(Modul-)Titel	Falls vorhanden Modulbez. oder -nr.	
Anwendungsorientierte Robotik – Projekt "Cobots im Handwerk" mit Fokus 3D Druck Application-oriented Robotics – Project "Cobots for Handcraft" with fokus 3D printing	RSDS/CCK_AR-P	
(Modul-)Verantwortliche/r	Fakultät	
Prof. DrIng. Thomas Linner	B / RSDS	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
MEng. Merve Karamara Ralph Christnacht (Innovationsmentor aus der Industrie) Dr. Prof. DrIng. Thomas Bock (Innovationsmentor aus der Industrie)	Wintersemester und Sommersemester	
Lehrform	Unterrichtssprache	
Projektorientierter Unterricht	deutsch	
Art der Prüfung	Voraussetzungen	
Abschlusspräsentation (Prä)	keine	
Teilnehmerzahl (gesamt)	Modultyp	Arbeitsaufwand
insg. 30	FW/AW	4 SWS / 5 ECTS
Zielfakultäten/ -studiengänge (inkl. Teilnehmerzahl pro Studiengang)	Für Bachelor	Für Master
A B MLO M El S (insg. 25) Zusatzstudium Digital Skills (5) Inhalt (Kurzbeschreibung)	✓	✓

<u>Vertiefte multi-disziplinäre Themenstellungen gemeinsam mit Industriepartnern:</u>
• Mensch-Roboter-Kollaboration und kollaborative Roboter im Handwerk und neuen Robotereinsatzfeldern mit dem Menschen im Zentrum außerhalb der konventionellen Fertigungsindustrien

- Kollaborative Robotersysteme: Arten, Aufbau, Komponenten (Peripherie)
- Prozessanalyse und Anforderungsmanagement für kollaborativen Robotereinsatz mit integrierter Stakeholderanalyse
- Vermittlungsmethoden der Technologien an die Handwerker
- Parametrisch-assoziative Konzepterstellung neuer Bauteile und Produkte
- Automatisierte Roboterprogrammierung und Prozesssimulation
- Design-for-Manufacturing and Assembly (DFMA)
- Systematische Validierung als digitale und physikalische Mock-ups im hochmodernen Digital- und Robotiklabor (Building.Lab)
- Validierung der Ergebnisse und Überprüfung über Iterationen
- Entwicklung erster Ansätze von Umsetzungsideen
- Teambasierte Zusammenarbeit in hoch interdisziplinären Entwickler-Teams aus den verschiedenen Fakultäten

Hinweise:

- Der Kurs ist sowohl für Einsteiger ohne Programmier-/Robotik-Vorkenntnisse als auch für Fortgeschrittene mit sehr guten Programmierkenntnissen geeignet.
- Der Fokus liegt auf der Anwendungsintegration von Robotersystemen wie beispielsweise FANUC CRX25iA, DOBOT Magician, diversen Linearachsenrobotern und dazugehörigen Teilsystemen als auch der Entwicklung neuer Peripheriekomponenten, End-effektoren, Prozessen und Produktstrukturen

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,

<u>Fachkompetenz</u>

- interdisziplinäres Arbeiten in der Gruppe im Rahmen einer praxisnahen Aufgabenstellung zu erlernen (1)
- integrierte Lösungsansätze (Produkt, Prozess und Produktionssystem als Einheit) zu entwickeln (2)
- die Entwicklung einer neuartigen technologiebasierten Lösung in einen unbekannten Anwendungsfall sicher handzuhaben (3)

Persönliche Kompetenz

- ihre Fähigkeiten und Ansätze zielorientiert in multidisziplinäre Teams einzubringen (3)
- Erweiterung der Teamfähigkeit im interdisziplinären Kontext (3)
- Erweiterung der Artikulationsfähigkeit im interdisziplinären Kontext: vor dem Team, Dozentinnen und Dozenten (2)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden