

Modulhandbuch

für den Bachelorstudiengang

Biomedical Engineering (B.Sc.)

SPO-Version ab: Wintersemester 2013

Wintersemester 2020/2021

erstellt am 16.10.2020

von Laura Petersen

Fakultät Maschinenbau

Hinweise:

1. Die Angaben zum Arbeitsaufwand in der Form von ECTS-Credits in einem Modul in diesem Studiengang beruhen auf folgender Basis:

1 ECTS-Credit entspricht in der Summe aus Präsenz und Selbststudium einer durchschnittlichen Arbeitsbelastung von 30 Stunden (45 Minuten Lehrveranstaltung werden als 1 Zeitstunde gerechnet).

2. Erläuterungen zum Aufbau des Modulhandbuchs

Die Module sind nach Studienabschnitten unterteilt und innerhalb eines Abschnitts alphabetisch sortiert. Jedem Modul sind eine oder mehrere Veranstaltungen zugeordnet. Die Beschreibung der Veranstaltungen folgt jeweils im Anschluss an das Modul. Durch Klicken auf das Modul oder die Veranstaltung im Inhaltsverzeichnis gelangt man direkt auf die jeweilige Beschreibung im Modulhandbuch.

3. Standard-Hilfsmittel (SHM)

Folgende Hilfsmittel sind bei allen Prüfungen zugelassen:

- Unbeschriebenes Schreibpapier (Name, Matrikelnummer und Modulbezeichnung dürfen vorab schon notiert werden)
- Schreibstifte aller Art (ausgenommen rote Stifte)
- Zirkel, Lineale aller Art, Radiergummi, Bleistiftspitzer, Tintenentferner
- Zugelassener Taschenrechner der Fakultät Maschinenbau (siehe Merkblatt "Zugelassene Hilfsmittel" auf der Fakultätshomepage), zu erwerben über die Fachschaft.

Ausnahmen von dieser Regel werden in der Spalte "Zugelassene Hilfsmittel" explizit angegeben.

Modulliste

Studienabschnitt 1:

Biologie und Chemie	!
Biologie und Chemie	
Biomechanik I	{
Biomechanik I	(
Einführung in die Konstruktion	1′
Einführung in die Konstruktion	12
Grundlagen der Elektrotechnik und Elektronik	
Grundlagen der Elektrotechnik und Elektronik	
Grundlagen der Programmierung	
Grundlagen der Programmierung	
Ingenieurmathematik 1	
Ingenieurmathematik 1	
Ingenieurmathematik 2	
Ingenieurmathematik 2	
Materialwissenschaften	
Materialwissenschaften	
Medizinische Physik mit Praktikum	
Medizinische Physik	
Praktikum Medizinische Physik	30
Studienabschnitt 2:	
Allgemeinwissenschaftliche Wahlpflichtmodule	
Allgemeinwissenschaftliches Wahlpflichtmodul 1 Präsentation und Moderation	
Allgemeinwissenschaftliches Wahlpflichtmodul 2	
Auswahl für Wahlpflichtmodul A und B	
Aktorik und Sensorik	
Analytik	
Grundlagen der numerischen Strömungsberechnung	
Handhabungstechnik und Robotik	
Musculoskeletal Computation	
Werkstoffeigenschaften und -prüfung	
Betriebswirtschaft und Recht Betriebswirtschaft und Recht	
Biofluidmechanik	
Biofluidmechanik	
Biomechanik II	
Biomechanics II	
Biomedizinische Software	
Biomedizinische Software	
Diagnostische und Therapeutische Systeme	
Diagnostische und Therapeutische Systeme	
Grundlagen der FEM	
Grundlagen der FEM	
Grundlagen der Wärmetechnik und Strömungsmechanik	
Grundlagen der Wärmetechnik und Strömungsmechanik	
Konstruktion	
Konstruktion / CAD	
Konstruktives Entwurfsprojekt / Methodik	
Maschinenelemente der Medizintechnik	
Maschinenelemente der Medizintechnik	88

Med. Materialien & Methoden / Hygiene	89
Med. Materialien & Methoden / Hygiene	
Mess- und Regelungstechnik	
Mess- und Regelungstechnik	
Projektarbeit	
Projektarbeit	96
Projektmanagement und Qualitätssicherung	98
Projektmanagement und Qualitätssicherung	99
Technische Mechanik - Dynamik	104
Technische Mechanik - Dynamik	105
Studienabschnitt 3:	
Allgemeinwissenschaftliches Wahlpflichtmodul 3	110
Allgemeinwissenschaftliches Wahlpflichtmodul 3	
Auswahl für Wahlpflichtmodule C und D	113
Digitalisierung und Ethik	114
Ingenieurinformatik	116
Keramische Werkstoffe	118
Lasergestützte und Additive Fertigung	
Oberflächentechnik	
Physikalisch-chemische und biochemische Laborpraxis	124
Sterilisation und Verpackung	
Bachelorarbeit	
Bachelorarbeit	
Fremdsprache	
Fremdsprache 1	
Fremdsprache 2	
Industriepraktikum	
Industriepraktikum	
Vertiefung Biologie	
Vertiefung Biologie	
Wahlpflicht C	
Wahlpflichtmodul E	
Wahlpflichtmodul E	139

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Biologie und Chemie		BC
(Biology and Chemistry)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Walter Rieger	Angewandte Natur- und Kulturwissenschaften	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Biologie und Chemie	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Biologie und Chemie	Biologie und Chemie	
(Biology and Chemistry)		
Verantwortliche/r	Fakultät	
Prof. Dr. Walter Rieger	Angewandte Natur- und Kulturwissenschaften	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Walter Rieger jedes 2.Semester		
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung	
Schriftl. Prüfung, 120 Min.	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2)	

Inhalte und Qualifikationsziele

- Anorganische Chemie: Säuren, Basen, Titrationskurven, Puffersysteme; Löslichkeit von Salzen; Komplexe und komplexometrische Titration; Oxidation/Reduktion, Redoxpotentiale Analytik: pH-Messung, Atomabsorption/Emission, Chromatographie
- Organische Chemie: Stoffklassen
- Biochemie: Biomoleküle; Stoffwechsel und Energieumwandlung; Grundlagen der Gentechnik
- Biologie: Prokaryotische Zellen, Bakterien, Viren; Molekularbiologie; Grundlagen der Bioverfahrenstechnik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fähigkeit, grundlegende chemische Reaktionen zu verstehen und machanistisch zu beurteilen
- Kompetenz zur Beurteilung relevanter Analysemethoden
- Einblick in die Struktur und Funktionen von Biomolekülen
- Verständnis der Mechanismen biochemischer Reaktionen: Katabolismus und Anabolismus; Erhalt, Weitergabe und Expression genetischen Materials
- Kenntnisse der Zellstrukturen von Prokaryoten; Vielfalt, Systematik und Wachstumsparameter von Bakterien und Viren

 Kompetenz der Beurteilung von Kulturmethoden und Selektion von Mikroorganismen sowie von Methoden zu sterilem Arbeiten

Angebotene Lehrunterlagen

k. A.

Lehrmedien

Beamer, Tafel

Literatur

Erwin Riedel: Allgemeine und Anorganische Chemie, Gruyter Verlag, 11. Auflage 2013; Lubert Stryer: Biochemie, Spektrum Akademischer Verlag; 7. Auflage (Oktober 2012); Hans G. Schlegel, Georg Fuchs: Allgemeine Mikrobiologie, Thieme Verlag Stuttgart; Auflage: 8., völlig überarb. u. erw. Auflage (11. Oktober 2006)

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Biomechanik I		BM1
(Biomechanics I)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	5

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
keine	

	Inhalte
ĺ	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Biomechanik I	5 SWS	5

Teilmodul		TM-Kurzbezeichnung
Biomechanik I		BM1
(Biomechanics I)		
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Sebastian Dendorfer	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	5 SWS	deutsch	5

Präsenzstudium	Eigenstudium
75 h	105 h

Studien- und Prüfungsleistung	
Schriftl. Prüfung, 90 Min.	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2), Formelsammlung, Skript	

Inhalte und Qualifikationsziele

- Aufgaben und Einteilung der Mechanik
- Kräfte und ihre Darstellung, grundlegende Axiome und Prinzipe
- Schwerpunkte und Resultierende verteilter Kräfte
- Auflagerreaktionen und Stabkräfte bei Fach- und Tragwerken
- Schnittreaktionen in Balken, Rahmen und Bögen
- Reibungsgesetze
- Spannungen, Verformungen und Materialgesetze

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Schwerpunkte und Resultierende verteilter Kräfte zu berechnen (3)
- Kräfte und Momente an statisch bestimmten Systemen zu berechnen (3)
- Auflagerkräfte und Stabkräfte bei Fach- und Tragwerken zu berechnen (3)
- Schnittreaktionen (Normal- und Querkraft, Biege- und Torsionsmoment) zu berechnen und grafisch darzustellen (3)
- Haft- und Gleitreibungskräfte in mechanischen Systemen zu berechnen (3)
- Grundbegriffe der Elastostatik zu kennen (1)
- aus mechanischen Sachverhalten einfache Rechenmodelle zu bilden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Bedeutung der Mechanik in allen Disziplinen des Maschinenbaus zu erkennen (1)
- Fragestellungen aus der Mechanik klar zu beschreiben (2)
- Lösungen für schwierige Aufgaben im Team zu finden (3)

Angebotene Lehrunterlagen

Skript

Lehrmedien

Tafel, Overheadprojektor, Rechner/Beamer, Exponate

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Einführung in die Konstruktion		EKO
(Introduction into Engineering Design)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. [BE SPO 2017], 2. [BE SPO 2013]	1.	Pflicht	5

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
keine	

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Einführung in die Konstruktion	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Einführung in die Konstruktion		EKO
(Introduction into Engineering Design)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Christian Mehltretter (LB)	jedes 2.Semester	
Prof. Dr. Thomas Schratzenstaller		
Lehrform		
[BE SPO 2013] Seminaristischer Unterricht, Übung [BE SPO 2017] Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
1. [BE SPO2017], 2. [BE SPO 2013]	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung

[BE SPO 2013] Klausur 120 Min.

[BE SPO 2017] schriftliche Prüfung 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

[BE SPO 2013] Klausur 120 Min.

SHM (siehe Seite 2), Tabellenbuch Metall, Hoischen: Technisches Zeichnen

[BE SPO 2017] schriftliche Prüfung 90 Min. SHM (siehe Seite 2), Tabellenbuch Metall

Inhalte und Qualifikationsziele

- Raumgeometrische Grundbegriffe, Projektionsarten und Gesetzmäßigkeiten der Raumgeometrie
- Handskizzen im 2D/3D für räumliche Rekonstruktion einfacher Bauteile (2D nach 3D und 3D nach 2D)
- Erstellen normgerechter technischer Zeichnungen von Bauteilen und Baugruppen (Zeichnungsarten, Ansichten, Schnitte, Einzelheiten, Gewinde-, Schrauben- und Mutterdarstellung, Maßeintrag, Allgemeintoleranz, Oberflächen, Kanten, Härte, Frei-/ Einstich, Fasen/Radien, Zentrierung Drehteile, Einplanen von Normteile, wie Wälzlagern, Sicherungsringen, Passfedern, Dichtungen, Zahnrädern)
- Gestaltungsgrundlagen des Maschinenbaus
- Funktionale und kostengünstige Lösungen für Standardaufgaben (Tolerierungsgrundsätze, Form- und Lagetoleranzen, Passungen, Toleranzrechnung, Lagerungen von Wellen und Achsen, Dichtungen)Ziele der Normung, Normteile (Schrauben, Muttern, Scheiben, Sicherungsringe, Passfedern, O-Ringe, etc.)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Freihand-Skizzieren zur Rekonstruktion von Grundkörpern und einfachen Bauteilen in den wichtigsten Projektionsarten zu erstellen (2)
- Zeichnen und Bemaßen orthogonaler Mehrtafelprojektionen zu erstellen (2)
- die wichtigsten Normteile des Maschinenbaus in technischen Zeichnungen darzustellen und zu interpretieren (2)
- normgerechte (Einzelteil-) Zeichnungen von Bauteilen mit Behandlungs-/ Oberflächenangaben, Maß-, Form- und Lagetoleranzen zu erstellen und zu interpretieren (2)
- Baugruppenzeichnungen zu interpretieren (2)
- Toleranzrechnung anzuwenden (2)
- funktionale und kostengünstige Lösungen für konstruktive Standardaufgaben von Bauteilen und Baugruppen zu erstellen und zu interpretieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- über Bauteile und Baugruppen auf der Basis eigener Skizzen und technischer Zeichnungen bzgl. Konstruktions- und Fertigungsaspekten kommunizieren und diese zu optimieren (2)
- über Bauteile und Baugruppen auf der Basis fremder Skizzen und technischer Zeichnungen bzgl. Konstruktions- und Fertigungsaspekten zu kommunizieren (2)
- Rolle und Bedeutung von Skizzen und technischen Zeichnungen in der innerbetrieblichen Kommunikation sowie der Kommunikation mit Zulieferern und Kunden kennen (1)
- die Bedeutung der Konstruktion in der Medizintechnik einzuordnen (2)

Angebotene Lehrunterlagen

Übungen

Lehrmedien

Tafel, Overheadprojektor, Rechner/Beamer, Exponate

Literatur

Tabellenbuch Metall;

Hoischen: Technisches Zeichnen;

Viehbahn: Technisches Freihandskizzieren;

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Grundlagen der Elektrotechnik und Elektronik		GEE
(Fundamentals of Electrical Engineering and Electronics)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Wolfgang Bock	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. [MB SPO2013, SPO 2017], 2. [BE SPO 2013, SPO 2017, PA SPO 2013, SPO 2019]	1.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Grundlagen der Elektrotechnik und	4 SWS	5
	Elektronik		

Teilmodul		TM-Kurzbezeichnung
Grundlagen der Elektrotechnik und Ele	ktronik	GEE
(Fundamentals of Electrical Engineerin	g and Electronics)	
Verantwortliche/r	Fakultät	
Prof. Dr. Wolfgang Bock	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Wolfgang Bock Prof. Dr. Anton Horn Prof. Dr. Hermann Ketterl Christian Schmid (LB) Prof. Dr. Martin Schubert Lehrform	g Bock in jedem Semester orn n Ketterl (LB)	
[BE SPO 2013, MB SPO 2013, PA SPO 2013] Seminaristischer Unterricht und Übung [BE SPO 2017, MB SPO 2019, PA SPO 2019] Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1. [MB SPO 2013, MB	4 SWS	deutsch	5
SPO 2019], 2. [PA			
SPO 2013, PA SPO			
2019, BE SPO 2013,			
BE SPO 2017]			

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung

[BE SPO 2017, MB SPO 2013, MB SPO 2019, PA SPO 2013] Schriftliche Prüfung 90 Min. [BE SPO 2013, PA SPO 2019] Klausur 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, auf GRIPS veröffentlichtes Kurzskriptum ohne Ergänzungen; Markierungen mit Textmarker sind erlaubt

Inhalte und Qualifikationsziele

- Elektrotechnische Grundbegriffe, Schaltbilder, Gesetze zur Berechnung von Gleichstromkreisen, Gleichstromnetzwerke, Gleichstromsysteme, Gleichstrommessungen
- Elektrisches Feld: Zusammenhang Feld mit elektr. Kraft und Spannung, Materialabhängigkeiten, Kondensator, Lade- und Entladevorgänge
- Magnetisches Feld: Feldgrößen, magn. Fluss, Ferromagnetismus, magnetischer Kreis, Kräfte im Magnetfeld, Induktion, Spule, Ein- und Ausschaltvorgänge
- Wechselstromsysteme: Amplitude, Frequenz, Phasenlage, Zeigerdiagramme, Wirk- und Blindwiderstände, Impedanzen, komplexe Wechselstromrechnung
- Halbleiterwerkstoffe: Physikalische und elektrische Eigenschaften, Leitfähigkeit, Dotierung, pn-Übergang
- Halbleiterbauelemente: pn-Dioden, Z-Diode, Photodiode, Bipolartransistor, Feldeffekttransistor; Kenn- und Grenzwerte von Bauelementen
- Nichtlinearer Spannungsteiler, Klein- und Großsignalverhalten, Schalt- und Verstärkeranwendung
- Schaltungen zur Spannungs- und Stromformung: Gleich-, Wechsel- und Mischspannung, Gleichrichtung, Wechselrichtung
- Operationsverstärker: Kenndaten, Grundschaltungen für Verstärkung und Signalverarbeitung, Anwendungen bei Gleich- und Wechselsignalen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Gleichstromnetzwerke mit mehreren Verbrauchern und Quellen zu analysieren (3) und dabei für reale Schaltungen Ersatzschaltbilder zu erstellen (2)
- lineare Gleichungssysteme auf Basis von Knoten- und Maschenregel zu erstellen und zu lösen (2)
- Strom-, Spannung- und Widerstandsmessungen in Gleichstromnetzwerken zu bewerten und zu benutzen (2)
- die charakteristischen Parameter von R-, L- und C- Bauelementen auf Basis deren physikalischen Aufbaus zu ermitteln (2)
- die Lade- und Entladevorgänge an Kapazitäten sowie die Ein- und Ausschaltvorgänge an Induktivitäten unter Verwendung von geschalteten Gleichstrom- oder -spannungsquellen auf Basis der Lösungen von gewöhnlichen Differenzialgleichungen 1. Ordnung zu berechnen (2)
- lineare Wechselstromkreise mit Hilfe von Zeigerdiagrammen und komplexer Darstellung zu untersuchen und zu berechnen (2)
- die Linearisierung und Idealisierung von Schaltungen mit Halbleiterbauelementen für deren Anwendungen zu benutzen (2)
- die Verlustleistungen und Grenzbelastungen bei Halbleiterdioden und Transistoren in Schaltanwendungen zu berechnen (2)
- den Spannungs- und Stromverlauf in Gleichrichterschaltungen zu untersuchen und zu berechnen (2)
- die Funktion von einfachen Operationsverstärkerschaltungen bei rückgekoppelten Systemen durch Aufstellen von Maschengleichungen zu analysieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• mit englischsprachigen Datenblättern für elektronische Bauelemente umzugehen (1)

- die Grundbegriffe und technischen Größen der Elektrotechnik und Elektronik in deutscher und englischer Sprache zu kennen bzw. zu benennen (1)
- Beispiele für die zunehmende Bedeutung der Elektronik im Rahmen interdisziplinärer Projekte anzugeben (1)
- die Bedeutung der Elektrotechnik und Elektronik im Hinblick der aktuellen Energiediskussion einzuschätzen (3)

Angebotene Lehrunterlagen

Skriptum, Übungen, Datenblätter zu elektronischen Bauelementen in englischer Sprache eLearning: https://elearning.uni-regensburg.de/course/view.php?id=2638

Lehrmedien

Overheadprojektor, Tafel, Rechner/Beamer, Simulationen

Literatur

- R. Busch, Elektrotechnik und Elektronik, Springer-Verlag;
- Tietze/Schenk/Gamm, Halbleiterschaltungstechnik, Springer-Verlag;
- Ein Verzeichnis mit ergänzender und weiterführender Literatur findet sich im Vorspann zum Skriptum "GEE_scr.pdf" unter https://elearning.uni-regensburg.de/course/view.php? id=2638

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Grundlagen der Programmierung		GPR
(Computer Science/ Programming)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Sebastian Dendorfer Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Grundlagen der Programmierung	3 SWS	4

Teilmodul		TM-Kurzbezeichnung
Grundlagen der Programmierung		GPR
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Sebastian Dendorfer jedes 2.Semester Franz Süß		
Lehrform		
Seminaristischer Unterricht, Übung, Praktikum		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	3 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 h	120 h

Studien- und Prüfungsleistung	
Klausur, 90 Min.	
Zugelassene Hilfsmittel für Leistungsnachweis	
k. A.	

Inhalte und Qualifikationsziele

- Grundlagen der Informatik
- Zahlensysteme
- Einführung in die Programmierung
- Logische Struktur von Programmen
- Struktogramme
- Grundelemente der Programmierung
 - Schleifen
 - Entscheidungen
 - Input/Output
 - Funktionen
 - Skripte
- Numerische Integration
- Numerische Differentiation
- Rekursion
- Einführung in Matlab

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die logische Abfolge von einfachen Programmen zu beschreiben (1) und darzustellen (2)
- Einfache Programme in Matlab zu implementieren (2)
- Numerische Grundlagen wie Integration und Differentiation zu programmieren (2)
- Zahlensystem zu beschreiben (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die Bedeutung von informatischen Werkzeugen in der Medizintechnik zu erkennen (1)
- Logische Abläufe zu erstellen (2)

Angebotene Lehrunterlagen

Skript, Übungen

Lehrmedien

Rechner, Beamer, Tafel

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Ingenieurmathematik 1		MA1
(Mathematics for Engineers 1)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Jürgen Frikel	Informatik und Mathematik	

Zuordnung zu weiteren Studiengängen
Produktions- und Automatisierungstechnik
Maschinenbau

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	6

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Ingenieurmathematik 1	6 SWS	6

