

Modulhandbuch

für den berufsbegleitenden Masterstudiengang

Automotive Electronics (M.Eng.)

SPO-Version ab: 17.12.2024

Wintersemester 2025/2026

erstellt am 10.09.2025

Fakultät Elektro- und Informationstechnik

Vorspann

1. Erläuterungen zum Aufbau des Modulhandbuchs

Die Module sind alphabetisch sortiert. Jedem Modul sind eine oder mehrere Veranstaltungen zugeordnet, deren Beschreibung jeweils direkt im Anschluss an das Modul folgt. Durch Klicken auf die Einträge im Inhaltsverzeichnis gelangt man direkt zur jeweiligen Beschreibung im Modulhandbuch.

Die Angaben bezüglich des Gesamtzeitaufwands je Modul setzen sich aus den Kriterien Präsenzzeit in Vorlesungen, Vor- und Nachbereitung, Eigenstudium sowie ggf. Projektarbeit und Präsentation zusammen. Zugrunde liegt dabei der für den Studiengang festgelegte zeitliche Aufwand von 30 Stunden pro Credit und Semester.

2. Lernziele

Das Modulhandbuch führt die Lernziele der einzelnen Module anhand von erworbenen Kompetenzen auf. Diese sind unterteilt in "Fachkompetenz" (Wissen, Fertigkeiten) und "Persönliche Kompetenz" (Sozialkompetenz, Selbständigkeit). Jede Kompetenz ist durch einen Klammerausdruck (1-3) einer Niveaustufe zugewiesen. Die drei Niveaustufen gliedern sich in "Kennen" (Niveaustufe 1), "Können" (Niveaustufe 2) und "Verstehen und Anwenden" (Niveaustufe 3).

Neben der Vermittlung neuer fachlicher Kompetenzen ist die Vermittlung von persönlichen Kompetenzen selbstverständlich integraler Bestandteil einer jeden Lehrveranstaltung bzw. eines Hochschulstudiums im Allgemeinen. Sofern in der Beschreibung eines Moduls nicht weiter präzisiert, sind die Studierenden nach der erfolgreichen Absolvierung eines Moduls in der Lage,

- den eigenen Lernfortschritt und Lernbedarf zu analysieren (3) und gegebenenfalls Handlungsweisen daraus abzuleiten (3),
- zielorientiert mit anderen zusammenzuarbeiten (2), deren Interessen und soziale Situation zu erfassen (2), sich mit ihnen rational und verantwortungsbewusst auseinanderzusetzen und zu verständigen (2) sowie die Arbeits- und Lebenswelt mitzugestalten (3),
- wissenschaftlich im Sinne der "Regeln guter wissenschaftlicher Praxis" zu arbeiten (2), fachliche Inhalte darzustellen (2) und vor einem Publikum in korrekter Fachsprache zu präsentieren (2).

3. Standardhilfsmittel

Zu den Prüfungen zugelassene Hilfsmittel sind:

- Schreibstifte aller Art (ausgenommen rote Stifte)
- Zirkel, Lineale aller Art, Radiergummi, Bleistiftspitzer
- Nicht-programmierbare Taschenrechner (Zugelassene Taschenrechner: Casio FX-991, Casio FX-991 PLUS, Casio FX-991DE X)
- Bücher, Skripte, Formelsammlungen und selbstgeschriebene Formelsammlungen (u.a. Mitschriften, Übungsaufgaben plus Lösungen)

Beachten Sie bitte, dass jedwede Nutzung kommunikationstauglicher Geräte (Telefone, Uhren, Brillen, etc.) verboten ist.

4. Verwendung der Module

Alle Module sind auf die Lehre im berufsbegleitenden Studium ausgerichtet. Die Module sind zielspezifisch für Studierende in dieser Studiengangsform ausgelegt. Eine systematische Verwendung in anderen Studiengängen ist nicht vorgesehen. Dies beschränkt dennoch nicht die Anrechenbarkeit gemäß den Regelungen der entsprechenden Richtlinien.

Modulliste

Modul 1	Systembetrachtung Fahrzeug	3
F	-ahrerassistenzsysteme	5
	Funktionale und räumliche Aufteilung von Funktionen	
	Grundlagen der Kommunikationssysteme im Fahrzeug	
	Sichere Rechnersysteme	
	System Requirements and Architectures	
	Wasserstofftechnik	
	Zuverlässigkeit und Verfügbarkeit	
	Elektronische und physikalische Grundlagen	
	Aktoren	
	Bildverarbeitung	
	Digitale Schaltungstechnik und Hardware Beschreibungssprache	
	Schaltungstechnik	
	Sensoren	
	Signalverarbeitung	
	Vehicle Dynamics	
	Funktionsentwicklung und Lifecycle Management	
	Anforderungsmanagement	
	Automotive Supply Chain Management	
	Kostenstrukturen und Kostenanalyse unter Berücksichtigung der Nachhaltigkeit	
	Process Improvement with ASPICE	
	Projektmanagement	
	Qualitätsmanagement	
	Risikomanagement	
	Softskills in der Software- und Systementwicklung	
	Software-Produktlinien	
	Funktions- und Software-Entwicklungsmethoden	
	Echtzeitbetriebssysteme	
	Funktionsentwicklung/Rapid Prototyping	
	HiL und System Tests	
ľ	Modellbildung mechatronischer Systeme	.6
F	Real-Time Linux	.63
	Software Engineering sicherer Systeme	
9	Softwaretest und Testmanagement	. 68
Modul 5	Aktuelle und zukünftige Kommunikationsarchitektur	. 70
Е	Bordnetzentwurf Systemdesign	. 71
(CAN-Bus	.73
(CAN-Bus Praktikum	. 75
(Car-IT-Security	. 77
	CarToX	
	Ethernet im Automobil	
	-ahrzeugdiagnose: Grundlagen, Normen und Herausforderungen	
	_IN-Bus	
	Elektromobilität und Innovative Ansätze	
	Batteriespeichersysteme/Laden	
	Batteriesysteme - Battery Technology	
	Brennstoffzelle	
	Elektromagnetische Verträglichkeit, EMV Grundlagen und Praxis	
	Elektromobilität	
	nnovativer Ausblick	
	Moderne Drehstromantriebe	
	Masterarbeit	
	Präsentation und Verteidigung Masterarbeit	
,	Schriftliche Ausarbeitung Masterarbeit	105

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Modul 1 Systembetrachtung Fahrzeug		M1 SF
Modulverantwortliche/r	Fakultät	
Prof. Dr. Jürgen Mottok	Elektro- und Informationstecl	hnik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2. Semester		Pflicht	10

Verpflichtende Voraussetzungen	
keine spezifischen Anforderungen	
Empfohlene Vorkenntnisse	
keine spezifischen Anforderungen	

Inhalte

siehe zugehörige Lehrveranstaltungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe zugehörige Lehrveranstaltungen

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe zugehörige Lehrveranstaltungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Fahrerassistenzsysteme	10 UE	
2.	Funktionale und räumliche Aufteilung von Funktionen	10 UE	
3.	Grundlagen der Kommunikationssysteme im Fahrzeug	10 UE	
4.	Sichere Rechnersysteme	10 UE	
5.	System Requirements and Architectures	8 UE	
6.	Wasserstofftechnik	10 UE	
7.	Zuverlässigkeit und Verfügbarkeit	10 UE	

Teilmodul		TM-Kurzbezeichnung
Fahrerassistenzsysteme		FAS
Verantwortliche/r	Fakultät	
Prof. Thomas Limbrunner	Zentrum für Weiterbildung un	nd Wissensmanagement
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Thomas Limbrunner	jährlich	
Lehrform		
Seminaristischer Unterricht mit Übungsanteil ca. 10 %		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Überblicke über Fahrerassistenzsysteme (Definition, Einordnung relevanter Begrifflichkeiten, Klassifikation, Einsatzgebiete,...)
- Systemüberblick Fahrzeug aus dem Blickwinkel der Fahrerassistenz, Verständnis der Wirkketten, K-Matrix, Mapping von Signalen
- Sensorik, Mess- und Funktionsprinzip, wie Kamera (mono, stereo), Lidar, PMD, Radar, Ultraschall, EGO-Daten
- Zentraler Fahrzeugrechner, Domaincontroller, Sensorfusion

Hinweis: Die Inhalte der Lehrveranstaltung können sich im Zeitablauf ändern und werden kontinuierlich der aktuellen technologischen Entwicklung angepasst

Lernziele: Fachkompetenz

- einen Überblick über Fahrerassistenzsysteme zu geben (3)
- einen Systemüberblick Fahrzeug, K-Matrix, Signalmapping zu geben (3)
- Wirkketten zu verstehen (3)
- Sensorik, Mess- und Funktionsprinzip zu kennen (1)
- Zentraler Fahrzeugrechner, Domaincontroller, Sensorfusion zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich selbstständig im Gesamtsystem FAS-Fahrzeug zu orientieren (2)
- proaktiv zu denken und Verständnis für Fahrerassistenzsysteme zu entwickeln (2)
- besser analytische Situationseinschätzung zu geben (2)

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

Rechner/Beamer

Literatur

- [1] Winner, H.; Hakuli, S.: "Handbuch Fahrerassistenzsysteme"
 Springer Vieweg Verlag 2012, 2015, 3. Auflage, ISBN: 978-3-658-05733-6
- [2] Reif, K.: "Automobil Elektronik", Vieweg Verlag 2006, 1. Auflage, ISBN 3-528-03985-X
- [3] Streichert, T.; Traub, M.: Elektrik/Elektronik Architekturen im Kraftfahrzeug

Springer Vieweg Verlag 2012, ISBN: 978-3-642-25478-9

[4] Schäufele, J.; Zurawka, T.: "Automotive Software Engineering" Vieweg Verlag 2003, ISBN: 3-528-01040-1

Teilmodul		TM-Kurzbezeichnung
Funktionale und räumliche Aufteilung von Funktionen		FRAF
Verantwortliche/r	Fakultät	
Prof. Dr. Karsten Becker	Angewandte Informatik	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Karsten Becker	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Systembegriffsdefinitionen
- Antriebseinheiten
- Fahrwerkseinheiten
- Aktive Sicherheitseinheiten
- Passive Sicherheitseinheiten
- Bedienerschnittstellen
- Komforteinheiten
- Aktivierungseinheiten
- Verbindungseinheiten

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, zu erkennen weche Komplexität sich hinter einer einzelnen Funktionalität verbirgt. (1) Sie verstehen ebenso Querbezüge zu anderen Funktionalitäten. (3) Außerdem können sie sowohl die Reichweite der Anwendung im Kraftfahrzeug als auch dessen Umfeld einschätzen. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

- Skript
- Foliensatz
- Übungsaufgaben mit Lösungen

Lehrmedien

- Präsentation
- Board

Literatur

- Balzer, Ehlert, Haslinger, Heuberger, Jaganosch, Lindemann, K. Nusser, P. Nusser, Perner, Runtsch, Scheele: Kraftfahrzeugtechnik, Kieser Verlag (aktuelle Auflage)
- Bosch: Kraftfahrtechnisches Taschenbuch, Vieweg Verlag (aktuelle Auflage)

Teilmodul		TM-Kurzbezeichnung
Grundlagen der Kommunikationssysteme im Fahrzeug		GKF
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Grzemba (LB)	Zentrum für Weiterbildung ur	nd Wissensmanagement
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Andreas Grzemba (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Grundlagen der Datenkommunikation verstehen und anzuwenden (3)
- Kfz-Kommunikationssysteme verstehen und anzuwenden (3)
- Automotive Systemarchitekturen verstehen und anzuwenden (3)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- In Grundlagen digitaler Kommunikationssysteme können die Studierenden das ISO/OSI-Model, Zugriffsverfahren sowie Interaktionsmodelle anwenden (3).
- Fehlerkennungsverfahren sollen verstanden (1) sein.
- Die digitalten Kommunikationssystemen und Architekturen im Automotive wie Zentrale Gatewayarchitektur, Zonen-Architektur sowie CAN und switched Ethernetarchitekturen sollen verstanden und bewertet werden können (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs)

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

Rechner/Beamer

Literatur

- Grzemba, Kommunikationsstrategien für mechatronische Applikationen, ZfAW
- W. Zimmermann, R. Schmidgall: Bussysteme in der Fahrzeugtechnik, Vieweg

Teilmodul		TM-Kurzbezeichnung
Sichere Rechnersysteme		SR
Verantwortliche/r	Fakultät	
Dr. Michael Steindl	Elektro- und Informationstecl	hnik
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Dr. Michael Steindl	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Sicherheitsrelevante Rechneranwendungen
- Grundlegende Begriffe und Prinzipien, Normen und Richtlinien
- Beherrschung von Fehlern
- Architektur von fail-safe Rechnern
- Sicherheitsrelevante Softwareentwicklung
- Automotive Norm ISO 26262
- Ausgewählte Kapitel der Funktionalen Sicherheit

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, grundlegende Kenntnisse zur Aufgabenstellung, zu Fehlermodellen in elektronischen Rechnersystemen zu verstehen und Einführungen zu Methoden der Fehlervermeidung sowie zur Beherrschung von Fehlerwirkungen zu verstehen. Dazu gehört das Kennenlernen von Prozessen zur Fehlervermeidung und der Architekturen, um Fehlerwirkungen zu beherrschen. Zusätzlich werden Grundlagen der sicherheitsrelevanten Software-Entwicklung vermittelt. Ein analytischer Schwerpukt ist die Gefahren- und Risikoanalyse, die nach der qualitativen Risikoanalyse der automobilen Norm ISO 26262 erarbeitet wird und zum Design, Aufbau und Verhalten sicherer Rechnersysteme im Lifecycle angewandt wird (1,2,3).

