2., 3. | 4 SWS | deutsch | 5

Zeitaufwand:
Präsenzstudium	Eigenstudium
60h | 90h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
1. Grundlagen und Begriffe: Zielsetzung der Versuchsmethodik (VM), Überblick über die verschiedenen Methoden
2. Statistische Grundlagen (Wiederholung):
 Vorgehensweise der Statistik: Deskriptive und induktive Statistik, Grundprinzip der Hypothesentests, Fehler 1. u. 2. Art;
 Wichtige Hypothesentests: T-Test, F-Test, ANOVA
 Vollständige und unvollständige Versuchspläne, Vermengungsstrukturen, Blockbildung und Randomisierungen, Signifikanz von Wirkungen und Wechselwirkungen, Zentral zusammengesetzte Versuchspläne
4. Weitere Varianten der Versuchsmethodik:
 Taguchi, Plackett-Burman- Pläne, Box-Behnken- Pläne, dreistufige und allgemeine mehrstufige Pläne
5. Begleitende Aspekte:
 Messsystemanalyse, typischer Ablauf eines DOE-Projekts, Einsatz einer typischen Statistiksoftware

Lernziele/Lernergebnisse/Kompetenzen
Im Einzelnen haben die Studierenden nach Abschluss des Moduls auf Basis wissenschaftlicher Methoden die folgenden Lernziele erreicht:

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg
Seite 80
Kenntnisse:

- Die Studierenden erwerben aufbauend auf mathematisch/statisitschen Grundkenntnissen aus dem Bachelorstudium vertiefte Kenntnisse der Statistischen Versuchmethodik in verschiedenen Varianten.
- Hiermit werden sie befähigt, Versuche in Entwicklung und Produktion effektiv und effizient zu planen, durchzuführen, die Ergebnisse auf statistisch fundierter Basis korrekt zu interpretieren und darauf aufbauend fundierte Entscheidungen zu treffen.

Fertigkeiten:

- Die Studierenden können Systeme, die sich zum Einsatz von Versuchmethodik eignen, identifizieren und geeignete Versuchspläne erstellen, umsetzen und auswerten.
- Sie können gezielt die hierzu jeweils nach dem Stand der Wissenschaft geeigneten Spielarten der Versuchmethodik Verfahren auswählen und mit angemessener Softwareunterstützung anwenden.

Kompetenzen (soziale):

- Die Studierenden sind in der Lage, komplexe Projekte zur Versuchmethodik unter Einbeziehung aller Interessenspartner zu planen und als Projektleiter erfolgreich umzusetzen.

Kompetenzen (persönliche):

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skriptum</td>
</tr>
<tr>
<td>Lehrmedien</td>
</tr>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

Literatur

Empfohlene Literatur (jeweils in der neuesten Auflage):

- Graf; Henning; Stange; Wilrich: Formeln und Tabellen der angewandten mathematischen Statistik, Springer Verlag, Berlin
- Klein, B.: Design of Experiments - Einführung in die Taguchi/Shainin-Methodik, Oldenburg-Verlag
- Kleppmann, W.: Taschenbuch Versuchsplanung: Produkte und Prozesse optimieren, Hanser-Verlag, München
- Rinne, H.; Mittag H. J., Statistische Methoden der Qualitätssicherung, Hanser Verlag München
- Taguchi, Genichi, Einführung in Quality Engineering, 1989, Neuauflage 2004
Weitere Informationen zur Lehrveranstaltung

Lehrveranstaltung

Wahrscheinlichkeitsrechnung, Statistik und stochastische Prozesse
(Probability, Statistics and Stochastic Processes)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahrscheinlichkeitsrechnung, Statistik und stochastische Prozesse</td>
<td>WST</td>
</tr>
</tbody>
</table>

Verantwortliche/r
Prof. Dr. Manfred Hopfenmüller
Allgemeinwissenschaften und Mikrosystemtechnik

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester gemäß Studienplan
<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeit aufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch 5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Inhalte

- Grundlagen der Wahrscheinlichkeitsrechnung
- Zufallsgrößen, Verteilungsfunktionen und –dichten
- Grundlagen der mathematischen Statistik
- Maßzahlen, Grundgesamtheit, Stichproben
- Schätzverfahren, Punkt- und Intervallschätzung
- Parametrische und nichtparametrische Tests
- Einführung in die Theorie der Stochastischen Prozesse und Warteschlangen
- Kenntnis typischer stochastischer Prozesse in der Praxis

Lernziele/Lernergebnisse/Kompetenzen

Im Einzelnen haben die Studierenden nach Abschluss des Moduls auf Basis wissenschaftlicher Methoden die folgenden Lernziele erreicht:

Kenntnisse:

- Die Studierenden erwerben aufbauend auf mathematischen Grundkenntnissen aus dem Bachelorstudium vertiefte Kenntnisse der Wahrscheinlichkeitsrechnung, Statistik und stochastischer Prozesse.
- Hiermit werden sie befähigt, die Einflüsse stochastischer Größen auf betriebliche Prozesse und Prozessergebnisse sowie auf Ergebnisse von Laboruntersuchungen richtig zu beurteilen und auf statistisch fundierter Basis optimale Entscheidungen zu treffen.
Fertigkeiten:

- Die Studierenden können stochastische Systeme identifizieren und bezüglich der relevanten Größen analysieren.
- Sie können gezielt die hierzu jeweils nach dem Stand der Wissenschaft geeigneten Methoden und Verfahren auswählen, einsetzen und auf Basis der Analyseergebnisse optimale Entscheidungen im betrieblichen Umfeld treffen.

Kompetenzen (soziale):

- Die Studierenden sind in der Lage, sich in ein komplexes Thema wie Wahrscheinlichkeitsrechnung und Statistik mittels aktiver Beteiligung und Diskussion einzuarbeiten.

Kompetenzen (persönliche):

- Die Studierenden sind sich des Einflusses stochastischer Größen im betrieblichen Umfeld bewusst, sowie der möglichen Folgen vor diesem Hintergrund getroffener Entscheidungen (quantifizierbares Restrisiko). Diese Erkenntnis soll auch die Persönlichkeit der Studierenden mit prägen.

Angebotene Lehrunterlagen

<table>
<thead>
<tr>
<th>Skriptum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

Literatur

<table>
<thead>
<tr>
<th>Empfohlene Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beichelt F., Stochastische Prozesse für Ingenieure, Teubner Verlag, 2013</td>
</tr>
<tr>
<td>Bosch, Karl, Elementare Einführung in die Wahrscheinlichkeitsrechnung, Vieweg, 2006</td>
</tr>
<tr>
<td>Ross, Sheldon M., Statistik für Ingenieure und Naturwissenschaftler, Spektrum Verlag, 2006</td>
</tr>
<tr>
<td>Sachs, L., Angewandte Statistik, Springer Verlag, 2003</td>
</tr>
<tr>
<td>Tran-Gia, P., Einführung in die Leistungsbewertung und Verkehrstheorie, Oldenbourg, 2005</td>
</tr>
<tr>
<td>Weber, Hubert, Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure, Teubner, Stuttgart 1992</td>
</tr>
</tbody>
</table>

Weitere Informationen zur Lehrveranstaltung

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefung</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Oliver Brückl</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Dr. Jens Ebbecke (LB)</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Franz Graf</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Stefan Hierl</td>
<td>Maschinenbau</td>
</tr>
<tr>
<td>Prof. Dr. Rainer Holmer</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dieter Kohlert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Friedhelm Kuypers</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Hans Meier</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Gareth Monkman</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Michael Niemetz</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Klaus Pressel (LB)</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Roland Schiek</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Martin Schubert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Heinz-Jürgen Siweris</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Heiko Unold</td>
<td>Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Vouivoun Yap</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td></td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Je nach Modul