Lernziele: Persönliche Kompetenz

nach Vorgaben der automobilen Norm ISO 26262 das generelle Vorgehen zu sicherheitsrelevanten Anwendungen festzulegen (1,2). Sie können strukturierte Entwurfsschirtte bis hin zur Gefahren- und Risikoanalyse durchführen (3). Sie verstehen die zu beherrschenden Fehlerarten und können passende Methoden zur Fehlerminderung, der -Vermeidung und zu Architekturmaßnahmen zur Fehlerbeherrschung festlegen (3). Sie erlangen das Verständnis für die Komplexität einer sicherheitsrelevanten Rechneranwendung im Anwendungsraum (3).

Angebotene Lehrunterlagen

- · Skript zur Vorlesung
- Übungensaufgaben
- Links
- Literaturliste

Lehrmedien

- Beamer
- Tafel

Literatur

- ISO 26262 Teil 1 bis 12, IEC 61508 Teil 1 bis 7
- Josef Börcsök: Funktionale Sicherheit: Grundzüge sicherheitstechnischer Systeme/ VDE Verlag
- Martin Hillenbrand: Funktionale Sicherheit nach ISO 26262 in der Konzeptphase der Entwicklung von Elektrik - Elektronik Architekturen von Fahrzeugen/ Institut für Technik der Informationsverarbeitung (ITIV)
- Michael Voigt: Funktionale Sicherheit von Fahrzeugen/ Springer Vieweg, Berlin, Heidelberg
- Hans-Leo Ross: Funktionale Sicherheit im Automobil/ Hanser Fachbuch
- Bosch, Kraftfahrtechnisches Taschenbuch, Vieweg Verlag

Teilmodul		TM-Kurzbezeichnung
System Requirements and Architectures		SRA
Verantwortliche/r	Fakultät	
Stefan Hermann (LB)	Zentrum für Weiterbildung ur	nd Wissensmanagement
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Stefan Hermann (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 20 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gement construction	[SWS oder UE]		[ECTS-Credits]
2. Semester	8UE	deutsch	

Präsenzstudium	Eigenstudium
6 h	29 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

Table of content

- Automotive systems
- Requirements
- Architectures
- System modelling
- System simulations
- Change management
- System development process

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- System Anforderungen zu erstellen und zu managen (3)
- System Architektur zu erstellen und zu managen (3)
- System Simulations zu Model zu erstellen und zu managen (3)
- Safety Anforderungen und Architektur zu erstellen und zu managen (3)

Lernziele: Persönliche Kompetenz

- die Logik der Systementwicklung zu verstehen (3)
- die Logik der ISO26262 zu verstehen (3)
- den Anforderungen ensprechende Simulationsverfahren zu finden (3)

Angebotene Lehrunterlagen Skript zur Vorlesung Lehrmedien Rechner/Beamer

Literatur

wird in der Vorlesung besprochen

Teilmodul		TM-Kurzbezeichnung
Wasserstofftechnik		WT
Verantwortliche/r	Fakultät	
Prof. Dr. Hans-Peter Rabl	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Hans-Peter Rabl	jährlich	
Lehrform		
Seminaristischer Unterricht mit Übungsanteil ca. 20 % und ergänzendem Praktikum ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung
Klausur, siehe Studienplantabelle

Inhalte

- Wasserstoff in der Sektorenkopplung
- Wasserstofferzeugung
- Physikalisch/chemische Eigenschaften des Wasserstoffs
- Sichere Handhabung von Wasserstoff
- Elektrochemische Energiewandlung
- Thermochemische Energiewandlung
- Systemarchitektur von Wasserstoffantrieben

Lernziele: Fachkompetenz

- energietechnische Grundlagen des Wasserstoffs zu verstehen (1) und physikalische/ chemische/thermodynamische Grundlagen des Wasserstoffs für Berechnungen heranzuziehen (2)
- bestehende Energiewandler (thermochemisch bzw. elektrochemisch) mit thermodynamischen/elektrochemischen Vergleichsansätzen zu untersuchen (2)
- Verfahren, Bauteile und Baugruppen von Wassersoffantriebssträngen zu nennen (1), bestehende technische Lösungen zu evaluieren (3) und Wirkmechanismen und Gesetzmäßigkeiten darzustellen (3)
- die Grundlagen der sicheren Handhabung von Wasserstoff im Transportsektor zu verstehen (2)
- fundamentale Funktionalitäten inkl. Aktorik und Sensorik der Energiwandler unter Berücksichtigung von Anforderungen und Randbedingungen zu entwerfen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (3)
- Beitrag, Bedeutung, Möglichkeiten und Grenzen der Wasserstofftechnik in den Feldern Transportsektor, Energiebereitstellung, Umweltauswirkungen und Gesellschaft selbstständig zu evaluieren (3)
- Rolle und Potenzial der Wasserstofftechnik im Bereich der Energiewende und der Sektorenkopplung kritisch einzuschätzen (3)
- technische Lösungen zur Einhaltung aktueller und zukünftiger gesetzlicher Vorschriften für Emissions- und Klimaschutz im Transportsektor zu entwickeln (3)

Angebotene Lehrunterlagen

Foliensatz, Übungsaufgaben, Praktikumsunterlagen

Lehrmedien

PowerPoint-Präsentation, Tafelübungen

Literatur

- Thomas Schmidt: Wasserstofftechnik Grundlagen, Systeme, Anwendung, Wirtschaft, Carl Hanser Verlag, 2022.
- Helmut Eichlseder et al.: Wasserstoff in der Fahrzeugtechnik Erzeugung, Speicherung, Anwendung, Springer Vieweg, Wiesbaden, 2018.

Teilmodul		TM-Kurzbezeichnung
Zuverlässigkeit und Verfügbarkeit		ZUV
Verantwortliche/r	Fakultät	
Prof. Dr. Jürgen Mottok Elektro- und Informationstechnik		hnik
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Jürgen Mottok	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 15 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung
Klausur, siehe Studienplantabelle

Inhalte

- Qualitätssicherung, Begriffe, Qualitätsnormen, ISO-9001
- Grundlagen der Wahrscheinlichkeitsrechnung und Statistik
- Normative Regulierungen (IEC 61508, ISO 26262)
- · Ausfallarten, Alterungs- und Ausfallmechanismen, Badewannenkurve
- Zuverlässigkeits-Kenngrößen
- Zuverlässigkeitsberechnungen
- Zuverlässigkeitsanalysen
- Fehlerbaum
- Markovmodell

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die folgenden Fachkompetenzen situativ zu zeigen:

- Analytische Fähigkeiten und Konzeptionsstärke entwickeln (3)
- Beurteilungsvermögen zeigen (3)
- im Studium erworbenen Fachkenntnissen anwenden (3)
- Selbständigkeit bei der Lösung einer vorgegebenen Aufgabe zeigen (Originalitätvon Lösungsideen) (3)
- Problematisierung und (Selbst-)Kritik (Systematik in der Bewertung der Lösungen) zeigen
 (3)
- Qualität der Ergebnisse die Neuartigkeit, Güte und Zuverlässigkeit eigener Lösungen interpretieren (3)

- Logische und prägnante Argumentation zeigen (Beispielsweise Wissenschaftliches Schreiben) (3)
- Formal korrekte Ergebnisse präsentieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die folgenden Kompetenzen zu zeigen:

Personale Kompetenzen

- Entwicklung einer normativ-ethischen Einstellung hinsichtlich der gesellschaftlichenTechnologiefolgen des eigenen Wissenschaftsbeitrages (3)
- Hilfsbereitschaft in einem teamorientierten Forschungsprozess zeigen (3)
- Zuverlässigkeit im eigenen Forschungsprozess (3)
- Offenheit für veränderte Randbedingungen und neue Erkenntnisse anderer Forschungsgruppen verifizieren und diskutieren (3)
- In Selbstmanagement den eigenen Forschungsprozess gestalten (3)
- Mit Einsatzbereitschaft in einem Forschungsverbund Ideen einbringen (3)

Aktivitäts- und Handlungskompetenz

- Entscheidungsfähigkeit bei mehreren Alternativen entwickeln (3)
- Tatkraft und Gestaltungswille im Forschungsdesign zeigen (3)
- Mit Innovationsfreudigkeit unterschiedliche neue Ideen annehmen (3)
- Zielorientiertes Führen in Teilaufgaben in einem Forschungsteam (3)
- Ergebnisorientiertes Handeln im Forschungskontext entwickeln (3)
- In schwierigen Situationen Beharrlichkeit zeigen (3)
- Impulse in Workshops des Forschungsteams geben (3)
- Optimistische Grundhaltungen im Forschungskontext sich aneignen (3)

Sozial-kommunikative Kompetenzen

- Konfliktlösungsfähigkeit zeigen (3)
- Integrationsfähigkeit zeigen und verschiedene Positionen im Forschungskontext zulassen(3)
- Die eigene Teamfähigkeit weiter entwickeln (3)
- Die eigene Problemlösungsfähigkeit entwickeln (3)
- Verständnisbereitschaft zeigen im dialogischen Diskurs (3)
- Mit Experimentierfreude neue Ideen zulassen und ausprobieren (3)
- Die eigene Sprachgewandtheit im Forschungskontext ausreifen (3)
- Beziehungsmanagement mit den Stakeholdern im Forschungsprozess entwickeln (3)
- Pflichtgefühl in den Forschungsaufgaben zeigen (3)

Angebotene Lehrunterlagen

Foliensatz

Lehrmedien

Beamer, Flipchart, Pinnwand

Literatur

- Josef Börcsök: Elektronische Sicherheitssysteme Hardwarekonzepte, Modelle und Berechnung, Hüthig Verlag, 2007.
- Arno Meyna, Bernhard Pauli: Zuverlässigkeitstechnik: Quantitative Bewertungsverfahren, Carl Hanser Verlag, 2010.
- IEC 61508: Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme.
- ISO-26262: Road vehicles Functional safety.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Modul 2 Elektronische und physikalische Grundlagen		M2 EPG
Modulverantwortliche/r Fakultät		
Prof. Dr. Christian Schimpfle	Elektro- und Informationstechnik	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
2. Semester		Pflicht	10

Verpflichtende Voraussetzungen
keine spezifischen Anforderungen
Empfohlene Vorkenntnisse
keine spezifischen Anforderungen

Inhalte	
siehe zugehörige Lehrveranstaltungen	

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe zugehörige Lehrveranstaltungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Aktoren	8 UE	
2.	Bildverarbeitung	10 UE	
3.	Digitale Schaltungstechnik und Hardware Beschreibungssprache	10 UE	
4.	Schaltungstechnik	10 UE	
5.	Sensoren	7UE	
6.	Signalverarbeitung	15 UE	
7.	Vehicle Dynamics	8 UE	

Teilmodul		TM-Kurzbezeichnung
Aktoren		Α
Verantwortliche/r	Fakultät	
Prof. Dr. Robert Huber	Elektro- und Informationstechnik	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Robert Huber jährlich		
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	8UE	deutsch	

Präsenzstudium	Eigenstudium
6 h	29 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Einführung in die Aktorik
- Physikalische Grundlagen
- Piezoelektrische Aktoren
- Elektrische Maschinen
- Elektrodynamische Aktoren
- Elektrostatische Aktoren
- Smart Actuators
- Hydraulische Aktoren

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Einteilungsmöglichkeiten und Einsatzgebiete der Aktorik zu erkennen (1). Sie können unterschiedliche Wirkprinzipien von Aktoren erklären (2). Sie sind in der Lage, die pysikalischen Gesetze zur Formulierung der Kraftwirkung anzuwenden und darauf aufbauend dynamische Modell von Aktorsystemen zu entwickeln (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, zu wissen, dass Selbststudium zu einem erfolgreichen Aufbau von Wissen und Kompetenzen gehört (1).

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Mitschrift

Lehrmedien

- Beamer
- Tafel

Literatur

- J. Wallaschek, Sensoren und Aktoren, in: Steinhilper, W., Sauer, B. (eds) Konstruktionselemente des Maschinenbaus 2. Springer-Lehrbuch. Springer, Berlin, Heidelberg, aktuelle Auflage.
- Horst Czichos, Mechatronik: Grundlagen und Anwendungen technischer Systeme, Springer Verlag, aktuelle Auflage.
- Wolfgang Gerke, Elektrische Maschinen und Aktoren: Eine anwendungsorientierte Einführung, Oldenburg Verlag, 2012.
- H.-J. Gevatter, Automatisierungstechnik 3: Aktoren (VDI-Buch), Springer Verlag, 2013.
- E. Kallenbach, R. Eick, T. Ströhla, K. Feindt, M. Kallenbach, O. Radler, Elektromagnete: Grundlagen, Berechnung, Entwurf und Anwendung, Springer Verlag 2018.

Teilmodul		TM-Kurzbezeichnung
Bildverarbeitung		BV
Verantwortliche/r	Fakultät	
Stefan Piana (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Stefan Piana (LB)	jährlich	
Lehrform		
Seminaristischer Unterricht mit Übungsanteil ca. 10%		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Übersicht Bildverarbeitungssysteme
- Beleuchtung + Blitzcontroller
- I/O-System
- Abbildende Optik, Objektive
- Kamerasensoren und Kamerakopf
- Auslegung von Bildverarbeitungssystemen
- Auswerterechner, CPU Hardware
- Algorithmik und Software
- · Bildverarbeitung mit Al

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Hardware eines Bildverarbeitungssystems auszuwählen (1)
- die Beleuchtung und das optische Setup auszuwählen (1)
- ein Bildverarbeitungsystem auszulegen (2)
- ein gegebenes Bildverarbeitungssystem zu bewerten (2)
- einfache Bildverarbeitungsoperatoren auf Bilder anzuwenden (3)
- Bildverarbeitung mit neuronalen Netzen anzuwenden (1)

Lernziele: Persönliche Kompetenz

die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

Rechner/Beamer

Literatur

- www.tutorialspoint.com/dip Tutorial Bildverarbeitung, EN, online
- Vision-Doctor Industrielle Bildverarbeitung Tutorial BV, DE/EN
- www.stemmer-imaging.com/de-at/handbuch-der-bildverarbeitung
- thinklucid.com Homepage Lucid Vision Labs, Kamerahersteller
- www.baumer.com/de/de Homepage Baumer, Kamerahersteller
- www.gimp.org Download und Tutorial von GIMP BV-Software
- www.irfanview.com Download Irfan View BV-Software
- www.mvtec.com Hompage BV-Bibliothek Halcon
- en.wikipedia.org/wiki/Convolutional_neural_network Erklärung CNNs
- wiki.pathmind.com/convolutional-network Einführung in BV mit CNNs

Teilmodul		TM-Kurzbezeichnung	
Digitale Schaltungstechnik und Hardware Beschreibungssprache		DSHB	
Verantwortliche/r	Verantwortliche/r Fakultät		
Prof. Dr. Florian Aschauer	Elektro- und Informationstec	hnik	
ehrende/r / Dozierende/r Angebotsfrequenz			
Prof. Dr. Florian Aschauer jährlich			
Lehrform			
Vorlesung mit Übungsanteil ca. 10 % und ergänzendem Praktikum ca. 50 %			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung
Klausur, siehe Studienplantabelle

Inhalte

- Entwurf von Schaltnetzen und Schaltwerken
- Vertiefte Konzepte des Hardware-Designs
- Kriterien zur Dimensionierung digitaler Schaltungen
- Problemfelder der Digitaltechnik und Lösungen
- Übersicht über die Bausteine digitaler programmierbarer Hardware
- Einführung in die Hardware-Beschreibungssprache VHDL
- Einführung in ein Entwicklungstool für VHDL
- Praktikum zur Synthese, Simulation und Analyse digitaler Funktionen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, VHDL-Sprachelemente und Modelle, Operatoren und Typen als auch Kontrollstrukturen in der Hardwaresprache sicher zu kennen (1). Die Absolvierenden verstehen die verschiedenen Modellierungsformen der Sprache und sind in der Lage zu differenzieren, mit welchem Aufwand ein FPGA als Prototyp oder zur Implementierung eines Hardware-Designs zur Anwendung kommt (3). Sie können die Aufgabenstellungen der Hardwarebeschreibungssprachen verstehen, haben einen Überblick, welche Sprachen zur Auswahl stehen und können die Sprache VHDL anwenden (3).

Lernziele: Persönliche Kompetenz

ein Design mit ausgewählten Modellierungsformen in VHDL zu entwerfen (3). Sie können das Design in VHDL simulieren und den Aufwand einer Implementierung abschätzen (3). Sie können selbständig die mittels VHDL gefundenen Lösung hinsichtlich der Performance und des Ressourcenverbrauchs für die Anwendung untersuchen (3).

Angebotene Lehrunterlagen

- Skript
- Übungen zur Vorlesung
- Praktikumsaufgabenstellungen
- Links
- Literaturliste

Lehrmedien

- Beamer
- Laborrechner
- FPGA-Boards

Literatur

- Pernards, P.: Digitaltechnik I; Grundlagen, Entwurf, Schaltungen; Springer Verlag
- M. Keating, P. Bricaud, "Reuse methodology manual for System-on-a-Chip Designs", Kluwer Academic Publishers, 1999
- Ashenden, P.J.: The Designer's Guide to VHDL; Morgan Kaufmann Publishers
- Reichardt, J., Schwarz, B.: VHDL-Synthese, Entwurf digitaler Schaltungen und Systeme;
 Oldenbourg Verlag
- Skahill, K.:VHDL for Programmable Logic; Addison-Wesley

Teilmodul		TM-Kurzbezeichnung
Schaltungstechnik		ST
Verantwortliche/r	Fakultät	
Prof. Dr. Christian Schimpfle Elektro- und Informationstech		hnik
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Christian Schimpfle	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 20 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Transistoren als Verstärker
- Arbeitspunkteinstellung
- Emitter- und Sourceschaltung
- Kollektor- und Drainschaltung
- Basis- und Gateschaltung
- Grenzfrequenzen von Verstärkern
- Kenngrößen von Differenzverstärkern
- Kleinsignaleigenschaften von Differenzverstärkern
- Gegentaktverstärker
- Aufbau und Kenngrößen von Operationsverstärkern
- Einfache Schaltungen mit Operationsverstärkern
- Weitere Schaltungen mit Operationsverstärkern

Lernziele: Fachkompetenz

- Grundkomponenten elektronischer Schaltungen auszuwählen und anzuwenden (3)
- Zweitorübertragungsfunktionen und zugehörige Frequenzgänge zu erkennen (1)
- Grundschaltungen mit Bipolartransistoren zu erkennen und zu berechnen (3)
- Grundschaltungen mit Feldeffekttransistoren zu erkennen und zu berechnen (3) Grenzfrequenzen von Verstärkern zu bestimmen (2)
- Kenngrößen von Differenzverstärker zu kennen (1)
- Differnzverstärker zu verstehen und zu analysieren (2)
- Endstufen und Leistungsverstärker, Gegentaktverstärker zu verstehen (2)

- Mehrstufige Verstärkerprinzipien zu kennen und zu verstehen (2)
- Aufbau und Kenngrößen von Operationsverstärkern zu kennen (1)
- Schaltungen mit Operationsverstärkern zu analysieren (2)
- Schaltungen mit Operationsverstärkern aufzubauen und zu dimensionieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs)

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Übungsaufgaben

Lehrmedien

- Beamer
- Tafel

Literatur

- P. R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer: Analysis and Design of Analog Integrated Circuits. John Wiley & Sons
- U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik, Springer
- P. E. Allen, D. R. Holberg: CMOS Analog Circuit Design, Oxford University Press

Teilmodul		TM-Kurzbezeichnung
Sensoren		S
Verantwortliche/r	Fakultät	
Prof. Dr. Jens Ebbecke (LB)	B) Elektrotechnik und Medientechnik	
ehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Jens Ebbecke (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	7UE	deutsch	

Präsenzstudium	Eigenstudium
5,25 h	26 h

Studien- und Prüfungsleistung Klausur, siehe Studienplantabelle

Inhalte

- Übersicht über Sensorprinzipien
- Einführung in besonders wichtige Sensoren im Automotive-Bereich
- Aspekte der Sensoradaption an Mess- und Regelaufgaben
- Fallbeispiele der Sensorintegration in Steuer- und Regelkreisen von automotiven Systemen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- vertiefte Kenntnisse zu Sensoren im Automotive-Bereich anzuwenden. (3)
- Funktion und Leistungsfähigkeit von Sensoren und Sensorsystemen zu analysieren. (3)
- Sensoren und Sensorsysteme bezüglich der Anforderungen in unterschiedlichen Einsatzbereichen zu beurteilen. (3)

Lernziele: Persönliche Kompetenz

- zielorientiert mit anderen zusammenzuarbeiten, ihre Interessen und sozialen Situationen zu erfassen, sich mit ihnen rational und verantwortungsbewusst auseinanderzusetzen und zu verständigen sowie die Arbeits- und Lebenswelt mitzugestalten. (2)
- eigenständig und verantwortlich zu handeln, eigenes und das Handeln anderer zu reflektieren und die eigene Handlungsfähigkeit zu entwickeln. (3)

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Übungsaufgaben

Lehrmedien

- Projektor
- Tafel

Literatur

- Hering/Schönfelder: Sensoren in Wissenschaft und Technik, Springer Verlag
- Reif: Sensoren im Kraftfahrzeug, Springer Vieweg Verlag
- Bentley: Principles of measurement systems, Bentley Verlag

Teilmodul		TM-Kurzbezeichnung
Signalverarbeitung		SV
Verantwortliche/r	Fakultät	
Prof. Dr. Nikolaus Müller	of. Dr. Nikolaus Müller Zentrum für Weiterbildung und Wissensmanager	
Lehrende/r / Dozierende/r	ende/r Angebotsfrequenz	
Prof. Dr. Nikolaus Müller jährlich		
Lehrform		
Vorlesung mit Übungsanteil ca. 20 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semester	15 UE	deutsch	

Präsenzstudium	Eigenstudium
11,25 h	55 h

Studien- und Prüfungsleistung
Klausur, siehe Studienplantabelle

Inhalte

- 1. Beschreibung analoger Signale im Frequenzbereich
- 2. Digitale Signale, diskrete Fouriertransformation, Fensterung
- 3. Signalgeneraroren
- 4. Die z-Transformation zur Beschreibung linearer zeitdiskreter Übertragungsglieder 5. Digitale

Filter (FIR und IIR)

Lernziele: Fachkompetenz

- mit den Grundkonzepten der digitalen Signalverarbeitung vertraut zu sein und können Möglichkeiten und Grenzen dabei einschätzen (1)
- Sie können das Spektrum eines Signals berechnen (3)
- Sie können Fehlereffekte durch die Fensterung erklären (2) und für eine gegebene Aufgabe eine geeignete Fensterfunktion wählen (3)
- Sie können den Fehler der diskreten Fouriertransformierten abschätzen (2)
- Sie können beschreiben, wie Signale digital synthetisiert werden (2)
- Sie können die z-Transformierte eines Signals berechnen (3)
- Sie k\u00f6nnen verschiedene Filtertypen und Charakteristiken w\u00e4hlen (2)
- Sie können Matlab für die digitale Signalverarbeitung anwenden (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, weitere Methoden der Signalverarbeitung zu erarbeiten (2) und Aufgaben dazu mit Hilfe von Matlab zu lösen (3).

Angebotene Lehrunterlagen

Foliensatz zur Vorlesung, Übungsaufgaben mit Musterlösungen, Matlab-Übungen mit Musterlösung

Lehrmedien

Rechner/Beamer

Literatur

- D. von Grünigen: Digitale Signalverarbeitung. 5. Auflage, Fachbuch-Verlag Leipzig, 2014
- V.K.Ingle, J.G.Proakis: Essentials of Digital Signal Processing using MATLAB. 4. Auflage, Cengage Learning, 2017
- K.-D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung: Filterung und Spektralanalyse mit MATLAB Übungen. 10. Auflage, Springer Vieweg, 2022
- M. Meyer: Signalverarbeitung. 9. Auflage, Vieweg, 2021
- S.J. Chapman: Matlab Programming for Engineers. 6. Auflage, Cengage, 2020

Teilmodul		TM-Kurzbezeichnung
Vehicle Dynamics		VD
Verantwortliche/r	Fakultät	
Prof. Dr. Armin Arnold	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Armin Arnold	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2. Semster	8UE	deutsch	

Präsenzstudium	Eigenstudium
6 h	29 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Grundlagen Reifenverhalten: Bürstenmodell des Reifens, Abhängigkeit des Reibwertes von Aufstandskraft und Gleitgeschwindigkeit, Auswirkung von Radsturz
- Das Einspurmodell ein einfaches Modell zur Fahrdynamikbeschreibung im Normalfahrbereich (nicht Grenzbereich)
- "klassische" Beeinflussung des Fahrverhaltens durch das Fahrwerk, d.h. durch Federung/ Dämpfung, Achskinematik
- Beeinflussung des Fahrverhaltens durch Längsschlupf (wie im Falle des ESP)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die wesentlichen Zusammenhänge im Fahrwerksbereich anwenden zu können (3)
- das Einspurmodell zu verstehen und anzuwenden (3)
- die Möglichkeiten durch moderne bzw. zukünftige Entwicklungen im Fahrwerksbereich (Aktive Federung, aktive Achsgeometrien, freie Drehmomentverteilung etc.) zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs)

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Übungsaufgaben

Lehrmedien

- Beamer
- Tafel

Literatur

- Pacejka: Tyre and vehicle dynamics, Butterworth + Heinemann Verlag, 3. Edition (12. April 2012)
- Rajamani: Vehicle dynamics and control, Springer Verlag New York Inc., (3. März 2014)
- Bernd Heißing, Metin Ersoy: Fahrwerkhandbuch: Grundlagen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven, ATZ/MTZ-Fachbuch, Springer Vieweg; 4., überarb. u. erg. Aufl. 2013 Edition (8. Oktober 2013)
- Rolf Isermann: Fahrdynamik-Regelung: Modellbildung, Fahrerassistenzsysteme, Mechatronik, ATZ/MTZ-Fachbuch, Vieweg+Teubner Verlag; 2006 Edition (26. September 2006)

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Modul 3 Funktionsentwicklung und Lifecycle Management		M3 FLM
Modulverantwortliche/r	Fakultät	
Prof. Dr. Gerhard Krump	Zentrum für Weiterbildung und Wissensmanagement	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
			[LC13-Cledis]
1. Semester		Pflicht	10

Verpflichtende Voraussetzungen
keine spezifischen Anforderungen
Empfohlene Vorkenntnisse
keine spezifischen Anforderungen

Inhalte	
siehe zugehörige Lehrveranstaltungen	

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe zugehörige Lehrveranstaltungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Anforderungsmanagement	10 UE	
2.	Automotive Supply Chain Management	5 UE	
3.	Kostenstrukturen und Kostenanalyse unter Berücksichtigung der Nachhaltigkeit	9 UE	
4.	Process Improvement with ASPICE	4 UE	
5.	Projektmanagement	15 UE	
6.	Qualitätsmanagement	10 UE	
7.	Risikomanagement	5 UE	
8.	Softskills in der Software- und Systementwicklung	5 UE	
9.	Software-Produktlinien	5 UE	

Teilmodul		TM-Kurzbezeichnung
Anforderungsmanagement		AM
Verantwortliche/r	Fakultät	
Claudia Beil (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Claudia Beil (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 30 %		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung Klausur, siehe Studienplantabelle

Inhalte

- Vorteile von Anforderungsmanagement
- Strukturen im Anforderungsmanagement
- · Aktivitäten und Methoden im Anforderungsmanagement
- Schnittstellen von Anforderungsmanagement zu anderen Prozessen
- Gute Anforderungen formulieren

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Anforderungsaktivitäten und -methoden zu kennen (1)
- gute Anfoderungen zu formulieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Vorteile von Anforderungsmanagementaktivitäten zu verstehen (2)
- Bedürfnisse von Stakeholdern zu verstehen (1)
- zwischen Problem und Lösung zu unterscheiden (2)

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Übungsaufgaben

Lehrmedien

- Beamer
- Flipchart
- Pinnwände

Literatur

- Chris Rupp & die Sophisten, Requirements Engineering, aktuelle Auflage
- IREB Requirements Egineering Standard, aktuelle Auflage

Teilmodul		TM-Kurzbezeichnung
Automotive Supply Chain Management		SCM
Verantwortliche/r	Fakultät	
Gerhard Hofmann (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Gerhard Hofmann (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. Semester	5UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Grundlagenwissen über das automotive Supply Chain Management
- Nutzen und Ziele der SCM
- Peitschen- oder Bullwhip Effekt
- Supply Chain Operations Reference Modell (SCOR)
- Instrumente zur Steuerung einer Supply Chain

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Inhalte einer Supply Chain zu benennen (1)
- den Nutzen und Ziele des Supply Chain Management zu verstehen (3)
- das SCOR Modell als Möglichkeit zur Beschreibung von Supply Chain zu kennen (1)
- den Bullwihp Effekt in der Supply Chain zu verstehen (3)
- Instrumente zur Steuerung der Supply Chain (KPI, ABC Analysen,...) anwenden zu können
 (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Bedeutung der Supply Chain einzuordnen (2)
- die Notwendigkeit eines Supply Chain Managements zu verstehen (3)

• das Risiko des Bullwhip Effektes zu erkennen (1)

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Literaturliste
- Links

Lehrmedien

- Beamer
- Tafel
- Classroom Response System

Literatur

- Werner, Hartmut: Supply Chain Management, 5. Auflage
- Wiesbaden: Springer 2013.Melzer-Ridinger, Ruth: FAQ Supply Chain Management
- Düsseldorf: Symposion 2012.Poluha, Rolf: Quintessenz des Supply Chain Managements
- Berlin: Springer 2010 Braun, David: Von welchen Supply-Chain Management-Maßnahmen profitieren Automobilzulieferer?
- Wiesbaden: Gabler 2012 Stadler, Hartmut
- Kilger, Christoph: Supply Chain Management and advanced planning, 4 Auflage, Berlin: Springer 2008

Teilmodul		TM-Kurzbezeichnung
Kostenstrukturen und Kostenanalyse unter Berücksichtigung der		КК
Nachhaltigkeit		
Verantwortliche/r Fakultät		
Dr. Florian Kiel (LB)	Zentrum für Weiterbildung u	nd Wissensmanagement
Lehrende/r / Dozierende/r Angebotsfrequenz		
Dr. Florian Kiel (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. Semester	9UE	deutsch	

Präsenzstudium	Eigenstudium
6,75 h	33 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Kostenmanagement in der Automobilindustrie
- Kostenstrukturen & Kalkulationen
- Basiswissen & Kalkulation von "Product Carbon Footprint"
- · Fertigungsverfahren und Fertigungskosten
- Value Analysis/Value Engineering inklusive Nachhaltigkeit
- Cost Engineering/Kostenbeeinflussung auf System- und Modulebene

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Kostenstrukturen für Elektronikeinheiten zu analysieren und zu verstehen (3)
- Zielkosten und Ziel Carbon Footprints auf Basis von vorherigen Projekten oder Bottomup Analysen zu erstellen (2)
- Design-to-Cost Vorschläge aufzubereiten und zu verteidigen (2)
- Kosten auf Systemebene zu verstehen (1)
- Vor- und Nachteile von Zulieferstrukturen zu erkennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Aktiv in Kunden und Verhandlungsgesprächen an der Kostendiskussion teilzunehmen (3)
- Vor- und Nachteile von Lösungen schnell abschätzen zu können (3)

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

- Präsentation
- Beamer

Literatur

- Autoelektrik Autoeletronik Systeme und Komponenten Robert Bosch GmbH (Hrsg.),
 5.Auflage 2007, Vieweg & Sohn Verlag
- Kostengünstig Entwickeln und Konstruieren Kostenmanagement bei der integrierten Produktentwicklung - Klaus Ehrlenspiel, Alfons Kiewert, Udo Lindemann, 3. Auflage 1999, Springer Verlag
- Einführung in die Allgemeine Betriebswirtschaftslehre Günter Wöhe, 16.Auflage 1986, Verlag Franz Vahlen

Teilmodul		TM-Kurzbezeichnung
Process Improvement with ASPICE		PI
Verantwortliche/r	Fakultät	
Claudia Beil (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r Angebotsfrequenz		
Claudia Beil (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 30 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. Semester	4 UE	deutsch	

Präsenzstudium	Eigenstudium
3 h	14,5 h

Studien- und Prüfungsleistung Klausur, siehe Studienplantabelle

Inhalte

- Vorgehen zur Prozessverbesserung mit Automotive SPICE
- Überbick zu ASPICE ("Automotive Software Process Improvement and Capability Determination")

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ASPICE als Assessmentmethode zur Prozessverbesserung und Projektbewertung zu kennen (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, zu kennen, was ein Projekt einzuhalten hat, um ein Automotive SPICE Assessment zu bestehen (1).

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Übungsaufgaben

Lehrmedien

- Beamer
- Flipchart
- Pinnwände

Literatur

Automotive SPICE Homepage: http://www.automotivespice.com/

Teilmodul		TM-Kurzbezeichnung
Projektmanagement		PJM
Verantwortliche/r	Fakultät	
Steffen Kluge	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Steffen Kluge	jährlich	
Lehrform		
Seminaristischer Unterricht mit Übungsanteil ca. 20 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemail Clausenplant	[SWS oder UE]		[ECTS-Credits]
1. Semester	15 UE	deutsch	

Präsenzstudium	Eigenstudium
11,25 h	55 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	
Zugelassene Hilfsmittel für Leistungsnachweis	

Inhalte

- Was ist ein Projekt?
- Aufgaben des Projektleiters
- Projektorganisation
- Projektplanung
- Projektcontrolling
- Projektabschluss
- Projektpräsentation
- Projektbeispiele mit Projektplan, -phasen, -lebenslauf, Meilensteintrendanalyse
- Projektplanung mit MS Project

Managementmerkmale:

- Führungsstile
- Zielsetzungen
- Problemanalysen und Entscheidungsfindung
- Motivation und Bedürfnispyramide
- Verhalten
- Teamarbeit
- Gesprächs- und Präsentationstechniken
- Einsatz von Planungswerkzeugen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, alle Grundlagen und Methoden des Projektmanagements zu kennen (1), aber auch umzusetzen (2) und anzuwenden (3). Sie beherrschen die Methoden der Projektplanung und des Projektcontrollings (2) und sind vertraut mit der Projektdurchführung mit Zwischen- und Abschlusspräsentationen (3). Zudem kennen sie die wesentlichen Managementmerkmale (1) und können sie so als Projektleiter anwenden (2,3). Fachlich sind die Studierenden damit in der Lage, eigenständig Projekte zu planen und durchzuführen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Projekte zu erstellen (1,2), zu überwachen (1,2), Projektplanungen zu beurteilen (3) und im Team selbst Projekte zu organisieren und als Projektmanager zu leiten (3).

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Aufgabenlösungen

Lehrmedien

- Beamer
- Tafel
- Flipchart
- Aufgabenblätter

Literatur

- Project Management Body of Knowledge, ISBN 1-880410-23-0
- Kerzner H., Project Management, ISBN 3-8266-0983-2
- Kerzner H., Case Studies, ISBN 3-8266-1447-x
- Lessel W., Projektmanagement. Projekte effizient planen, ISBN 978-3589219032-13
- Bohinc T., Projektmanagement. Softskills für Projektleiter, ISBN 978-3897496293-13
- Peipe S., Crashkurs Projektmanagement, ISBN 978-3448065879-13
- Patzak G., Projekt Management, ISBN 978-3714300031-13
- Rehn-Göstenmeier G., Projektmanagement mit Microsoft Project, ISBN 978-3826673948-13
- Jakoby W., Projektmanagement für Ingenieure, 2010, ISBN 978-3-8348-0918-6
- Bohinc: Projektmanagement, Soft Skills für Projektleiter. GABAL-Verlag Gloger Boris, Scrum, Hanser-Verlag, ISBN 978-3-446-42524-8

Teilmodul		TM-Kurzbezeichnung
Qualitätsmanagement		QM
Verantwortliche/r	Fakultät	
Stefan Weber (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Stefan Weber (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 20 %		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Warum ist 99% "Qualität" nicht genug?
- Die Historie des Qualitätsmanagements
- Einflüsse auf die Qualität und der Qualitätsregelkreis
- Statistik (Die wichtigsten Begriffe Auffrischung)
- Der Produktlebenszyklus
- (Qualitäts) Methoden
- Normen und Standards
- Softwareentwicklung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Notwendigkeit eines Productlifecycles (PLC) in einem Unternehmen zu verstehen (1)
- einen PLC zu lesen und für das eigenen Arbeitsumfeld zu interpretieren
- Qualitätmethoden (HW und SW) für die einzelnen Phasen auszuwählen und deren Einsatz zu bewerten (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Ergebnisse von Q-Methoden (z.B. QFD, SPC, SPICE Assessment) zu interpretieren und zu bewerten (2)
- die Entwicklung neuer Q-Methoden (z.B. ASPICE V4) zu verstehen und für den eigenen Wirkbereich einzuschätzen (1)

Angebotene Lehrunterlagen

ausführliches Skript zur Vorlesung

Lehrmedien

- Folien
- Whiteboard
- Übungsaufgaben

Literatur

- Pfeifer, Schmitt Masing, Handbuch Qualitätsmanagent 2021
- Fischer, Scheibler Handbuch Prozessmanagement
- Kirschling Qualitätsregelkarten für meßbare Merkmale SPC 1998
- Hörmann, Dittmann Automotive Spice in der Praxis 2016
- Ernest Wallmüller -
- Software Quality Engineering: Ein Leitfaden für bessere Software-Qualität 2011

Teilmodul		TM-Kurzbezeichnung
Risikomanagement		RM
Verantwortliche/r	Fakultät	
Michael Schindler Elektro- und Informationstec		nnik
Lehrende/r / Dozierende/r Angebotsfrequenz		
Michael Schindler	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 50 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gomaio otadioripian	[SWS oder UE]		[ECTS-Credits]
1. Semester	5UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

Grundlagen & Begriffe

- Ursprung von Risiken
- Definition wichtiger Begriffe im Kontext des Risikomanagements
- · Vergleich von reaktivem und proaktivem Risikomanagement
- Abgrenzung von Projekt- und Produktrisiken
- Wichtige Inputs und Anforderungen an das Risikomanagement

Methoden

- Vorstellung des Risikomanagement-Prozesss
- Erläuterung der einzelnen Phasen

Übung

Gruppenarbeit: Management von Risiken anhand eines konkreten Beispiels

- Identifizieren von Risiken
- Analyse und Bewertung der Risiken
- Priorisierung und Auswahl geeigneter Maßnahmen

Reflexion & Fazit

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Risiken als Produkt-/Qualität- oder Projektrisiken anhand von Beispielen aus der Praxis zu bestimmen (2).
- Die Teilnehmer können die Methode Risikomatrixim Rahmen einer Übung anwenden (3).
- Die Teilnehmer kennen das Konzept von Maßnahmen und Indikatoren beim Risikomanagement (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs)

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

- Rechner/Beamer
- Flipcharts
- Moderationsboards

Literatur

- DeMarco, Tom und Lister, Timothy: Bärentango. Hanser Verlag
- Harrant, Horst und Hemmrich, Angela: Risikomanagement in Projekten. Hanser Verlag

Teilmodul		TM-Kurzbezeichnung
Softskills in der Software- und Systementwicklung		SOF
Verantwortliche/r Fakultät		
Thomas Zeitler (LB)	Zentrum für Weiterbildung ur	nd Wissensmanagement
Lehrende/r / Dozierende/r Angebotsfrequenz		
Thomas Zeitler (LB) jährlich		
Lehrform		
Vorlesung mit Übungsanteil ca. 20 %		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1. Semester	5 UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Produkte und Rahmenbedingungen in der SW-Entwicklung im Automobilberiech
- Behandlung und Diskussion, wie menschliche Interaktionen den Projektalltag und -verlauf beeinflussen
- Simulation und Diskussion eines potenziellen automobilen Projektablaufs

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, den SW-Entwicklungsprozess in der Automobilindustrie und der Zulieferindustrie einzuschätzen hinsichtlich der menschlichen Interaktionen auf Projektebene (1). Sie kennen Kommunikationsmodelle und kulturelle Modelle und können die Theorie zu Teams und deren Entwicklung (2). Sie können die Rahmenbedingungen einschätzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die kulturellen, menschlichen Interaktionen können zu identifizeren (2) und in agilen Teams zusammenzuarbeiten (3).

Angebotene Lehrunterlagen

- Skript inklusive Links
- Literaturliste

Lehrmedien

- Beamer
- Tafel
- Planspiel

Literatur

- Schulz von Thun, Ruppel, Stratmann: Miteinander reden. Kommunikationspsychologie für Führungskräfte, rororo Verlag
- DeMarco, Lister: Wien wartet auf Dich! Der Faktor Mensch im DV-Management, Peopleware
- Geert Hofstedte: Lokales Denken, Globales Handeln, Beck Verlag

Teilmodul		TM-Kurzbezeichnung
Software-Produktlinien		SWP
Verantwortliche/r	Fakultät	
Sebastian Höller (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Sebastian Höller (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 25 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. Semester	5UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung
Klausur, siehe Studienplantabelle

Inhalte

Software-Wiederverwendung:

- Motivation: Variantenvielfalt in der Automobilindustrie
- Theorie und Techniken bei der Wiederverwendung von Software und deren Eignung für verschiedene Abstraktionsebenen in der Softwareentwicklung
- Reifegrade der Wiederverwendung
- Gruppenübung: Software-Wiederverwendungs-Techniken anhand eines konkreten Beispiels
- Wiederverwendung im Branchenstandard AUTOSAR

Software-Produktlinien:

- Gründe für den Produktlinienansatz
- Wiederverwendungsstrategien in der Automobilindustrie für Hardware und Software
- Merkmalsorientierte Domänenanalyse: Feature-Modelle
- Das Konzept der Variabilität
- Gruppenübung: Ausprägungen von Variabilität anhand eines konkreten Beispiels
- Domain- und Application Engineering
- Diskussion: Zuordnung von Konzepten aus AUTOSAR zu den T\u00e4tigkeiten im Domain- und Application-Engineering

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- verschiedene Techniken, die bei der Wiederverwendung von Software genutzt werden, zu kennen und technische und nichttechnische Einflussfaktoren bei der Anwendung zu benennen (1).
- Ziele und Ansätze, die mit standardisierten Methodiken und Softwarearchitekturen verfolgt werden, zu kennen (1).
- Vorteile und die Herausforderungen bei der Anwendung eines Produktlinienansatzes zu verstehen (3).
- die Zusammenhänge zwischen Domain- und Application-Engineering erklären zu können (2) und das Konzept der Variabilität zu verstehen und auf Fahrzeugfunktionen anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Problemlösefähigkeit sowie Ziel- und Lösungsorientierung im Rahmen der Gruppenübungen zu zeigen (3).
- Methodenkompetenz bei der Präsentation der Übungsaufgaben anzuwenden (2).
- schnelle Auffassungsgabe und Lernbereitschaft zu zeigen, um trotz unterschiedlichen Vorwissens beim Thema Softwareentwicklung gewinnbringend an der Vorlesung und Übungen teilzunehmen (2).

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Übungen

Lehrmedien

- Rechner/Beamer
- Flipchart
- Tafel

Literatur

- Software Product Lines, Pohl, Metzger. In: Gruhn, V., Striemer, R. (eds) The Essence of Software Engineering. Springer, 2018
- Fahrzeuginformatik: Eine Einführung in die Software- und Elektronikentwicklung aus der Praxis der Automobilindustrie, Wolf. Springer Vieweg, 2018
- Requirements-Engineering und -Management, Rupp. Hanser, 7. Auflage, 2020
- Software Engineering, Sommerville. Pearson, 10. Auflage, 2015
- Automotive Software Engineering, Schäuffel/Zurawka. Springer Vieweg, 7. Auflage, 2024

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Modul 4 Funktions- und Software-Entwicklungsmethoden		M4 FSE
Modulverantwortliche/r Fakultät		
Prof. Dr. Jürgen Mottok	Elektro- und Informationstechnik	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. Semester		Pflicht	10

Verpflichtende Voraussetzungen
keine spezifischen Anforderungen
Empfohlene Vorkenntnisse
keine spezifischen Anforderungen

Inhalte	
siehe zugehörige Lehrveranstaltungen	

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe zugehörige Lehrveranstaltungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Echtzeitbetriebssysteme	10 UE	
2.	Funktionsentwicklung/Rapid Prototyping	10 UE	
3.	HiL und System Tests	8UE	
4.	Modellbildung mechatronischer Systeme	5 UE	
5.	Real-Time Linux	5UE	
6.	Software Engineering sicherer Systeme	20 UE	
7.	Softwaretest und Testmanagement	10 UE	

Teilmodul		TM-Kurzbezeichnung
Echtzeitbetriebssysteme		EBS
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Fischer	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Andreas Fischer	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung Portfolioprüfung, siehe Studienplantabelle

Inhalte

- Grundlagen von Echtzeitbetriebssystemen: Harte und weiche Echtzeitsysteme
- Zeit und Uhren; Zeitsynchronisation zwischen verteilten Systemen
- Prozesse und Interrupts
- Verfahren zum gegenseitigen Ausschluss und Deadlocks
- Echtzeitscheduling von Prozessen
- Berechnung der Worst-Case Execution Time

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Anforderungen von harten und weichen Echtzeitsystemen zu unterscheiden (2). Sie kennen die grundlegenden Einschränkungen bezüglich der Zeitbestimmung in verteilten Systemen (1). Sie kennen die Grundlagen und Herausforderungen der Prozessverwaltung in Echtzeitbetriebssystemen (1). Sie kennen mehrere Schedulingverfahren (1) und können mittels eines Echtzeitschedulingalgorithmus einen Prozessablaufplan erstellen (3). Sie sind in der Lage für ein einfaches Programm eine Worst-Case Execution Time Abschätzung zu erstellen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, komplexe fachliche Übungsaufgaben im Team zu lösen (2).

Angebotene Lehrunterlagen

Folienbasierter Vortrag, Schriftliche Übungen, Übungen am Rechner

Lehrmedien

- Folienbasierter Vortrag
- Übungen am Rechner

Literatur

- Hermann Kopetz, Real Time Systems: Design Principles for Distributed Embedded Applications, Springer, aktuelle Auflage
- Andrew S. Tanenbaum, Herbert Bos, Modern Operating Systems, Prentice Hall, aktuelle Auflage
- Edward A. Lee, Sanjit A. Seshia, Introduction to Embedded Systems, MIT Press, aktuelle Auflage

Teilmodul		TM-Kurzbezeichnung
Funktionsentwicklung/Rapid Prototyping		FE/RP
Verantwortliche/r	Fakultät	
Dr. Kai Matthias Pinnow (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Dr. Kai Matthias Pinnow (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 30 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Portfolioprüfung, siehe Studienplantabelle	

Inhalte

- Funktionsentwicklung und Rapid Prototyping in (agilen) Entwicklungsprozessen
- Grafische Programmierung und Simulation zur Analyse und Dokumentation von Requirements
- Zielsystemnahes Prototyping und Entwicklung im Bypass
- Messen und Kalibrieren zur Optimierung im Rapid Prototyping

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Blockdiagramme und Zustandsautomaten zu modellieren (1) und in ihrer Anwendung einzuordnen (2). Sie können Variablen, Messages und Kenngrößen unterscheiden (1) und haben erste Erfahrungen in der Umsetzung von Algorithmen durch Klassen (1) und mittels standardisierter Grafikbibliotheken (1) und Basiselemente (2). Ihnen sind Basistechniken wir Sequenz-Calls (2) und der Weg der automatischen Code-Generierung bekannt (1). Sie verstehen den Unterschied klassischer V-Modell-Vorgehensweise zu agilen Methoden (1) sowie die Positionierung von Funktionsentwicklung und Software-Prototyping (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, bestehende Software-Prototypen zu begreifen und bewerten (3) und weitere Kenntnisse und Fertigkeiten in den o.g. genannten Punkten zu vertiefen (2) bzw. (3). Sie können die Entwicklung grafischer Prototypen für Automotive Software planen und schrittweise durchführen

(3). Ihnen ist die Bedeutung von Requirements (2), automatiserter Unit- und System-Tests (1) sowie der Applikationsphase bewusst (1).

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Web-Links
- ASCET-Software inkl. Beispiele und Evaluierungslizenz

Lehrmedien

- Beamer
- Tafel

Literatur

- ISO/IEC TR 19759:2015(en) Software Engineering Guide to the software engineeringbody of knowledge (SWEBOK)
- Jörg Schäuffele und Thomas Zurawka: Automotive Software Engineering.
 Grundlagen, Prozesse, Methoden und Werkzeuge effizient einsetzen. Vieweg (2016)
- M. Kathiresh, R. Neelaveni (Editors) Automotive Embedded Systems Key Technologies, Innovations, and Applications. Springer (2021)
- Rolf Isermann: Automotive Control Modeling and Control of Vehicles. Springer (2022)

Teilmodul		TM-Kurzbezeichnung
HiL und System Tests		HiL
Verantwortliche/r	Fakultät	
Andreas Höpfner Elektro- und Informationsted		hnik
Lehrende/r / Dozierende/r Angebotsfrequenz		
Andreas Höpfner	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 15 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	8UE	deutsch	

Präsenzstudium	Eigenstudium
6 h	29 h

Studien- und Prüfungsleistung Portfolioprüfung, siehe Studienplantabelle

Inhalte

- Funktionsentwicklung / Funktionstests (V-Zyklus)
- HiL-Simulation (Open Loop and Closed Loop)
- Test(-automatisierung) mit HiL
- Dezentrales Testzentrum (Remote Access)
- Model in the Loop (MiL) und Software in the Loop (SiL)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, den Aufbau eines HIL Simulators zu erklären (2), den Nutzen der Methodik HIL-Testing zu kennen (1), einzuordnen welche Testarten, Testtiefen und Testumgebungen es gibt (2), wie ein "guter" Test formuliert werden muss (2) und welche Effizienzsteigerungen es bei HIL- und Systemtests gibt (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, sich in kleinen Arbeitsgruppen zielorientiert und selbstverwaltend einer technischen Problemstellung zu widmen und diese gemeinsam zu lösen (3).

Angebotene Lehrunterlagen

Skript zur Vorlesung

Name des Studiengangs: Automotive Electronics Modulname: Modul 4 Funktions- und Software-Entwicklungsmethoden

Lehrmedien	
Rechner/Beamer	
Literatur	

Teilmodul		TM-Kurzbezeichnung
Modellbildung mechatronischer Systeme		MMS
Verantwortliche/r	Verantwortliche/r Fakultät	
Prof. Dr. László Juhász	Prof. Dr. László Juhász Zentrum für Weiterbildung ur	
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. László Juhász	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 35 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
9	[SWS oder UE]		[ECTS-Credits]
3. Semester	5UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung	
Portfolioprüfung, siehe Studienplantabelle	

Inhalte

- Wiederholung Grundlagen Modellbildung Technische Systeme
- Identifikation der Struktur (Übertragungsfunktion) LTI-Systeme
- Parameteridentifikation linearer Systeme
- Parameterschätzverfahren

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, mathematische Modelle Technischer Systeme zu verstehen und solche selbst zu erstellen (3). Die Studierenden kennen die Unterscheidung von Modellvarianten (black, white, grey box) (1). Die Studierenden verstehen die grundlegenden Methoden der Systemidentifikation und wenden diese eigenständig an (3).

Sie sind in der Lage, die Systemdarstellung für die Modellbildung in Zustandsraummodel-Form zu überführen (3).

Dabei verstehen sie die Auswahl von Anregungssignalen und sind in der Lage, Parameteridentifikation sowohl im Zeit als auch im Frequenzbereich anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Arbeitsschritte und Ergebnisse argumentativ zu begründen und kritisch zu bewerten (3). Sie können in Teams zusammenarbeiten und sich gegenseitig Feedback geben (2). Die Studierenden sind sich ihrer Verantwortung als Entwicklungsingenieur*innen für modellbasierte Reglerentwurf und -Absicherung bewusst (3).

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

Rechner/Beamer

Literatur

- D.Abel, A. Bollig. Rapid Control Prototyping, Springer, 2013;
- Isermann R.: Grundlegende Methoden (Identifikation dynamischer Systeme, Bd.1), Springer-Verlag, 1992;
- Zirn, Oliver: Modellbildung und Simulation mechatronischer Systeme. Expert-Verlag, 2002;
- Wernstedt, Jürgen: Experimentelle Prozeßanalyse. Oldenbourg-Verlag, 1989.

Teilmodul		TM-Kurzbezeichnung
Real-Time Linux		RL
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Fischer Zentrum für Weiterbildung u		nd Wissensmanagement
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Andreas Fischer jährlich		
Lehrform		
Seminaristischer Unterricht mit Übungsanteil		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	5UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung	
Portfolioprüfung, siehe Studienplantabelle	

Inhalte

- Echtzeitfähigkeit von Betriebssystemen: Prozessmanagement und Scheduling.
- Erweiterung des Linuxkernels um Echtzeitfähigkeit mittels des CONFIG_PREEMPT_RT Patchsets
- · Echtzeitprogrammierung unter Linux.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, den Unterschied zwischen einem regulären Linux-System und einem echtzeitfähigen Linux-System zu benennen (2). Sie kennen die speziellen Anforderungen an ein echtzeitfähiges Betriebssystem (1). Sie sind in der Lage Echtzeitprozesse unter Linux zu verwalten (3). Sie sind zudem in der Lage kleine Programme mit Echtzeitanforderungen zu schreiben (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, komplexe fachliche Übungsaufgaben im Team zu lösen (2).

Angebotene Lehrunterlagen

Vorlesungsfolien + Übungsaufgaben

Lehrmedien

Folienbasierter Vortrag, Übungen am Rechner

Literatur

- Hermann Kopetz, Real Time Systems: Design Principles for Distributed Embedded Applications, Springer, aktuelle Auflage
- Andrew S. Tanenbaum, Herbert Bos, Modern Operating Systems, Prentice Hall, aktuelle Auflage
- Christopher Hallinan, Embedded Linux Primer, Prentice Hall, aktuelle Auflage

Teilmodul		TM-Kurzbezeichnung
Software Engineering sicherer Systeme		SE
Verantwortliche/r	Fakultät	
Prof. Dr. Jürgen Mottok Elektro- und Informationstech		hnik
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Jürgen Mottok jährlich		
Lehrform		
Seminaristische Vorlesung mit 20% Übungsanteil		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gement construction	[SWS oder UE]		[ECTS-Credits]
3. Semester	20 UE	deutsch	

Präsenzstudium	Eigenstudium
15 h	73,5 h

Studien- und Prüfungsleistung	
Portfolioprüfung, siehe Studienplantabelle	

Inhalte

- Phasenmodelle, agile Entwicklungsmethoden (XP, SCURM, V.Modell XT)
- AUTOSAR Guidelines
- Safe and Secure Programming in C/C++

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die folgenden Fachkompetenzen situativ zu zeigen:

- Analytische Fähigkeiten und Konzeptionsstärke entwickeln (3)
- Beurteilungsvermögen zeigen (3)
- im Studium erworbenen Fachkenntnissen anwenden (3)
- Selbständigkeit bei der Lösung einer vorgegebenen Aufgabe zeigen (Originalitätvon Lösungsideen) (3)
- Problematisierung und (Selbst-)Kritik (Systematik in der Bewertung der Lösungen) zeigen
 (3)
- Qualität der Ergebnisse die Neuartigkeit, Güte und Zuverlässigkeit eigener Lösungen interpretieren (3)
- Logische und prägnante Argumentation zeigen (Beispielsweise Wissenschaftliches Schreiben) (3)
- Formal korrekte Ergebnisse präsentieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die folgenden Kompetenzen zu zeigen:

Personale Kompetenzen

- Entwicklung einer normativ-ethischen Einstellung hinsichtlich der gesellschaftlichenTechnologiefolgen des eigenen Wissenschaftsbeitrages (3)
- Hilfsbereitschaft in einem teamorientierten Forschungsprozess zeigen (3)
- Zuverlässigkeit im eigenen Forschungsprozess (3)
- Offenheit für veränderte Randbedingungen und neue Erkenntnisse anderer Forschungsgruppen verifizieren und diskutieren (3)
- In Selbstmanagement den eigenen Forschungsprozess gestalten (3)
- Mit Einsatzbereitschaft in einem Forschungsverbund Ideen einbringen (3)

Aktivitäts- und Handlungskompetenz

- Entscheidungsfähigkeit bei mehreren Alternativen entwickeln (3)
- Tatkraft und Gestaltungswille im Forschungsdesign zeigen (3)
- Mit Innovationsfreudigkeit unterschiedliche neue Ideen annehmen (3)
- Zielorientiertes Führen in Teilaufgaben in einem Forschungsteam (3)
- Ergebnisorientiertes Handeln im Forschungskontext entwickeln (3)
- In schwierigen Situationen Beharrlichkeit zeigen (3)
- Impulse in Workshops des Forschungsteams geben (3)
- Optimistische Grundhaltungen im Forschungskontext sich aneignen (3)

Sozial-kommunikative Kompetenzen

- Konfliktlösungsfähigkeit zeigen (3)
- Integrationsfähigkeit zeigen und verschiedene Positionen im Forschungskontext zulassen(3)
- Die eigene Teamfähigkeit weiter entwickeln (3)
- Die eigene Problemlösungsfähigkeit entwickeln (3)
- Verständnisbereitschaft zeigen im dialogischen Diskurs (3)
- Mit Experimentierfreude neue Ideen zulassen und ausprobieren (3)
- Die eigene Sprachgewandtheit im Forschungskontext ausreifen (3)
- Beziehungsmanagement mit den Stakeholdern im Forschungsprozess entwickeln (3)
- Pflichtgefühl in den Forschungsaufgaben zeigen (3)

Angebotene Lehrunterlagen

- Foliensatz
- Übungen

Lehrmedien

- Beamer
- Flipchart
- Pinwand

Literatur

- Debra S. Herrmann: Software Safety and Reliability, IEEE Computer Society
- MISRA C/MISRA C++: http://www.misra.org.uk/
- Les Hatton: Safer C, ISBN 0-07-707640-0, McGraw-Hill-Book, Berkshire
- AUTOSAR Standards: https://www.autosar.org/

Teilmodul		TM-Kurzbezeichnung
Softwaretest und Testmanagement		ST
Verantwortliche/r	Fakultät	
Prof. Dr. Peter Jüttner Elektro- und Information		hnik
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Peter Jüttner jährlich		
Lehrform		
Seminaristischer Unterricht mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung
Portfolioprüfung, siehe Studienplantabelle

Inhalte

- Motivation, Definition und Abgrenzung von Softwaretests
- Theorie des Softwaretests (Prozess, Strategie, Methoden,
- Planung, Dokumentation)
- Testtechniken, -strategien, deren Anwendung und Bewertung
- Automotive Anforderungen an den Software Test
- Konzepte für die Trennung von Software-Entwicklung und Software-Test
- Konzept für die methodische Planung und Durchführung von Software-Tests
- Testfallermittlung und Verfahren zur Testabdeckung
- Primär- und Sekundärtestdaten
- · Effizienz durch Testautomatisierung
- Kosten- und Zeitbedarfsabschätzung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Teststrategien und Testtechniken bzgl. Anwendbarkeit und Nutzen beuteilen zu können (1)
- Testfälle gemäß Teststrategie und Testtechnik erstellen zu können (3)
- Testphasen eines Projekts zu planen (3)
- Testvollständigkeitskriterien anwenden zu können (3)
- besondere Herausforderungen des Test im Automotive Umfeld zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

- Foliensatz
- Übungen

Lehrmedien

- Beamer
- Tafel
- Flipchart

Literatur

- http://www.dpunkt.de/certified-tester
- Helmut Balzert Lehrbuch der Software-Technik Bd. 1 und Bd. 2 Software-Entwicklung, Software-Management, Qualitätssicherung und Unternehmensmodellierung
- Andreas Spillner, Tilo Linz: Basiswissen Softwaretest
- Kneuper, R.: CMMI –Verbesserung von Softwareprozessen mit CapabilityMaturityModel Integration
- K. Frühauf, J. Ludewig, H. Sandmayr: Software-Projektmanagement und Qualitätssicherung

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Modul 5 Aktuelle und zukünftige Kommunikationsarchitektur		M5 AZK
Modulverantwortliche/r Fakultät		
Prof. Dr. Andreas Grzemba (LB) Zentrum für Weiterbildung u		nd Wissensmanagement

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
1. Semester		Pflicht	10

Verpflichtende Voraussetzungen		
keine spezifischen Anforderungen		
Empfohlene Vorkenntnisse		
keine spezifischen Anforderungen		

Inhalte	
siehe zugehörige Lehrveranstaltungen	

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe zugehörige Lehrveranstaltungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Bordnetzentwurf Systemdesign	5 UE	
2.	CAN-Bus	10 UE	
3.	CAN-Bus Praktikum	10 UE	
4.	Car-IT-Security	13 UE	
5.	CarToX	10 UE	
6.	Ethernet im Automobil	10 UE	
7.	Fahrzeugdiagnose: Grundlagen, Normen und Herausforderungen	5 UE	
8.	LIN-Bus	5UE	

Teilmodul		TM-Kurzbezeichnung
Bordnetzentwurf Systemdesign		SD
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Grzemba (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Andreas Grzemba (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gomaio otadioripian	[SWS oder UE]		[ECTS-Credits]
1. Semester	5UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung
Portfolioprüfung, siehe Studienplantabelle

Inhalte

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage:

- den Systementwurf und Prozessschritte im V-Modell verstehen und anzuwenden (3)
- die Bordnetzarchitekturen, Gateways und Bordnetzdatenbank zu verstehen (2)
- die Unterschiede zwischen Signal-orientierter und Service-orientierter Kommunikation sowie Funktionen und Signale zu verstehen und anzuwenden (3)
- das Zeitverhalten zu bewerten (2)
- das Funktionsmapping durchzuführen (3)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- den Systementwurf verteilter automitiver Steuerungssysteme anwenden zu können (3)
- die Entwurfs-Prozess-Schritte zu beherrschen (3)
- das Echtzeitverhalten zu bewerten (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs)

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

- PowerPoint
- Tafel

Literatur

- W. Zimmermann, R. Schmidgall: Bussysteme in der Fahrzeugtechnik, Vieweg Verlag
- Matscholik, Subke: Datenkommunikation im Automobil: Grundlagen,
- Bussysteme, Protokolle und Anwendungen, Hüthig-Verlag
- Streichert, Traub: Elektrik/Elektronik-Architkturen im Kraftfahrzeug, Springer Verlag

Teilmodul		TM-Kurzbezeichnung
CAN-Bus		CAN
Verantwortliche/r	Fakultät	
Dr. Andrea Reindl (LB) Tobias Frauenschläger (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Tobias Frauenschläger (LB) Dr. Andrea Reindl (LB)	jährlich	
Lehrform		
Seminaristischer Unterricht ca. 80 %,	Messungen am Rechner ca. 2	20 %

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gernais Studieripian	10/MC ada 11/51		IECTO Credital
	[SWS oder UE]		[ECTS-Credits]
1. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Portfolioprüfung, siehe Studienplantabelle	

Inhalte

Die folgenden Inhalte werden vermittelt:

- Technische Daten (Überblick)
- Prinzip eines CAN-Übertragungssystems
- Prinzipielle Struktur eines CAN-Netzwerkes
- Bus Pegel auf dem CAN-Bus
- Busarbitrierung CSMA/CA
- Leitungscodierung
- Telegrammarten
- Fehlererkennung und -reaktion
- CAN im OSI Referenzmodell
- Höherwerite Protokolle
- CAN-Matrix
- Messungen am CAN-Bus mit Logikanalysator, Oszilloskop und CAN Tools

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- den Aufbau und die Funktionsweise des CAN-Busses zu verstehen (3)
- komplexe Kommunikationssysteme mit CAN zu entwerfen (3)
- den Einsatz von CAN im Fahrzeug zu verstehen (3)
- eine CAN-Matrix aufzustellen (2)

- einen CAN-Bus physikalisch zu analysieren (2)
- höherwertige Protokolle, die auf CAN aufsetzten, zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- komplexe Kommunikationssysteme zu analysieren und zu verstehen (3)
- technologische Entwicklungen nachzuvollziehen (2)

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

- · Seminaristischer Unterricht (Beamer, Tafel)
- Übungen am PC

Literatur

- Engels, Horst, CAN-Bus: Feldbusse im Überblick, 2. Auflage, Franzis Verlag ISBN: 3772351468, 2002
- CAN Controller-Area-Network, Konrad Etschberger, Hanser, 2000
- Bernd Schürmann, Grundlagen der Rechnerkommunikation, Vieweg+Teubner, 2004
- C als erste Programmiersprache, Joachim Goll Manfred Dausmann, Springer Vieweg
- Software-Entwurf mit UML 2, Jochen Seemann, JürgenWolff von Gudenberg, Springer

Teilmodul		TM-Kurzbezeichnung
CAN-Bus Praktikum		CANP
Verantwortliche/r	Fakultät	
Dr. Andrea Reindl (LB) Tobias Frauenschläger (LB)	Zentrum für Weiterbildung u	nd Wissensmanagement
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Tobias Frauenschläger (LB) Dr. Andrea Reindl (LB)	jährlich	
Lehrform		
Praktikum 100 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung
Portfolioprüfung, siehe Studienplantabelle

Inhalte

Als Gruppenarbeit werden folgende Themen bearbeitet:

- Erstellen einer CAN-Matrix f
 ür ein realistisches Beispiel
 - Aufteilung der Funktionalität auf mehrere Steuergeräte
 - Programieren der Steuergerät-Funktionen auf Microcontrollern oder PCs (mit Zusatzsoftware) inkl. der zugehörigen CAN-Kommunikation
 - Dokumentation der Ergebnisse
 - Präsentation der Ergebnisse im Plenum

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ein komplexes System mit CAN zur Kommunikation auszulegen (3)
- eine passende CAN-Matrix zu erstellen (3)
- einen CAN-Knoten in Betrieb zu nehmen (Mikcrocontroller und PC) (3)
- entsprechende Entwicklungswerkzeuge einzusetzen (2)
- die Low-Level Ansteuerung eines CAN-Bausteins zu verstehen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- als Gruppe ein komplexes Projekt umzusetzen (3)
- den gesamten Entwicklungsprozess zu überblicken (2)
- Konzepte zu erarbeiten (2)

• Ergbnisse zu dokumentieren und im Plenum zu präsentieren (2)

Angebotene Lehrunterlagen

- Skript mit Anleitung
- Dokumentationen
- Entwicklungstools

Lehrmedien

- Übung am Rechner
- Gruppenarbeit
- Vorträge im Plenum

Literatur

- Engels, Horst, CAN-Bus: Feldbusse im Überblick, 2. Auflage, Franzis Verlag ISBN: 3772351468, 2002
- CAN Controller-Area-Network, Konrad Etschberger, Hanser, 2000
- Bernd Schürmann, Grundlagen der Rechnerkommunikation, Vieweg+Teubner, 2004
- C als erste Programmiersprache, Joachim Goll Manfred Dausmann, Springer Vieweg
- Software-Entwurf mit UML 2, Jochen Seemann, JürgenWolff von Gudenberg, Springer

Teilmodul		TM-Kurzbezeichnung
Car-IT-Security		CIS
Verantwortliche/r	Fakultät	
Kumar Ashutosh Anand Stephan Zitzlsperger	Zentrum für Weiterbildung ur	nd Wissensmanagement
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Kumar Ashutosh Anand Stephan Zitzlsperger	jährlich	
Lehrform		
Seminaristischer Unterricht mit Übungsanteil ca. 25 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. Semester	13 UE	deutsch	

Präsenzstudium	Eigenstudium
9,75 h	48 h

Studien- und Prüfungsleistung	
Portfolioprüfung, siehe Studienplantabelle	

Inhalte

- Security Anforderungen im Fahrzeug
- Security vs. Safety
- Absicherung der Datenübertragung im Fahrzeug
- Komponenten und Aufbau eines Security Systems
- Hardwarebasierte Sicherheitstechnologien zur Absicherung eines Steuergerätes

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die wesentlichen rechtlichen Vorraussetzungen der IT-Sicherheit zu kennen (1). Weiterhin verstehen sie die Schutzziele der IT-Sicherheit und können sie zielgerichtet anwenden (3). Sie können den Startvorgang eines IT-Systems beschreiben und Sicheheitsmechanisem anwenden (3). Weiterhin verstehen sie die Verwendung eines TPM und wissen wie sie eine Policy anwenden (3). Zusätzlichen kennen sie grundlegende Mechanismen zur Sicherung der Übertragung (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

Beamer und virtuelle Maschinen

Literatur

- Claudia Eckert: IT-Sicherheit: Konzepte Verfahren Protokolle, De Gruyter Oldenbourg Verlag
- SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Systems, SAE International Verlag

Teilmodul		TM-Kurzbezeichnung	
CarToX		СТХ	
Verantwortliche/r	Fakultät		
Prof. Dr. Markus Straßberger	Elektro- und Informationstechnik		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Markus Straßberger	jährlich		
Lehrform			
Seminaristischer Unterricht mit Übungsanteil ca. 10 %			

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Portfolioprüfung, siehe Studienplantabelle	

Inhalte

- Vehicle2x direkte Umfeldkommunikation (802.11p vs Cellular V2X/ITS 5G)
- Vehicle2x indirekte Umfeldkommunikation und Backendkommunikation
- Georelationale Datenbank
- Intelligente Infrastruktur
- Rechtliche Aspekte insbesondere aus dem Blickwinkel eingesetzter Software

Hinweis: Die Inhalte der Vorlesung können sich im Zeitablauf ändern und werden kontinuierlich der aktuellen technologischen Entwicklung angepasst.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, einen grundlegenden Überblick der Interaktion des Fahrzeugs mit seiner Umwelt, der Infrastruktur sowie Backendsystemen (1).

Ziel ist es ein Gesamtsystemverständnis für das Kommunikationsökosystem Car2X zu erlangen und die wesentlichen Aspekte der Interaktion und Funktion fahrzeugübergreifender Kommunikation und der damit einhergenden interagierenden Dienste zu beleuchten (2, 3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs)

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

Rechner/Beamer

Literatur

- [01] Winner H., Hakuli S., Lotz F. Singer C. (Hrsg.).: Handbuch Fahrerassistenzsysteme Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort , 3. Auflage Springer Vieweg Verlag, Wiesbaden (2015), ISBN 978-3-658-05733-6
- [02] Johannig V., Mildner R.: CarlT kompakt, Das Auto der Zukunft Vernetzt und autonom fahren", Springer Vieweg Verlag 2015, ISBN 978-3-658-09967-1
- [03] Kosch T., Strassberger M., Schroth C., Bechler M.: "Automotive Internetworking", Wiley Verlag 2012, ISBN 978-1-119-94472-0

Teilmodul		TM-Kurzbezeichnung	
Ethernet im Automobil		ETA	
Verantwortliche/r	Fakultät		
Josef Nöbauer (LB)	Zentrum für Weiterbildung und Wissensmanagement		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Josef Nöbauer (LB)	jährlich		
Lehrform			
Seminaristischer Unterricht mit Übungsanteil ca. 10 %			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gement construction	[SWS oder UE]		[ECTS-Credits]
1. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Portfolioprüfung, siehe Studienplantabelle	

Inhalte

Einführung und Motivation (flexibel, hoch skalierbar) für die

- Verwendung des Ethernet-Protokolls für Echtzeitanwendungen im
- Automobil

Aufbau von Ethernet und TCP/IP Kommunikation nach dem OSI Modell Mögliche Einsatzfälle im Echtzeitbereich und sich darauf ergebende Anforderungen an das Ethernet-Kommunikationssystem

Technologische Basis für die automotive Ethernet Kommunikation Praktische Einsatzgebiete und Historie im Automobil

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Funktionsweise und typischen Einsatzgebiete des Ethernet Netzwerkes im Auto zu kennen (1)
- zu bewerten welche Vor- und Nachteile die Technologie für diverse Anwendungsgebiete im Fahrzeug bringt (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- fachliche Diskussionen zu automotive Ethernet zu verstehen und konstruktive Beiträge zu geben (3)
- eine Vertiefung in einzelne Themengebiete zu starten (2)
- bei Bedarf die erworbenen Kenntnisse im Berufsalltag anzuwenden (3)

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Präsentation

Lehrmedien

- Beamer
- · Tafel bzw. Whiteboard

Literatur

- · Automotive Ethernet: Kirsten Matheus, Thomas Koenigseder
- Automotive Ethernet The Definitive Guide (English Edition): Colt Correa, Charles M. Kozierok, Robert B. Boatright, Jeffrey Quesnelle,

Teilmodul		TM-Kurzbezeichnung	
Fahrzeugdiagnose: Grundlagen, Normen und Herausforderungen		FZD	
Verantwortliche/r	Fakultät		
Christian Weiner (LB) Zentrum für Weiterbildung ur		nd Wissensmanagement	
Lehrende/r / Dozierende/r Angebotsfrequenz			
Christian Weiner (LB) jährlich			
Lehrform			
Vorlesung mit Übungsanteil			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. Semester	5UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung
Portfolioprüfung, siehe Studienplantabelle

Inhalte

Die Vorlesung übermittelt dem Studierenden die Grundlagen der Fahrzeugdiagnose und ermöglicht ein weites Verständnis für die verschiedensten Normen, welche die Diagnosearchitekturen seit vielen Jahren prägen. Die Ableitung entlang des ISO/OSI Schichtenmodells bildet hierbei eine rote Linie entlang der Veranstaltung. Des weiteren werden aktuelle Beispiele und Anwendungsn erörtert und neue Normen skizziert.

Anbei die grobe Agenda:

- Übersicht Fahrzeugelektronik und Diagnose
- Grundlagen der Diagnosekommunikation
- Diagnoseprotokolle und -dienste
- Diagnosearchitekturen
- ODX Open Diagnostic data eXchange
- Flashprogrammierung
- OTX Open Test sequence eXchange Format
- DoIP(s)
- Diagnose und IT-Sicherheit
- ISO 20730 ePTI ein Ausblick in der Standardisierung
- Exkurs Telematik und Diagnose

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Normen der Diagnose einzordnen und nachzuschlagen (1), die Kommunikation entlang des Schichtenmodells zu erklären (3), sowie Tools und deren Standards zu bewerten (2). Ebenfalls ist es möglich mit dem Wissen eine fehlerhafte Diagnosekommunikation am Fahrzeug zu erkennen und mögliche Verbesserungen abzuleiten (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, komplexe Themen in die Praxis zu projizieren (1) und Kollegen das Wissen einfach zu vermitteln (2).

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

Rechner/Beamer

Literatur

- Peter Subke, Christoph Marscholik:
- Datenkommunikation im Automobil, 2. Auflage März 2011 (aktuelle Auflage)
- Peter Subke:
- Diagnostic Communication with Road-Vehicles and Non-Road Mobile Machinery, aktuelle Auflage 2019-03-01

Teilmodul		TM-Kurzbezeichnung
LIN-Bus		LIN
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Grzemba (LB)	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Andreas Grzemba (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gomaio otadioripian	[SWS oder UE]		[ECTS-Credits]
1. Semester	5UE	deutsch	

Präsenzstudium	Eigenstudium
3,75 h	18,5 h

Studien- und Prüfungsleistung Portfolioprüfung, siehe Studienplantabelle

Inhalte

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage:

- das Protokoll und das Physical Layer zu kennen und anwenden zu können (3)
- die Configuration und Diagnose zu kennen (2)
- den Systementwurf (LDF, NCF) durchführen zu können (3)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

das Data Link Layer Protokoll und den Physical Layer von LINs anwenden zu können (3)

- den Entwurfsprozess zu beherrschen (3)
- Diagnose und Konfiguration zu kennen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs)

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

- PowerPoint
- Tafel

Literatur

- Grzemba: LIN-Bus, Franzis-Verlag
- W. Zimmermann, R. Schmidgall: Bussysteme in der Fahrzeugtechnik, Vieweg Verlag

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Modul 6 Elektromobilität und Innovative Ansätze		M6 EM
Modulverantwortliche/r Fakultät		
Prof. Dr. Manfred Bruckmann	Elektro- und Informationstechnik	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
3. Semester		Pflicht	10

Verpflichtende Voraussetzungen
keine spezifischen Anforderungen
Empfohlene Vorkenntnisse
keine spezifischen Anfoderungen

Inhalte	
siehe zugehörige Lehrveranstaltungen	

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, siehe zugehörige Lehrveranstaltungen

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Batteriespeichersysteme/Laden	10 UE	
2.	Batteriesysteme - Battery Technology	10 UE	
3.	Brennstoffzelle	10 UE	
4.	Elektromagnetische Verträglichkeit, EMV Grundlagen und Praxis	13 UE	
5.	Elektromobilität	19 UE	
6.	Innovativer Ausblick	3 UE	
7.	Moderne Drehstromantriebe	8UE	

Teilmodul		TM-Kurzbezeichnung
Batteriespeichersysteme/Laden		BL
Verantwortliche/r	Fakultät	
Friedrich Graf (LB) Zentrum für Weiterbildung u		nd Wissensmanagement
Lehrende/r / Dozierende/r Angebotsfrequenz		
Friedrich Graf (LB)	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
3	[SWS oder UE]		[ECTS-Credits]
3. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung
Klausur, siehe Studienplantabelle

Inhalte

1. Laden

- Definition und Anforderungen aus Benutzersicht
- Technische Lösungen On/Offboard und Normen
- Erweiterung zu VehicletoX, Rolle der Netze, Geschäftsmodelle, Netzdienlichkeit
- Resultierende Anforderungen an den Speicher
- Kabelloses Laden

2. Batteriesysteme

- Anforderungen, Architektur und Aufbau von Batteriesystemen in Fahrzeugen (cell to module, cell to pack, cell to chassis)
- Betrachtung typischer Fallstudien nach Stand der Technik und bewertender Vergleich bis auf Zellebene
- Herausarbeiten der kritischen Technologiefaktoren
- Rolle des Batteriemanagements
- · Relevante Normen, 2nd life, Recycling

3. Laden und Batteriesystem im Kontext

- Typische Ladevorgänge (AC/ DC), Einfluss auf Alterung, Lebensdauermanagement
- Optimierungsansätze

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die entsprechenden zentralen technischen Anforderungen und Lösungsansätze auf Systemund Komponentenebene abzuleiten (vom System zur Komponente) (2). Der technische Kontext zwischen dem Ladevorgang und dem Batteriesystem kann erklärt werden (2). Lade- und Batteriesysteme sind bis zur Unterbaugruppe bekannt (1). Der Zusammenhang mit neuen Wertschöpfungen kann erklärt werden (2). Im Sinne von Total Lifecycle Management existiert eine umfassende Vorstellung, insbesondere über die 1. Nutzung hinaus (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, interdiszipliäre Thematiken zu erkennen (3). Anforderungen werden nicht nur technisch begründet, sondern auch aus benutzerbezogenen Use-Cases heraus (2).

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Übungsaufgaben

Lehrmedien

- Beamer
- Tafel

Literatur

- Kai-Peter Birke: Modern battery engineering, World Scientific 2019.
- Wissenschaftliche Veröffentlichungen und Studien wie im Skript angegeben

Teilmodul		TM-Kurzbezeichnung	
Batteriesysteme – Battery Technology		BS	
Verantwortliche/r	Fakultät		
Dr. Andrea Reindl (LB)	Zentrum für Weiterbildung und Wissensmanagement		
Lehrende/r / Dozierende/r Angebotsfrequenz			
Dr. Andrea Reindl (LB)	jährlich		
Lehrform			
Seminaristischer Unterricht mit Übungsanteil			

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
3. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Grundlagen elektrochemischer Zellen
- Bleibatterien
- Ni-M Zelle
- Li-Ionen Zellen
- Doppelschichtkondensator
- Zusammenschaltung von Zellen
- Batteriesysteme, Batteriemanagement
- Batterien und Leistungselektronik
- Praktikum Steller und Batterien

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Eigenschaften der wichtigsten Energiespeicher zu verstehen (1)
- die Einbildung und Dimensionierung der Energiespeicher im System zu verstehen (1)
- Energiespeichersysteme zu entwickeln (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Praktikumsunterlagen

Lehrmedien

Rechner/Beamer

Literatur

- Jossen, Weydanz: Moderne Akkumulatoren richtig einsetzen, 2006
- Sterner, Stadler: Energiespeicher Bedarf, Technologien, Integration; Springer-Verlag Heidelberg Berlin, 2014
- Korthauer: Handbuch Lithium-Ionen-Batterien; Springer-Verlag Heidelberg Berlin, 2013

Teilmodul		TM-Kurzbezeichnung
Brennstoffzelle		BZ
Verantwortliche/r	Fakultät	
Stefan Granzow	Elektro- und Informationstechnik	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Stefan Granzow	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	10 UE	deutsch	

Präsenzstudium	Eigenstudium
7,5 h	37 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Wasserstoff in der automobilen Anwendung
- Arten von Brennstoffzellen
- Funktionsweise/Aufbau PEM-BZ
- Aufbau Brennstoffzellensystem
- Einfluss Systemkomponenten auf Gesamtwirkungsgrad
- Regelung von Brennstoffzellensystemen
- Hochvoltarchitekturen in BZ-Systemen
- Energetische Betrachtung HV Systeme
- Dimensionierung der Hybridantriebskomponenten

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die typischen Brennstoffzellenarten sowie im Speziellen den Aufbau von PEM Brennstoffzellen zu kennen (1)
- den Aufbau von Brennstoffzellensystemen sowie der bedeutendsten Systemkomponenten und deren Einfluss auf den Gesamtwirkungsgrad zu verstehen (3)
- mit gegebenen Randbedingungen ein möglichst praktikables (energetisch effizientes) Hybridantriebskonzept nachvollziehen zu können (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

die Bedeutung und mögliche Notwendigkeit der Brennstoffzellentechnologie im Mobilitätssektor einzuordnen (3).

Angebotene Lehrunterlagen

Foliensatz

Lehrmedien

- Folien
- Tafel

Literatur

- Peter Kurzweil: Brennstoffzellentechnik- Grundlagen, Materialien, Anwendung, Gaserzeugung; Springer Vieweg Wiesbaden; 2016
- Manfred Klell: Wasserstoff in der Fahrzeugtechnik-Erzeugung, Speicherung, Anwendung;
 Springer Fachmedien Wiesbaden GmbH; 2018

Teilmodul		TM-Kurzbezeichnung
Elektromagnetische Verträglichkeit, EMV Grundlagen und Praxis		EMV
Verantwortliche/r	Fakultät	
Thomas Eichstetter (LB)	Zentrum für Weiterbildung u	nd Wissensmanagement
Lehrende/r / Dozierende/r Angebotsfrequenz		
Thomas Eichstetter (LB) jährlich		
Lehrform		
Vorlesung mit Übungsanteil ca. 70 % und ergänzendem Praktikum ca. 30 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
3	[SWS oder UE]		[ECTS-Credits]
3. Semester	13 UE	deutsch	

Präsenzstudium	Eigenstudium
9,75 h	48 h

Studien- und Prüfungsleistung	
Klausur, siehe Studienplantabelle	

Inhalte

- Automotive EMV
- Normativer Hintergrund
- Messtechnik
- Störursachen sowie deren Behebung
- EMV-gerechte Entwicklung von elektronischen Schaltungen
- Designbeispiele und deren Analyse zu EMV-gerechter Schaltungsentwicklung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Störphänomene abzuschätzen und diese messtechnisch zu erfassen (2, 3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, komplexe Zusammenhänge zu strukturieren und zu priorisieren. (2, 3)

Angebotene Lehrunterlagen

Mitschrift, einige digitale Inhalte sowie Simulationsmodelle

Lehrmedien

PowerPoint, Versuche in der EMV-Kammer sowie Simulationen

Literatur

- Franz: EMV: Störungssicherer Aufbau elektronischer Schaltungen, Vieweg + Teubner
- Brandner, Gerfer, Rall, Zenker: Trilogie der induktiven Bauelemente: Applikationshandbuch für EMV Filter, Schaltregler, und HF-Schaltungen

Teilmodul		TM-Kurzbezeichnung
Elektromobilität		EM
Verantwortliche/r	Fakultät	
Prof. Dr. Robert Huber	Elektro- und Informationstecl	hnik
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Robert Huber	jährlich	
Lehrform		
Vorlesung mit Übungsanteil ca. 20 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	19 UE	deutsch	

Präsenzstudium	Eigenstudium
14,25 h	70 h

Studien- und Prüfungsleistung
Klausur, siehe Studienplantabelle

Inhalte

- Aufbau, Einteilung, Geschichte, Förderung und Nachhaltigkeit von Elektrofahrzeugen
- Fahrzeugarchitekturen und Entwicklungsansätze
- Antriebskomponenten: EM, Getriebe und HV Speicher
- Hochvoltsicherheit
- Modellierung und Simulation: Fahrleistung, Verbrauch und Getriebeauslegung
- Energiemanagement Antrieb: Längsdynamik
- Thermomanagement Gesamtfahrzeug
- Thermomanagement Hochvoltspeicher
- Battery Management System (BMS)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Themengebiete staatliche Anreizprogramme, wirtschaftliche Interessen und Nachhaltigkeit im Kontext Elektromobilität kontrovers zu diskutieren (3).

Die Studierenden können den Aufbau sowie Vor- und Nachteile der verschiedenen Fahrzeugarchitekturen und Entwicklungsansätze erklären (2). Sie sind in der Lage an Hand von Fallbeispielen Möglichkeiten und Grenzen der Architekturen und Entwicklungsansätze kontrovers zu diskutieren (2).

Die Studierenden können die naturwissenschaftlichen Grundlagen der Antriebskomponenten erklären und daraus Vor- und Nachteile der jeweiligen technischen Ausführungen ableiten (3). Auf Basis dieser Grundlagen sind Sie in der Lage dynamsiche Simulationsmodell zu erstellen und damit Fragestellungen im Kontext Fahrleistung, Verbrauch und Getriebeübersetzung zu beantworten und Wechselwirkungen aufzuzeigen (3). Sie kennen den Aufbau, die Struktur

und die Einteilung elektrisch betriebener Farhzeuge, sowie die staatlichen Zielsetzungen und aktuellen Förderinstrumente (1).

Die Studierenden sind in der Lage, die wesentlichen physikalischen Gesetze zu formulieren und im technischen Kontext anzuwenden (3). Sie haben verstanden, dass Aufgabenstellungen im Thermo- und Energiemanagement mit Fokus Antrieb und Gesamtfahrzeug i.A. zu Zielkonflikten im Spannungsfeld Komfort, Effizienz und Erfüllung weiterer Anforderungen (z.B. gesetzliche Vorgaben, herstellerspezifische Anforderungen, ...) führen (2). Sie können die Funktionsweise von Kältemaschienen mit unterschiedlichen Kühlmitteln erklären (2) und sind in der Lage die Kreisprozesse zu berechnen und damit eigene Lösungen zu entwickeln und zu bewerten (3). Sie können den Aufbau von Hochvolspeichern erklären und kennen die technischen Möglichkeiten zur Speicherkühlung (2). Sie haben die Zusammenhänge und Rückwirkungen von Fahrzeug- und Antriebsanforderungen auf das Kühlsystem verstanden und können auf dieser Basis Lösungsansätze entwickeln und bewerten (2).

Sie können die Detailfunktionen des BMS sowie die Zusammenhänge dieser Funktionen untereinander wie auch die Wechselwirkungen zum Speichersystem erklären und bewerten (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, zu erkennen, dass Selbststudium zu einem erfolgreichen Aufbau von Wissen und Kompetenzen gehörtt (1).

Angebotene Lehrunterlagen

- Skript zur Vorlesung
- Mitschrift

Lehrmedien

- Beamer
- Tafel
- Matlab als Simulationsumgebung

Literatur

- A. Karle, Elektromobilität: Grundlagen und Praxis, Hanser, 2022.
- M. Doppelbauer, Grundlagen der Elektromobilität: Technik, Praxis, Energie und Umwelt, Springer, 2020.
- F. Staudacher, Elektromobilität: Theorie und Praxis zur Ladeinfrastruktur (de-Fachwissen), Hüthig, 2020.
- R. Hagl, Elektrische Antriebstechnik, Hanser, 2021.
- O. Schulze, Elektromobilität ein Ratgeber für Entscheider, Errichter, Betreiber und Nutzer: Facetten zu Ladeinfrastruktur, Subventionsregeln, Kosten und Handling, Springer, 2022.
- Hofer: Elektrotraktion elektrische Antriebe in Fahrzeugen; VDE-Verl.; 2006
- Rummich: Elektro- und Hybridfahrzeuge für den Straßenverkehr -Grundlagen, Komponenten, Systeme, Fahrzeugkonzepte und Simulation; expert-Verlag; 2014
- Bosch: Kraftfahrtechnisches Taschenbuch. Vieweg
- Meissner, Richter: Battery Monitoring and Elektrical Energy Management Prediction for future vehicle electric power systems, VARTA Automotive

Teilmodul		TM-Kurzbezeichnung	
Innovativer Ausblick		IA	
Verantwortliche/r	Fakultät		
Friedrich Graf (LB)	Zentrum für Weiterbildung u	Zentrum für Weiterbildung und Wissensmanagement	
Lehrende/r / Dozierende/r	Angebotsfrequenz	Angebotsfrequenz	
Friedrich Graf (LB)	jährlich		
Lehrform			
Vorlesung			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	3 UE	deutsch	

Präsenzstudium	Eigenstudium
2,25 h	11 h

Studien- und Prüfungsleistung
Klausur, siehe Studienplantabelle

Inhalte

- Aktuelle Trends (Technologiereife, CO2 und Abgas-Gesetzgebung, Klimaveränderung, regenerative Energien, Mobilitätsverhalten)
- Ableitung der zentralen Anforderungen
- Überblick und Status wichtigster Techologietreiber (Batteriezellen, wide bandgap Halbleiter, Standardisierung, Hochintegration) anhand industrieller Beispiele und Studien
- Neue Fahrzeug- und Antriebskonzepte (package)
- Neue Wertschöpfungen
- Total lifecycle management

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, aus den aktuellen Trends die zentralen (technischen) Herausforderungen abzuleiten (2). Haupt-Technologietreiber als Lösungsmöglichkeit sind bekannt (1) und ihre konzeptionellen Auswirkungen auf das Gesamtfahrzeug (1). Der Zusammenhang mit neuen Wertschöpfungen und Total Lifecycle Management kann anhand von Beispielen erklärt werden (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, in umfassenderen Zusammenhängen systemisch zu denken, über technische Zusammenhänge hinaus (einschließend Marktverhalten, Umweltgesetzgebung, Umweltverträglichkeit, Rohstoffe, globale/strategische und betriebswirtschaftliche Aspekte) (3).

Angebotene Lehrunterlagen

Skript zur Vorlesung

Lehrmedien

Beamer/Folien

Literatur

- Wissenschaftliche Veröffentlichungen und Studien wie im Skript angegeben.
- Jens-Uwe Meyer: Erfolgsfaktor Innovationskultur. Business Village GmbH, 2011.
- Jens-Uwe Meyer: Radikale Innovation. Business Village Verlag, 2020.

Teilmodul		TM-Kurzbezeichnung
Moderne Drehstromantriebe		MD
Verantwortliche/r	Fakultät	
Prof. Dr. Manfred Bruckmann Elektro- und Informationsted		hnik
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Manfred Bruckmann jährlich		
Lehrform		
Seminaristischer Unterricht mit Übungsanteil ca. 10 %		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Semester	8UE	deutsch	

Präsenzstudium	Eigenstudium
6 h	29 h

Studien- und Prüfungsleistung Klausur, sieheh Studienplantabelle

Inhalte

- Moderne Bauelemente und Ansteuerung von Drehstromantrieben
- Dimensionierung, Tiefsetzsteller, Thermisches Verhalten, Kühlung
- Zuverlässigkeit
- "Nebenwirkungen" von getakteten Leistungsteilen
- Trends bei Stromrichterantrieben

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Grundlagen der Drehstromantriebe sowie deren Leistungsteile zu kennen (1) und im Automobil anwenden zu können (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs).

Angebotene Lehrunterlagen

- Foliensatz
- Übungen

Lehrmedien

- Beamer
- Tafel

Literatur

- Fuest, Döring: Elektrische Maschinen und Antriebe, Vieweg, aktuelle Auflage
- Reif: Automobilelektronik, Vieweg, aktuelle Auflage

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Modul 7 Masterarbeit		M7 MA
Modulverantwortliche/r	Fakultät	
Prof. Dr. Christian Schimpfle	Elektro- und Informationstechnik	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4. Semester		Pflicht	30

Verpflichtende Voraussetzungen

Das Thema der Masterarbeit kann frühestens ausgegen werden, wenn im Studienfortschritt 40 ECTS-Credits erreicht wurden

Empfohlene Vorkenntnisse

Die im Studium vermittelten Inhalte

Inhalte

Individuelle Themengestaltung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,

- die im Studium erworbenen Kenntnisse in einer selbstständigen wissenschaftlichen Arbeit auf Projekte aus der Ingenieurspraxis anzuwenden (3)
- eine Problemstellung innerhalb einer vorgegebenen Frist selbstständig zu strukturieren, nach wissenschaftlichen Methoden systematisch zu bearbeiten und schließlich transparent zu dokumentieren (3)
- Ergebnisse eines umfassenden, wissenschaftlichen oder ingenieurstechnischen Projektes, dessen fachliche Grundlagen und fachübergreifenden Zusammenhänge mündlich darzustellen, zu präsentieren und selbständig zu begründen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die im Vorspann unter "2. Lernziele" erwähnten Kompetenzen zu erwerben (siehe Seite 2 des Modulhandbuchs)

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Präsentation und Verteidigung		3
	Masterarbeit		
2.	Schriftliche Ausarbeitung Masterarbeit		27

Name des Studiengangs: Automotive Electronics Modulname: Modul 7 Masterarbeit

Teilmodul		TM-Kurzbezeichnung
Präsentation und Verteidigung M	asterarbeit	PV
Verantwortliche/r	Fakultät	
Betreuender Professor Ostbayerische Technische H		Hochschule Regensburg
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Betreuender Professor		
Lehrform		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
german e aranen prans	[SWS oder UE]		[ECTS-Credits]
4. Semester			3

Präsenzstudium	Eigenstudium

Studien- und Prüfungsleistung

Referat 45 min.

Literatur

Weitere Informationen zur Lehrveranstaltung

Zulassungsvoraussetzung ist mindestens "ausreichend" in Erstellung der Masterarbeit

Teilmodul		TM-Kurzbezeichnung
Schriftliche Ausarbeitung Maste	rarbeit	SA
Verantwortliche/r	Fakultät	
Betreuender Professor Ostbayerische Technische		nische Hochschule Regensburg
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Betreuender Professor		
Lehrform		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
3 · · · · · · · · · · · · · · ·	[SWS oder UE]		[ECTS-Credits]
4. Semester		englisch	27

Präsenzstudium	Eigenstudium

Studien- und Prüfungsleistung	
Erstellung Masterarbeit	

Literatur	