Empfohlene Vorkenntnisse

Je nach Modul

Inhalte

Siehe Folgeseiten

Lernziele/Lernergebnisse/Kompetenzen

Siehe Folgeseiten
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Advanced Packaging</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Advanced Semiconductor Technology</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Analog/Digital- und Digital/Analog-Wandler (Analog/Digital and Digital/Analog Converter)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Cybernetics</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Electronic Product Engineering</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>Elektrodynamik (Electrodynamics)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>Elektromagnetische Verträglichkeit (Electromagnetic Compatibility)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>Embedded Linux</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>Halbleiterchemie (Wet Chemical Processes in Semiconductors Manufacturing)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>10.</td>
<td>HF-Schaltungstechnik (RF-Circuit Design)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>11.</td>
<td>Laser Materials Processing</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>12.</td>
<td>LED Technology</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>13.</td>
<td>Master Optoelectronics Projects with LabVIEW</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>14.</td>
<td>Multi-processor and multi-core design for reliable embedded systems</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>15.</td>
<td>Physik der Halbleiterbauelemente (Physics of Semiconductor Devices)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>16.</td>
<td>Quantentheorie 1 (Quantum Theory 1)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>17.</td>
<td>Quantentheorie 2 (Quantum Theory 2)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>18.</td>
<td>Spezielle Aspekte regenerativer Energien (Special Aspects of Renewable Energy)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>19.</td>
<td>Vertiefung Microcontrollertechnik für Master (Advanced Microcontroller Techniques for Master)</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>20.</td>
<td>Wireless Sensor/Actuator Networks</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Lehrveranstaltung | LV-Kurzbezeichnung
--- | ---
Advanced Packaging | AP

Verantwortliche/r	Fakultät
Klaus Pressel (LB) | Allgemeinwissenschaften und Mikrosystemtechnik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Klaus Pressel (LB) | nur im Sommersemester

Lehrform

Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Grundlegender Aufbau eines Mobiltelefons (Gehäuseüberlegungen): Transceiver- und Basisbandteil, unterschiedliche Transceiverarchitekturen
- Halbleitertechnologie: Die Basis für Schaltungen der Mobilkommunikation, Bedeutung der Si-Technologie, CMOS im Vergleich zu bipolar, III/V Halbleiter
- Grundlegende RF Schaltungen der Mobilkommunikation: Systemintegration, LNA, Mischer, VCO & PLL, Filter (SAW, BAW), Passive Komponenten (R,L,C)
- Bedeutung der Gehäusetechnologie für die Mobilkommunikation: System in Package, Miniaturisierung, Typische FE & BE Gehäuse (BGA, VQFN)
- Technologische Prozesse der Gehäuseentwicklung: Drahtboden, Die-Attach, Dünnen von Wafern, Wafer Level Packaging etc.
- Grundlegende Aspekte der Flip Chip Technologie
- Ball Grid Array Gehäuse
- Leadless (beinchenlose) Packages, z.B. VQFN
- Herausforderungen bei hohen Frequenzen
- Zuverlässigkeit und Testen von Gehäusen
- Ausblick
<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele:</td>
</tr>
<tr>
<td>• Einblick in sämtliche systemtechnischen Aspekte der mobilen Kommunikation</td>
</tr>
<tr>
<td>• Insbesondere detaillierte Kenntnis moderner Methoden des Electronic Packaging in diesem Zusammenhang</td>
</tr>
<tr>
<td>• Wissen um das Zusammenspiel von physikalischen Randbedingungen, den Möglichkeiten des Front End und des Back End</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vom Dozenten ausgegebene aktuelle Literatur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gray et al., Analysis and Design of Analog Integrated Circuits, Wiley, New York 2001,</td>
</tr>
</tbody>
</table>
Lehrveranstaltung

<table>
<thead>
<tr>
<th>LV-Kurzbezeichnung</th>
<th>Advanced Semiconductor Technology</th>
</tr>
</thead>
</table>

Verantwortliche/r

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rupert Schreiner</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

Lehreinrichtung

<table>
<thead>
<tr>
<th>Angebotsfrequenz</th>
<th>Gastdozierende der Fakultät AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>in jedem Semester</td>
<td>Prof. Dr. Rupert Schreiner</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester

<table>
<thead>
<tr>
<th>Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Semiconductor Materials
- Semiconductor Fabrication Technology
- Semiconductor Epitaxy
- Semiconductor Packaging
- Semiconductor Characterization
- Nano-Fabrication: Top-Down (e-beam lithography) and Bottom-Up (self-assembly) Techniques
- Si Based Modern Electronic Device: Processing, Devices Physics and Applications
- Carbon Based Nanoelectronic Devices: Materials (CNT, Graphene), Fabrication, Devices Physics and Potential Applications
- New Development in 2D Crystal-Based Heterostructures for Nanoelectronics
- New Development in Nanoelectronic Devices
- Novel Techniques in Photonics and Analytics
- Semiconductor-based Sensors
- Special topics on the large scale fabrication technology of Semiconductors
Lernziele/Lernergebnisse/Kompetenzen

Knowledge:
- The students shall learn to know the fundamentals, the design, the technology and the operation of semiconductor materials and modern semiconductor based devices.

Skills:
- Based on this knowledge they should be able to read scientific publications in this field and to understand the design, the fabrication process and the operation of semiconductor devices.

Competences:
- The students should be able to design/plan the fabrication process for parts of semiconductor components and structures by themselves.
- The students should be able to select and to choose suitable components/materials for specific engineering applications.
- They should be able to join in and work together with an interdisciplinary team of physicists, chemists and engineers for the fabrication of modern semiconductor devices.

Lehrmedien

Board, Notebook, Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Previous Experience/Premise:
Knowledge of College Physics, fundamental knowledge of Solid State Physics.

In order to attend the module Advanced Semiconductor Technology:
- Choose any 2 sub-modules from the list on the MEM Information Board
- 2 written exams - 45 minutes each
- The two grades of the sub-modules will be combined and you will get one combined grade for the module Advanced Semiconductor Technology
Lehrveranstaltung | LV-Kurzbezeichnung
---|---
Analog/Digital- und Digital/Analog-Wandler (Analog/Digital and Digital/Analog Converter) | ADA

Verantwortliche/r	Fakultät
Prof. Dr. Martin Schubert | Elektro- und Informationstechnik

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Dr. Martin Schubert | in jedem Semester

Lehrform
50% seminar teaching and 50% practical training

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2., 3.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56h</td>
<td>62h (preparation and review), 32h (exam preparation)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
see Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
see Studienplantabelle

Inhalte

Theory:
1. Introduction and Motivation
2. Value Discretization (Quantization)
3. Time-Discretization (Sampling) and Anti-Aliasing Filter
4. Modeling of A/D and D/A converters in time and frequency domain
5. Characterization: Signals, Noise and Signal to Noise Ratio

Practical:
a) Assemble and characterize different DACs and ADCs
b) Using the ADC within mirocontroller MSP430
c) Using the ADC LTC2308 within FPGA board DE1-SoC
d) Characterization and computation of quality criteria using Matlab

Lernziele/Lernergebnisse/Kompetenzen

Knowledge:
- The knowledge required to implement the competences listed below, particularly with respect to different converter architectures, their application fields and characterization.

Skills:
The skills required to implement the competences listed below, particularly with respect to selection and practical characterization and implementation of A/D and D/A converters, as well as handling the respective software tools.

Competences:
1. Value-Discretization (Quantization)
 - Knowing common D/A and A/D conversion principles:
 - Nyquist samplers: DAC: weighted summation, R-string, ADC: SAR, Flash, Pipeline
 - Oversamplers: PWM, delta and delta sigma modulation and demodulation
 - Selection most appropriate architecture for a given application

2. Time-Discretization (Sampling)
 - Frequency domain considerations: mathematical model and technical realization
 - Criteria of Nyquist and Shannon
 - Aliasing
 - Designing analog anti-aliasing filters for Nyquist samplers
 - Designing combined analog/digital antialiasing filters for oversamplers
 - Changing sampling rates: up-sampling, down-sampling and sub-sampling
 - Spatial sampling and spatial aliasing

3. Characterization
 - Knowledge of commonly used quality criteria and skills to apply them:
 - ENOB, SNR, SFDR, SINAD, THD, INL, DNL, KSPS, monotonicity

4. Modelling
 - Modelling DACs and ADCs in value, time and frequency domains:
 - Modeling static linear and non-linear I/O characteristics
 - Modeling and simulation in value, transient and frequency domain with Spice
 - Characterization and modeling in value, transient and frequency domain with Matlab

5. Noise
 - Relating signal-to-noise ratio to resolution,
 - Noise budget computation
 - Knowing the most important noise sources and how to model them
 - Quantization, thermal, pink, aliasing, clock jitter, track & hold

Angebotene Lehrunterlagen
- Script and instructions for practical training

Lehrmedien
- Blackboard and beamer, electronics laboratory with experimental setups
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Vertiefung

Literatur
[6] C.A. Leme, "Oversampling Interface for IC Sensors", Physical Electronics Laboratory, ETHZurich, Diss. ETH Nr. 10416

Weitere Informationen zur Lehrveranstaltung
Documents English, teaching language is German or English depending on students.
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cybernetics</td>
<td>CYB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gareth Monkman</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gareth Monkman</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
Inhalte

Man-Machine-Interface:

- Einführung
- Smart materials
- Electro-optical MMI (Camera systems)
- Acoustic MMI
- Tactile MMI (Haptic displays)
- Olfactory MMI (Scent generation/Sensors)
- Signal (Image) Processing
- Force-Torque Sensors
- Dextrous Hands
- Virtual Reality

Logistics:

- Crash course control theory
- Statistics & Queueing Theorie
- Organisation & Tektology
- Markov chains
- Petri Nets (Representation and Calculus)
- Sensor Fusion
- Synchronous and asynchronous programming
- Robotic reactive programming
- Introduction to artificial intelligence

Lernziele/Lernergebnisse/Kompetenzen

Knowledge:

- Students learn how to use statistical analysis for abstraction and planning of multivariable automation systems. They obtain knowledge concerning the practical implementation of Man Machine Interfaces (MMI) and their integration with cybernetic signal processing and evaluation.

Skills:

- Students gain an insight into synchronous, asynchronous and interactive control together with the ability to develop complex systems.
Literatur

Teil 1 Systems & Logistics

- Bogdanov. A.A. - A Universal Organizational Science (Tektology) - Moscow, Leningrad, 1925-1929.

Teil 2 Man-Machine-Interface

Stand: 01. 04. 2019
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Lehrveranstaltung

<table>
<thead>
<tr>
<th>Modulname:</th>
<th>Vertiefung</th>
</tr>
</thead>
</table>

Electronic Product Engineering

LV-Kurzbezeichnung: EPE

Verantwortliche/r: Prof. Dr. Rainer Holmer

Fakultät: Elektro- und Informationstechnik

Lehrveranstaltung: Angebotsfrequenz nur im Sommersemester

Lehrform: Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

Präsenzstudium: 60h

Eigenstudium: 90h

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Grundlegende Zusammenhänge der Halbleiterindustrie (Technologie, Produktdesign, Produktion Frontend/Backend, Test, Qualität, Logistik)
- Wichtige Kenngrößen (key performance indicators) der Halbleiterindustrie
- Produktentwicklung: Schaltung analog/digital, physical layout, re-use, Nutzung von Bibliotheken/Macros, Design for Manufacturability (DfM)
- Testentwicklung: Testkonzept, Testzeit und Testkosten, Design for Testability (DfT), Built-In-Selftest (BIST)
- Von der Entwicklung (Prototyp) zur Hochvolumenproduktion – der Produktionsstart und -hochlauf
- Methoden zur Optimierung (im Hinblick auf die key performance indicators) von Produkt, Technologie, Produktion
- Produktion im Hochvolumen: Produktionsausbeute (yield), Prozessstabilität; Umgang mit Abweichungen, Störungen; Umgang mit Änderungen, Aktualisierungen – change management; Nachverfolgbarkeit – traceability

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

• Sie kennen wichtige Kenngrößen (key performance indicators) der Halbleiterindustrie wie „time to market“, Kosten, Produktionsausbeute und –qualität
• Sie kennen spezifische Anforderungen der Halbleiter-Produktion und dafür relevante Methoden und Vorgehensweisen

Fertigkeiten:

• Sie können Halbleiter-spezifische Kenngrößen interpretieren
• Sie können Methoden der Analyse von Produktionsdaten (Parameter, el. Testergebnisse, ..) bzw. der statistischen Prozesskontrolle anwenden.
• Sie können Methoden zur Optimierung von Produktdesign, Prozesstechnologie und Testgezielt anwenden.

Kompetenzen:

• Die Studierenden sind in der Lage, Probleme und sich daraus ergebende Optimierungspotentiale in der Halbleiter-Industrie richtig einzuschätzen und darauf basierende Entscheidungen zu treffen.
• Sie können mit unerwarteten Änderungen und Problemen angemessen und kompetent umgehen.

Lehrmedien
Tafel, Notebook, Beamer

Literatur
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrodynamik (Electrodynamics)</td>
<td>ED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Roland Schiek</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Roland Schiek</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen mit Übungen an Rechnerarbeitsplätzen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hinweis:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>die zu erbringende Prüfungsleistung regelt die Studien- und Prüfungsordnung des Masterstudiengangs Elektromobilität und Energienetze (MEE).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg
Seite 101
Inhalte

Elektrostatisit und Magnetostatisit:

Stationäre Strömung:
Stationäre Strömungsfelder werden analysiert zur Widerstandsbestimmung und Untersuchung der thermischen Materialbelastung.

Quasistatisit:
Stromverdrängung und Wirbelströme in elektrischen Leitungen werden auf der Basis derquasistationären Feldgleichungen quantitativ untersucht. Skineffekt und Wirbelstromverlusten werden als die wichtigsten Anwendungsbeispiele behandelt.

Ebene elektromagnetische Welle:
Nach einer Zusammenstellung der wichtigsten Kenngrößen elektromagnetischer Wellen werdendiese in ihren Auswirkungen auf die Wellenausbreitung anhand der ebenen Welle besprochen (räumliche Ausbreitung: Beugung, Brechung, Reflexion, Polarisation und zeitliche Ausbreitung: Dispersion, Pulsausbreitung).

Leitungsgebundene Strahlung:

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:
- Kenntnisse der Zusammenhänge zwischen Feldverteilung und Funktionsweise der Anordnung

Fähigkeiten:
- Fertigkeit mit Hilfe von gängiger Software zur Lösung der elektromagnetischen Feldgleichungen (MATLAB, COMSOL) die Feldverteilung in praktisch realistischen elektrodynamischen Systemen zu bestimmen.

Kompetenzen:
- Die Studierenden erwerben Kompetenzen zu Simulationen statischer und dynamischer Felder in beliebig geformten dreidimensionalen Anordnungen sowie zum Entwurf und zur Optimierung elektromagnetischer Systeme.

Angebotene Lehrunterlagen

Skript, Beispielprogramme, Übungen
Lehrmedien
Tafel, Notebook, Beamer

Literatur
- Pascal Leuchtmann: Einführung in die elektromagnetische Feldtheorie, Pearson Education, München, 2005

Weitere Informationen zur Lehrveranstaltung
Es werden Kenntnisse der Maxwell'schen Gleichungen und ihrer wichtigsten analytischen Lösungen in der Elektrostatik und Magnetostatik benötigt.
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektromagnetische Verträglichkeit (Electromagnetic Compatibility)</td>
<td>EMV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebote/frequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Stücke</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Richard Weininger (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen und Praxis im EMV-Labor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle
<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teil 1: Theorie</td>
</tr>
<tr>
<td>• Einführung, Begriffe, Problembeschreibung</td>
</tr>
<tr>
<td>• Störungsbeschreibung in analogen und digitalen Systemen</td>
</tr>
<tr>
<td>• Klassifizierung und spektrale Darstellung von Störquellen der EMV-Umgebung</td>
</tr>
<tr>
<td>• Beeinflussungswege: Kopplungsarten, Kopplungen zwischen Leitungen und Feldeinkopplungen in Leiterstrukturen</td>
</tr>
<tr>
<td>Teil 2: Praxis</td>
</tr>
<tr>
<td>• Einleitung</td>
</tr>
<tr>
<td>• Grundlagen angewandter EMV: Pulse und Transiente, Elektrostatische Entladungen, Elektromagnetische Wellen</td>
</tr>
<tr>
<td>• Filterung, Schirmung, Erdung: Modelle, Störsignale im Zeitbereich und Frequenzbereich, Störenergien leitungsgeführt und gestrahlt</td>
</tr>
<tr>
<td>• Entstörmaßnahmen: Passive und aktive Entstörung, HF-Bauteile in der Realität, Rechnen im logarithmischen Maßstab</td>
</tr>
<tr>
<td>• Messen und Prüfen: EMV-Messgeräte, FFT-Messtechnik, Störaussendung und Störfestigkeit, Besonderheiten der E-Mobility, Einflüsse der Messumgebung, EMV-Simulation, Werkzeuge in der Entwicklung (Pre-Compliance)</td>
</tr>
<tr>
<td>• Praktika der Messtechnik: typische Versuchsanordnungen von EMV-Messungen</td>
</tr>
<tr>
<td>• EMV-Entwicklung und Planung: Schaltplan- und Layouterstellung mit Beispielen</td>
</tr>
<tr>
<td>• Dokumentation der EMV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse:</td>
</tr>
<tr>
<td>• Grundprinzipien der EMV</td>
</tr>
<tr>
<td>• Eigenschaften von Störquellen und -senken</td>
</tr>
<tr>
<td>• Funktion und Fertigkeit der Anwendung von EMV-Prüf- und Messeinrichtungen</td>
</tr>
<tr>
<td>Fertigkeiten:</td>
</tr>
<tr>
<td>• Anwendung von analytischen und näherungsweisen Lösungsansätzen für die Berechnung von Störspannungen</td>
</tr>
<tr>
<td>• quantitative Beschreibung der Beeinflussungswege</td>
</tr>
<tr>
<td>Kompetenzen:</td>
</tr>
<tr>
<td>• Entwicklung von EMV-gerechten technischen Lösungen unter Einhaltung der wichtigsten EMV- Leitlinien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentationsfolien, Skript, Übungen, Literaturliste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechner, Beamer, Tafel, Versuchsaufbau im EMV-Labor</td>
</tr>
</tbody>
</table>
Literatur

- Durcansky, G., „EMV-gerechtes Gerätedesign“, Franzis-Verlag
- Gonschorek, K.H., Singer, H., Anke, D. u.a., „Elektromagnetische Verträglichkeit-Grundlagen, Analysen, Maßnahmen“, Teubner-Verlag
- Schwab, A., „Elektromagnetische Verträglichkeit“, Springer-Verlag

Weitere Informationen zur Lehrveranstaltung
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Vertiefung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Linux</td>
<td>ELX</td>
</tr>
</tbody>
</table>

Verantwortliche/r	**Fakultät**
Prof. Dr. Michael Niemetz | Elektro- und Informationstechnik

Lehrende/r / Dozierende/r	**Angebotsfrequenz**
Prof. Dr. Michael Niemetz | nur im Wintersemester

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen (an Rechnerarbeitsplätzen)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung: 30 h; Unterricht an Rechnerarbeitsplätzen: 30h</td>
<td>Vor- und Nachbereitung: 52 h; Eigenstudium: 38 h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle
Inhalte

Einrichtung eines Linux-Systems
Grundlegende Schritte bei der Systemadministration wie Installation, Benutzeroberfläche, Netzwerkeinrichtung, Rechteverwaltung werden vermittelt.

Kommandozeile / Programmentwicklung

Dateisysteme
Die wichtigsten Eigenschaften der gängigsten Dateisysteme werden besprochen und deren Einrichtung und Einbindung in das System geübt.

Bootvorgang
Die verschiedenen Stufen des Bootvorganges bis zum laufenden Mehrbenutzersystems werden besprochen, sowie die praktische Einrichtung eines bootfähigen Systems durchgeführt.

Embedded Linux
Die speziellen Erfordernisse vieler Embedded Systeme (z.B. Speichersysteme mit eng begrenzter Wiederbeschreibbarkeit, Echtzeitfähigkeit, begrenzter Systemspeicher) werden erklärt, sowie Lösungswege aufgezeigt.

Hardware-Zugriffe und Interprozesskommunikation

Lernziele/Lernergebnisse/Kompetenzen

<table>
<thead>
<tr>
<th>Folgende Kenntnisse werden von den Teilnehmern des Kurses erworben (5 %):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundverständnis der Linux Philosophie (Modularer Kernel, Prozeßmodell, Dateisysteme, Mehrbenutzersystem, Rechte, Netzwerk)</td>
</tr>
<tr>
<td>Kenntnis der wichtigsten Kommandozeilen-Werkzeuge, Editoren und Systemkomponenten.</td>
</tr>
<tr>
<td>Kenntnis der wichtigsten Methoden der Interprozesskommunikation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Folgende Fertigkeiten werden von den Teilnehmern des Kurses erworben (45 %):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meistern grundlegender Administrationsaufgaben in Linux/Unix Umgebungen.</td>
</tr>
<tr>
<td>Umgang mit gängigen Administrations- und Entwicklungswerkzeugen</td>
</tr>
<tr>
<td>Einrichten eines Linux-Betriebssystems auf einer kompatiblen Hardwareplattform</td>
</tr>
<tr>
<td>Zugriff auf embedded-spezifische Controllerperipherie (z.B. AD-Wandler, serielle Bussysteme, I/O Leitungen) über vorhandene Kerneltreiber.</td>
</tr>
</tbody>
</table>

Folgende fachliche und nichtfachliche Kompetenzen werden von den Teilnehmern
des Kurses erworben (50 %):

- Bewerten von Vor- und Nachteilen des Einsatzes von Linux in Embedded-Control Lösungen und Treffen entsprechender System-Designentscheidungen.
- Vorstellung und Begründung eigener Designentscheidungen
- Entwicklung von Problemlösungen in Teamarbeit
- Lösung komplexer Problemstellungen mittels Literaturrecherche und Studium von Hardware- und Softwarespezifikationen

angebotene Lehrunterlagen

Skript, Literaturliste, ergänzende Unterlagen im zugehörigen eLearning-Kurs

Lehrmedien

Tafel, Rechner mit Linux-Umgebung, Beamer, persönlicher Laborkoffer mit Embedded Linux System und Elektronikbauteilen

Literatur

- Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, Philippe Gerum, Building EmbeddedLinux Systems, O'Reilly, 2008
- Christopher Hallinan, Embedded Linux Primer, 2nd Edition, Prentice Hall, 201

Weitere Informationen zur Lehrveranstaltung

Für die erfolgreiche Teilnahme werden fundierte praktische Programmierkenntnisse sowie Kenntnisse einer höheren Programmiersprache (bevorzugt C), ein Grundverständnis für Mikrocontroller und deren Peripherie, sowie Erfahrung im praktischen Umgang mit seriellen Kommunikationsbussen (SPI und I2C) benötigt. Hilfreich sind Grundkenntnisse des praktischen Softwareengineering wie Versionsmanagement und Softwaredesign.
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Vertiefung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halbleiterchemie (Wet Chemical Processes in Semiconductors Manufacturing)</td>
<td>VC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Alfred Lechner</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>Prof. Dr. Walter Rieger</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th>Siehe Studienplantabelle</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
<th>Siehe Studienplantabelle</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxikologie von Halbleiterchemikalien</td>
</tr>
<tr>
<td>Auswirkungen von Kontaminationen, Methoden zur Kontaminationsanalyse</td>
</tr>
<tr>
<td>Arten und Betriebsweisen von Nasschemieanlagen</td>
</tr>
<tr>
<td>Reinigungseffektivität, analytische Bewertung in der Halbleiterindustrie: GC; Elymat, DTDA, Surfscan, TRFA, TOC, AAS, ICPMS, IC</td>
</tr>
<tr>
<td>Nasschemische Ätzprozesse: Flussäureätzungen: Einsatz von Surfactants, Spezielle Mischungen; Nitridätzung</td>
</tr>
<tr>
<td>Nasschemische Reinigungsverfahren: Klassische Reinigungs- und Trocknungsverfahren, Ozon, HF/Ozon, Cholinreinigung, Marangoni-Trocknung</td>
</tr>
<tr>
<td>Lackentfernung (Stripping)</td>
</tr>
<tr>
<td>Polymerentfernung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse:</td>
</tr>
<tr>
<td>Detaillierte Kenntnis der wichtigsten nasschemischen Prozesse, die in der Halbleitertechnologie Anwendung finden.</td>
</tr>
<tr>
<td>Vertrautheit mit typischen chemischen Reaktionen und ihrer Auswirkung in den Prozessen</td>
</tr>
<tr>
<td>Kenntnis der Kontaminationsmechanismen auf Halbleiteroberflächen und deren Vermeidung bzw. Beseitigung</td>
</tr>
</tbody>
</table>

Stand: 01. 04. 2019

Ostbayerische Technische Hochschule Regensburg Seite 110
Fertigkeiten:
- Fertigkeit, halbleiterchemische Problemstellungen zu analysieren und geeignete Verfahren zur Lösung auszuwählen
- Fertigkeit der Berechnung von Ätzraten und Aktivierungsenergien

Kompetenzen:
- Equipmentauswahl je nach Prozessanforderung
- Befähigung, Prozessparameter gemäß wechselnder Anforderungen auszuwählen und einzustellen
- Kompetenz, bei nasschemischen Prozessen steuernd und optimierend einzuwirken
- Befähigung zum Verständnis der Kenntnis der Auswirkungen von Kontaminationen und deren Bewertung mit analytischen Methoden

Angebotene Lehrunterlagen

Manuskripte und Folien

Lehrmedien
- Tafel, Notebook, Beamer

Literatur

- Takeshi Hattori; Ultraclean Surface Processing of Silicon Wafers: Secrets of VLSI Manufacturing; Springer Berlin Heidelberg; 1. Auflage 2010
- Karen A. Reinhardt, Richard F. Reidy; Handbook of Cleaning for Semiconductor Manufacturing; Fundamental and Applications; John Wiley & Sons Inc; Auflage:1 (2011)

Weitere Informationen zur Lehrveranstaltung

Das Basismodul *Chemie für Master* befähigt zum Verständnis des Vertiefungsmoduls *Halbleiterchemie*.
Überblick

Lehrveranstaltung

HF-Schaltungstechnik (RF-Circuit Design)

LV-Kurzbezeichnung: **HFS**

Verantwortliche/r

Prof. Dr. Thomas Stücke

Fakultät: Elektro- und Informationstechnik

Lehrveranstaltung

Lehrveranstaltung: Vertiefung

LV-Kurzbezeichnung: HF-Schaltungstechnik (RF-Circuit Design)

Angebotsfrequenz

nur im Wintersemester

Lehrform

Seminaristischer Unterricht mit Übungen

Studiensemester gemäß Studienplan

1., 2., 3. Semester, 4 SWS, Deutsch, ECTS-Credits 5

Zeitaufwand

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

- Kenntnisse über die Bedeutung und praktischen Anwendungen von elektronischen Schaltungen für hohe Frequenzen
- Kenntnisse der Besonderheiten von elektronischen Hochfrequenzschaltungen
- Kenntnisse über die Modellierung von passiven und aktiven Bauelementen bei hohen Frequenzen
- Kenntnisse der grundlegenden Schaltungstechnik von Verstärkern, Mischern, Oszillatoren und Schaltern für hohe Frequenzen

Stand: 01. 04. 2019

Ostbayerische Technische Hochschule Regensburg

Seite 112
Fertigkeiten:

- Fertigkeiten zur Analyse und zum Entwurf von Hochfrequenzschaltungen
- Fertigkeiten zur Anwendung von Simulationsprogrammen zum rechnergestützten Schaltungsentwurf

Kompetenzen:

- Kompetenz zur anwendungsspezifischen Entwicklung von Schaltungen für hohe Frequenzen
- Kompetenz zur optimalen Auswahl von Bauelementen, Technologien und Herstellungsverfahren

Angebotene Lehrunterlagen

Foliensätze zu allen Lektionen, Schaltungdateien (Spice) der Simulationsbeispiele

Lehrmedien

Tafel/Whiteboard, PC/Beamer, Simulationsprogramm Spice

Literatur

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse / Voraussetzungen

- Aufbau und Funktion von Dioden, Bipolar- und Feldeffekttransistoren
- Groß- und Kleinsignalanalyse von elektronischen Schaltungen
- Grundschaltungen der analogen Schaltungstechnik
- Umgang mit dem Simulationsprogramm Spice
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Modulname: Laser Materials Processing</th>
<th>LV-Kurzbezeichnung: LMP</th>
</tr>
</thead>
</table>

Verantwortliche/r

| Prof. Dr. Stefan Hierl | Maschinenbau |

Lehrende/r / Dozierende/r

| Prof. Dr. Stefan Hierl | nur im Wintersemester |

Lehrform

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Inhalte

- Laser safety

Lernziele/Lernergebnisse/Kompetenzen

- Understanding of the basic principle of lasers and the characteristics of laser radiation
- Knowledge of relevant laser sources, understand the functionality and applications
- Ability to apply the principles for guiding and shaping of laser radiation and knowledge of important beam guiding and shaping components
- Understanding the interaction of laser radiation with matter
- Knowledge of the main applications of lasers
- Ability to make an initial assessment of the use and limitations of lasers
- Knowledge of relevant laser safety regulations

Angebotene Lehrunterlagen

Technical books, lecture slides, standards, scientific articles, company documents
Lehrmedien

Computer/beamer, videos, blackboard

Literatur

The relevant literature is listed on the lecture slides.
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Vertiefung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Technology</td>
<td>LED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Jens Ebbecke (LB)</td>
<td>Allgemeinwissenschaften und Mikrosystemtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Jens Ebbecke (LB)</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Semiconductor basics for LEDs
- Material systems for LEDs
- Photometrical and radiometrical values, Candela, Lumen; Spectrum, “Color”, “White”, CRI, Color temperature
- Chip technology, fundamental properties: TSN, InGaAlP, InGaN (Energy band model / wavelength areas; Substrates); Chip production; Electrical, optical, and thermal properties; Chip size / current density / ‘low current’ types; Light extraction
- Package technology: Lead, molded, premolded, …; Requirements (Solderability, SSLT, …; ESD stability, ESD protection; Aging, lifetime)
- LED production: Assembly; Testing, binning; Measuring accuracy and tolerances
- White light with LEDs: RGB (pros and cons); White conversion (Properties, realization; Volume conversion, chip level conversion; Color homogeneity, white impression; White warm white)
- Conversion
- Phosphors and their properties
- Non saturated colors
- Full conversion
- Application of LEDs: General aspects (Current feed, derating; Durableness; Eye safety), Automotive (Interior / exterior, requirements, solution), Projection; Back light units (SRGB, Adobe; RGB- / conversion solutions; New opportunities: sequential coloring), Flash, General lighting (Special requirements; New solutions / Retrofits)

Stand: 01.04.2019
Ostbayerische Technische Hochschule Regensburg
Seite 116
Lernziele/Lernergebnisse/Kompetenzen

Knowlege:
- Students have knowledge about standard application conditions, the resulting requirements to an LED, and the necessary electrical, thermal, and optical design.

Skills:
- Students are able to describe the main peculiarities for creation of an LED, its properties and reasons for the brightness increase compared to classic light bulbs.
- They can describe the main fabrication processes; material specialities and features for light extraction increasement.

Lehrmedien

- Tafel, Notebook, Beamer

Literatur
Inhalte

The course is project based with the goal to construct a functioning system controlled via LabVIEW. Each student chooses a project at the beginning of the semester and realizes hardware and software autonomously, including simple project management techniques. Projects can be chosen from a list of suggestions or own ideas can be realized, approval by the instructors provided. Projects connected to research in labs at OTH are strongly encouraged. The scope and complexity of the projects is individually tailored to the skills of the participating students. Group projects are explicitly preferred.

Grading is based mainly on the quality of code and documentation of hardware and software. A realistic project plan, risk analysis and presentation after about half the semester and at the end are taken into account in the grading as well. Supervision of the ongoing project work is offered individually during contact hours according to the semester schedule. Additionally, teaching lessons are offered on specific topics in LabVIEW programming and optoelectronics, if desired.

Example projects: Assessment of color temperature and color rendering index of luminaires using an USB spectrometer; power-dependent control of appliances using optical interfaces of smart meters; construction of a headlight demonstrator with AFS functions; interferometric length measurements; construction of a laser projector.
Lernziele/Lernergebnisse/Kompetenzen

Knowledge:
- Knowledge of various program architectures in LabVIEW
- Knowledge how to interface various measurement and automation instruments using LabVIEW

Skills:
- Skills for concise written documentation and appealing oral presentation

Competences:
- Ability to create a hardware/software solution for an advanced project autonomously
- Ability to create an appealing and functional graphical user interface using LabVIEW
- Ability for productive team work, planning and project management

Lehrmedien

- Tafel, Notebook, Beamer

Literatur

- Sumathi; Surekha: LabVIEW based Advanced Instrumentation Systems, Springer-Verlag 2007

Weitere Informationen zur Lehrveranstaltung

Prerequisites:
Fundamentals of LabVIEW (preferably an introductory course), fundamentals of optoelectronic applications

Organizational Details:
- Duration: 4 SWS (mostly flexible working hours except for contact hours)
- Expected workload: 14 x 3 contact hours; 14 x 2 hours additional autonomous project work; written report, documentation of hardware including block and circuit diagrams and drawings: 20 h; documentation of software with structograms, flow charts etc.: 20 h; intermediate and final presentation: 20 h; total: 130 h.
Lehrveranstaltung | **LV-Kurzbezeichnung**
---|---
Multi-processor and multi-core design for reliable embedded systems | DRES

Verantwortliche/r	**Fakultät**
Prof. Dr. Vouivoun Yap | Allgemeinwissenschaften und Mikrosystemtechnik

Lehrende/r / Dozierende/r	**Angebotsfrequenz**
Prof. Dr. Vouivoun Yap | nur im Wintersemester

Lehrform
Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td>englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle
Inhalte

Topic 1:
- A review of a single core design
 - datapath,
 - pipelining, and
 - cache design

Topic 2:
- Multi-core COTS Processor
- Improving performance
- Multi-processor vs. multi-core: similarities and differences
- Maintaining design integrity when migrating from a single-processor solution
- Improving reliability
- Creating an “event processor”. Avoiding resource conflicts in multi-core designs

Topic 3:
- Introduction to OpenMp programming and MPI

Topic 4:
- Design Challenges
 - Scheduling issues
 - Maintenance
 - Adapting task sets for distributed systems. Example automotive control system

Topic 5:
- Timing Issues
 - Impact of jitter
 - Different forms of clock synchronisation algorithm. Assessing what happens when something goes wrong
 - Timing in the event of errors

Topic 6:
Controller Area Network (CAN) Protocol
- Creating a simple multi-processor design using CAN<
- Challenges of clock synchronisation<
- Timing of tasks and network communications
- Basic use of watchdogs
- Running without clock synchronisation

Topic 7:
- Improving Reliability in Distributed Designs
 - Adding redundant Master nodes
 - Adding redundant Slave nodes
 - Hot standbys
 - Adding redundant communication paths. Bus vs. star topologies<
 - Compare performance of different architectures<
• Safety Integrity Levels

Lernziele/Lernergebnisse/Kompetenzen

Knowledge:
- The Students gain knowledge related to designing reliable embedded systems using multiprocessor and multicore processors.

Skills:
- The Students gain skills in building embedded hardware programming in C for embedded systems.

Competences:
- The students gain competences in programming in C for embedded systems.

Lehrmedien
Tafel, Notebook, Beamer

Literatur
M.J. Pont, The Engineering of Reliable Embedded Systems
M.J. Pont, Patterns for Time Triggered Embedded Systems

Weitere Informationen zur Lehrveranstaltung
Blocklehrveranstaltung
Physik der Halbleiterbauelemente (Physics of Semiconductor Devices) BEP

Prof. Dr. Rainer Holmer Elektro- und Informationstechnik

Lehrende/r / Dozierende/r Angebotsfrequenz

Prof. Dr. Rainer Holmer nur im Wintersemester

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Inhalte

- Grundsätzliche Aussagen der Quantenmechanik
- Halbleiterphysik: Kristallstruktur, Bandstruktur, Halbleiterstatistik, Ladungstransport, Generation und Rekombination
- Halbleiterdiode: pn-Übergang, Hochinjektion, Temperaturverhalten, Durchbruchverhalten, Schaltverhalten, Metall-Halbleiter-Kontakt
- Bipolartransistor: Funktionsprinzip, Stromverstärkung, Kennlinien, Durchbruchverhalten, Schaltverhalten, Modelle
- Feldeffekttransistor: MOS-Kondensator, MOSFET, Kurzkanaleffekte, JFET, Modelle

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

- Vertiefte Kenntnisse der physikalischen Zusammenhänge im Halbleiter (Festkörperphysik, quantenmechanische Grundlagen)
- Kenntnis der physikalischen Zusammenhänge am pn-Übergang
- Kenntnisse zur Grundlegenden Funktion und Charakteristik von Bipolar- und Feldeffekt-Transistor

Fertigkeiten:

- Physikalische Beschreibung des Bauelemente-Verhaltens von Diode, Bipolartransistor und Feldeffekttransistor
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Vertiefung

- Durchführen und Interpretieren von einfachen Device-Simulationen
- Nutzung von Modellen für die Schaltungssimulation

Kompetenzen:

- Einschätzung der Funktionalität von elektronischen Bauelementen und deren physikalische Grenzen und Randbedingungen
- Einschätzung der Anwendbarkeit von Device-Simulationen und -Modellen

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Lehrveranstaltung

<table>
<thead>
<tr>
<th>NVZ</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantentheorie 1 (Quantum Theory 1)</td>
<td>QTH1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Friedhelm Kuypers</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Friedhelm Kuypers</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Inhalt

- Die Anfänge der Quantentheorie
- Schrödinger-Gleichung
- Freie Wellenpakete
- Stückweise konstante Potential
- Die mathematische Struktur
- Messprozess und Unschärferelation

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:
- Die Studierenden kennen in groben Zügen die Anfänge der Quantentheorie.
- Sie kennen Schrödinger-Gl. und die Interpretation der Wellenfunktion.
- Sie kennen Eigenwertgl. und die Eigenschaften hermitescher Operatoren.
- Sie kennen die Axiome des Messprozesses und die Bedeutung der Unschärferelation.

Fertigkeiten:
- Sie können die Schrödinger-Gl. für einfach Potentiale lösen und Tunnelwahrscheinlichkeiten berechnen.
- Sie können mit hermiteschen Operatoren umgehen und einfache Eigenschaften beweisen.
- Sie können Probleme mit der Unschärferelation berechnen.
<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skriptum mit Aufgabensammlung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Notebook, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Tipler: Moderne Physik, Spektrum-Verlag</td>
</tr>
<tr>
<td>D. Griffiths: Quantenmechanik, Pearson-Verlag</td>
</tr>
<tr>
<td>W. Nolting: Theoret. Physik, Bd. 5/1 & 5/2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Vorkenntnisse: Mathematik MA1 & MA2, Physik</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Quantentheorie 2 (Quantum Theory 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Friedhelm Kuypers</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Friedhelm Kuypers</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe Studienplantabelle

Inhalte

- Der Drehimpuls
- Das Wasserstoffatom
- Der Spin
- Näherungsmethoden
- Identische Teilchen und Pauli-Verbot
- Heliumatom und Wasserstoffmolekül
- Festkörper
- verschränkte Zustände
- Quantenkryptographie

Lernziele/Lernergebnisse/Kompetenzen

Kenntnisse:

- Die Studierenden kennen Eigenwerte und Eigenvektoren der Bahndrehimpuls- und Spinoperatoren.
- Sie kennen Anwendungen von Näherungsmethoden.
- Sie wissen wie kovalente Bindungen (Elektronenpaarbindungen) zustande kommen.
- Sie kennen verschränkte Zustände und das Prinzip der Quantenkryptographie.

Fertigkeiten:

- Sie können mit Produktsätzen und Leiteroperationen arbeiten.
- Sie sind in der Lage mit Drehimpulsoperatoren und Spinoperatoren zu rechnen.
- Sie verfügen über Verständnis des Pauli-Verbotes und der Austauschwechselwirkung.
- Sie sind fähig Näherungsmethoden auf Atome und Moleküle anzuwenden.

Angebotene Lehrunterlagen
Skriptum mit Aufgabensammlung

Lehrmedien
Tafel, Notebook, Beamer

Literatur
- P. Tipler: Moderne Physik, Spektrum-Verlag
- D. Griffiths: Quantenmechanik, Pearson Verlag

Weitere Informationen zur Lehrveranstaltung
Der Besuch des Moduls *Quantentheorie 1* wird dringend empfohlen!
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Vertiefung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezielle Aspekte regenerativer Energien</td>
<td>SRE</td>
</tr>
<tr>
<td>(Special Aspects of Renewable Energy)</td>
<td></td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät
Prof. Dr. Oliver Brückl | Elektro- und Informationstechnik

Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Oliver Brückl | jährlich

Lehrform
Seminaristischer Unterricht mit 10-15 % Übungsanteil sowie 10-15 % Praktikumsanteil

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
60h | 90h

Studien- und Prüfungsleistung
Siehe Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
Siehe Studienplantabelle

Inhalte
- Einführung und Überblick über regenerative Energien
- Energiebegriffe, Energieverbräuche, Reserven und Ressourcen, Potenzialbegriffe
- Prinzip und Funktionsweise von regelbaren Transformatoren (Kommutierung, Schaltprinzipien, Regelstrategien)
- Vergleich verschiedener Spannungshaltungskonzepte im Verteilungsnetz
- Engpassmanagement im Verteilnetz (gesetzl. Grundlage, Umsetzung in der Praxis, Konflikte mit der Regelleistungserbringung)
- Blindleistung (Definition und Arten, Problemstellungen bei der Messung, Einfluss auf die Stromnetze)
- Systemstabilität und Spannungskollaps (Theorie, Ablauf und Gegenmaßnahmen, Einflussfaktoren) Heutige und zukünftige Netzbelastungen durch Erzeugungsanlagen, Speicher und Lasten)

Lernziele/Lernergebnisse/Kompetenzen
Kenntnisse:
- Kenntnisse über Begrifflichkeiten
- Kenntnisse über die Spannungsregelung in Stromnetzen
- theoretische und praxisnahe Kenntnisse über Bedeutung und Messung von Blindleistung
- Kenntnisse über die Anforderungen, Probleme und Lösungsmaßnahmen bei der Sicherstellung der Netzstabilität

Stand: 01. 04. 2019
Ostbayerische Technische Hochschule Regensburg
Seite 129
Name des Studiengangs:
Master Electrical and Microsystems Engineering (PO: 20182)

Modulname:
Vertiefung

<table>
<thead>
<tr>
<th>Fertigkeiten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fähigkeit, einfache Berechnungen zur Netzstabilität durchzuführen</td>
</tr>
<tr>
<td>• Fähigkeit, die verschiedenen Begrifflichkeiten sicher zu unterscheiden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Beurteilungsvermögen von Maßnahmen und Entwicklungen hinsichtlich der Netzstabilität</td>
</tr>
<tr>
<td>• Spannungsebenenübergreifende Analysekompetenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript, Präsentationsunterlagen und Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Rechner, Beamer, Labor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Häberlin, Photovoltaik, AZ Verlag, 2007</td>
</tr>
<tr>
<td>• Henze, Hillebrand: Strom von der Sonne, ökobuch verlag, 1999</td>
</tr>
<tr>
<td>• Jossen, Andreas; Weydanz, Wolfgang: Moderne Akkumulatoren richtig einsetzen, 1.Auflage Batteriebuch, 2006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regenerative Energiequellen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kleemann, Manfred: Regenerative Energiequellen, Springer Verlag</td>
</tr>
<tr>
<td>• Quaschning, Volker: Regenerative Energiesysteme, Carl Hanser Verlag, München</td>
</tr>
<tr>
<td>• Wagner, Ulrich: Nutzung regenerativer Energiequellen, E& -Verlag, Herrsching</td>
</tr>
<tr>
<td>• Meliss, Michael: Regenerative Energiequellen, Springer Verlag</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Vertiefung

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefung Microcontrollertechnik für Master (Advanced Microcontroller Techniques for Master)</td>
<td>VMCM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Hans Meier</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Hans Meier</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen (Seminar und Projektarbeit - 100% Übungsanteil)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>56h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
<tr>
<td>Hinweis: die zu erbringende Prüfungsleistung regelt die Studien- und Prüfungsordnung des Masterstudiengangs Elektromobilität und Energienetze (MEE).</td>
</tr>
<tr>
<td>Zugelassene Hilfsmittel für Leistungsnachweis</td>
</tr>
<tr>
<td>Siehe Studienplantabelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Realisierung von Interface-Schaltungen - hier darf man auch mal löten! - vom Schaltplanentwurf über Leiterplattendesign bis zur Inbetriebnahme und der Präsentation.</td>
</tr>
<tr>
<td>• Besonderer Wert wird auf sorgfältige Dokumentation gelegt.</td>
</tr>
<tr>
<td>• EI-WIKI-Eintrag.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse:</td>
</tr>
<tr>
<td>• Kenntnisse über Sensoren und Aktoren, deren Ansteuerung und Zusammenwirken</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fähigkeiten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Eigenständige Umsetzung einer fortgeschrittenen Problemstellung in eine Hardware-/Software-Lösung mittels der Programmierung eines Mikrocontrollers in Assembler oder C.</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Vertiefung

- Realisierung von Interface-Schaltungen
- Gruppenarbeit
- Fehlersuche, -analyse und behebung

Kompetenzen:

- Fertigkeiten in sauberer schriftlicher Dokumentation und ansprechender mündlicher Präsentation

Lehrmedien

Tafel, Notebook, Beamer, Evaluationsboard, Logikanalyzer, 3D-Drucker, Mikroskop, Lötarbeitsplatz

Literatur

- µVision, Fa. Keil
- Eagle-Handbuch
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Sensor/Actuator Networks</td>
<td>WSAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Schubert</td>
<td>Elektro- und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Martin Schubert</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Lehrform
50% seminar teaching and 50% practical training

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2., 3.</td>
<td>4 SWS</td>
<td>deutsch/englisch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56h</td>
<td>62h (preparation and review), 32h (exam preparation)</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
see Studienplantabelle

Zugelassene Hilfsmittel für Leistungsnachweis
see Studienplantabelle

Inhalte

Theory:
1. Transmission Fundamentals
2. Physical Level
3. Data Link Level
4. Network Level
5. Transport Level
6. Current Topics (guest lecturer)

Practical:
- a) Get familiar with the microcontroller part.
- b) Getting started with the wireless part
- c) Student projects concerning wireless transmission.

Lernziele/Lernergebnisse/Kompetenzen

Knowledge:
- The knowledge required to implement the competences listed below.

Skills:
- The skills required to implement the competences listed below.
Competences:

1. **Fundamentals**
 - **Theory**
 - + ISO Layer Model
 - + Most important IEEE standards
 - Practical: basic C language needs

2. **Physical Level**
 - **Theory**
 - + ISM frequency bands,
 - + Wireless physics (FSPL, ERP vs. range, Fresnel zone)
 - Practical: Getting started with programming the hardware

3. **Data Link Level**
 - MRFI data type packet_t
 - MRFI transmission metrics data
 - MRFI C commands for basic wireless data transmission

4. **Network Level**
 - MRFI basic network components: access point, end device, range extender
 - Optimizing battery power

5. **Transport Level**
 - Routing strategies

Angebote Lehrunterlagen

- Script and instructions for practical training

Lehrmedien

- Blackboard and beamer, electronics laboratory with experimental setups

Literatur

Weitere Informationen zur Lehrveranstaltung

Documents English, teaching language is German or English depending on students.
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zusatzausbildung Fachkraft für Arbeitssicherheit - Sicherheitsingenieur (Module PI-III) (Additional Training in Specialist for Occupational Safety - Safety Engineer)</td>
<td>ZFA /I2</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Peter Landauer (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
<tr>
<td>Reinhard Meier (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
<tr>
<td>Gunter Nowack (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>Schwerpunkt Wahlpflichtmodul</td>
<td>12</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Siehe AW-Katalog

Empfohlene Vorkenntnisse

Siehe AW-Katalog

Inhalte

Die Ausbildung vermittelt Studierenden technischer Studiengänge die notwendigen fachlichen, methodischen und sozialen Kompetenzen für sicherheitstechnische und arbeitsschutzrelevante Aufgaben als zukünftige Führungskräfte, Verantwortliche oder als Sicherheitsingenieure/innen. Ziele dieser Zusatzausbildung sind:

- Unternehmerisches Denken und Handeln fördern
- Betriebswirtschaftliche Aspekte der Unternehmensgründung erläutern
- Unternehmensführung für Ingenieure vermitteln
- Unternehmerisches Handeln in der Gründungssituation trainieren

Näheres regelt der Kurskatalog des AW-Programms der OTH Regensburg.

Lernziele/Lernergebnisse/Kompetenzen

Siehe AW-Katalog
Zugeordnete Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Veranstaltung</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>1.</td>
<td>Sicherheitsingenieur PI (Specialist for Occupational Safety - Safety Engineer PI)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Sicherheitsingenieur PII (Specialist for Occupational Safety - Safety Engineer PII)</td>
<td>3 SWS</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Sicherheitsingenieur PIII (Specialist for Occupational Safety - Safety Engineer PIII)</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen

Lehrveranstaltung

<table>
<thead>
<tr>
<th>Name des Studiengangs:</th>
<th>Master Electrical and Microsystems Engineering (PO: 20182)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname:</td>
<td>Zusatzausbildung Fachkraft für Arbeitssicherheit - Sicherheitsingenieur (Module PI-III) (Additional Training in Specialist for Occupational Safety - Safety Engineer)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Peter Landauer (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
<tr>
<td>Reinhard Meier (LB)</td>
<td></td>
</tr>
<tr>
<td>Gunter Nowack (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Peter Landauer (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Reinhard Meier (LB)</td>
<td></td>
</tr>
<tr>
<td>Gunter Nowack (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Siehe AW-Katalog

Studiensemester

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe AW-Katalog

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe AW-Katalog

Inhalte

Siehe AW-Katalog

Lernziele/Lernergebnisse/Kompetenzen

Siehe AW-Katalog

Angebotene Lehrunterlagen

Siehe AW-Katalog

Lehrmedien

Siehe AW-Katalog

Literatur

Siehe AW-Katalog

Stand: 01. 04. 2019

Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs: Master Electrical and Microsystems Engineering (PO: 20182)

Modulname: Zusatzausbildung Fachkraft für Arbeitssicherheit - Sicherheitsingenieur (Module PI-III) (Additional Training in Specialist for Occupational Safety - Safety Engineer)

Weitere Informationen zur Lehrveranstaltung

Siehe AW-Katalog
Lehrveranstaltung

<table>
<thead>
<tr>
<th>Modulname:</th>
<th>Zusatzausbildung Fachkraft für Arbeitssicherheit - Sicherheitsingenieur (Module PI-III) (Additional Training in Specialist for Occupational Safety - Safety Engineer)</th>
</tr>
</thead>
</table>

| Name des Studiengangs: | Master Electrical and Microsystems Engineering (PO: 20182) |

| Modulname: | Zusatzausbildung Fachkraft für Arbeitssicherheit - Sicherheitsingenieur (Module PI-III) (Additional Training in Specialist for Occupational Safety - Safety Engineer) |

| Name des Studiengangs: | Master Electrical and Microsystems Engineering (PO: 20182) |

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherheitsingenieur PII (Specialist for Occupational Safety - Safety Engineer PII))</td>
<td>ZFA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
</table>

Dr. Peter Landauer (LB)	Allgemeinwissenschaftliches Programm
Reinhard Meier (LB)	
Gunter Nowack (LB)	

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
</table>

Dr. Peter Landauer (LB)	nur im Sommersemester
Reinhard Meier (LB)	
Gunter Nowack (LB)	

<table>
<thead>
<tr>
<th>Lehrenform</th>
</tr>
</thead>
</table>

| Siehe AW-Katalog |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>3 SWS</td>
<td>deutsch</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
</table>

| Siehe AW-Katalog |

<table>
<thead>
<tr>
<th>Zugelassene Hilfsmittel für Leistungsnachweis</th>
</tr>
</thead>
</table>

| Siehe AW-Katalog |

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
</table>

| Siehe AW-Katalog |

<table>
<thead>
<tr>
<th>Lernziele/Lernergebnisse/Kompetenzen</th>
</tr>
</thead>
</table>

| Siehe AW-Katalog |

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
</table>

| Siehe AW-Katalog |

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
</table>

| Siehe AW-Katalog |

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

<p>| Siehe AW-Katalog |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>LV-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherheitsingenieur PIII (Specialist for Occupational Safety - Safety Engineer PIII)</td>
<td>ZFA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunter Nowack (LB)</td>
<td>Allgemeinwissenschaftliches Programm</td>
</tr>
<tr>
<td>Dr. Peter Landauer (LB)</td>
<td></td>
</tr>
<tr>
<td>Reinhard Meier (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Peter Landauer (LB)</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Reinhard Meier (LB)</td>
<td></td>
</tr>
<tr>
<td>Gunter Nowack (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.,2.,3.</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>2 SWS</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Siehe AW-Katalog

Zugelassene Hilfsmittel für Leistungsnachweis

Siehe AW-Katalog

Inhalte

Siehe AW-Katalog

Lernziele/Lernergebnisse/Kompetenzen

Siehe AW-Katalog

Angebotene Lehrunterlagen

Siehe AW-Katalog

Lehrmedien

Siehe AW-Katalog

Literatur

Siehe AW-Katalog
Weitere Informationen zur Lehrveranstaltung

Siehe AW-Katalog