Teilmodul		TM-Kurzbezeichnung
Ingenieurmathematik 1 (Mathematics for Engineers 1)		MA 1
Verantwortliche/r	Fakultät	
Prof. Dr. Jürgen Frikel	Informatik und Mathe	matik
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Dr. Doris Augustin Stefan Bielicke (LB) Prof. Dr. Jürgen Frikel Prof. Dr. Michael Fröhlich Dr. Detlef Gröger (LB) René Grünbauer (LB) Prof. Dr. Roland Hornung Martin Müller (LB) Dr. Gabriela Tapken (LBA) Manuela Zirngibl (LB) Lehrform	in jedem Semester	
20111101111		

[BE SPO 2013, MB SPO 2013, PA SPO 2013] Seminaristischer Unterricht und Übung [BE SPO 2017, MB SPO 2019, PA SPO 2019] Seminaristischer Unterricht

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gornals otadionplan	[SWS oder UE]		[ECTS-Credits]
1.	6 SWS	deutsch	6

Zeitaufwand:

Präsenzstudium	Eigenstudium
90 h	90 h

Studien- und Prüfungsleistung

Schriftl. Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), publizierte Formelsammlungen in Buchform

Inhalte und Qualifikationsziele

Die Studierenden kennen und verstehen den mathematischen Formalismus und besitzen grundlegende Kenntnisse von mathematischen Konzepten, Rechenregeln und Lösungsverfahren aus den folgenden Bereichen:

- Zahlen und Funktionen: Wiederholung von Potenz- und Logarithmusgesetzen, Lösen von Gleichungen und Ungleichungen, Funktionsbegriff, elementare Funktionen und ihre Eigenschaften
- Komplexe Zahlen: Darstellungsformen komplexer Zahlen, Rechnen mit komplexen Zahlen, komplexe Exponentialfunktion und die Eulersche Formel, Beschreibung harmonischer Schwingungen in Komplexen
- Lineare Algebra: Vektorrechnung, Basen und Koordinatensysteme, Orthogonalität, Matrizen und lineare Abbildungen, Determinanten und Rang einer Matrix, lineare Gleichungssysteme (Gauß-Verfahren, Lösbarkeit und Struktur der Lösungsmenge), Inverse Matrix, Eigenwerte und Eigenvektoren, Diagonalisierung
- Folgen, Grenzwerte, Stetigkeit von Funktionen
- Differentialrechnung: Ableitungsbegriff und Ableitungstechniken, Regel von l'Hospital, Kurvendiskussion, Extrema unter Nebenbedingungen, Newton-Verfahren
- Intergralrechnung: Bestimmtes und unbestimmtes Integral, Hauptsatz der Differentialund Integralrechnung, Integrationstechniken (partielle Integration, Substitutionsregel, Integration durch Partialbruchzerlegung)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- passende Methoden und Konzepte aus den oben genannten Bereichen zur Lösung gegebener Problemstellungen zu identifizieren (1)
- die gelernten mathematischen Methoden erfolgreich zur Lösung von Problemen einzusetzen und Ergebnisse zu interpretieren (2)
- einfache praktische Problemstellungen mathematisch zu formulieren und zu analysieren (2 und 3)
- weiterführende mathematische Texte selbstständig zu lesen und zu verstehen (3)
- komplexe Zusammenhänge zu strukturieren und Lösungsansätze zu erarbeiten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mathematische Inhalte mündlich und schriftlich unter Verwendung der Fachsprache zu kommunizieren (2)
- mathematische Fragestellungen selbstständig und in Gruppenarbeit zu bearbeiten (3)
- ihre erarbeiteten Lösungswege kritisch zu reflektieren (3)

Angebotene Lehrunterlagen

Tafelanschrift, Übungen

Lehrmedien

Tafel und Beamer

Literatur

- C. Karpfinger, Höhere Mathematik in Rezepten, 3. Auflage, Springer Spektrum, 2017.
- L. Papula, Mathematische Formelsammlung, 12. Auflage, Springer Vieweg, 2017.
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1, 15. Auflage, Springer Vieweg, 2018.
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2, 14. Auflage, Springer Vieweg, 2015.
- Y. Stry, R. Schwenkert, Mathematik kompakt: für Ingenieure und Informatiker, 4. Auflage, Springer-Verlag Berlin Heidelberg, 2013.
- T. Westermann, Mathematik für Ingenieure, 7. Auflage, Springer Vieweg, 2015.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Ingenieurmathematik 2		MA2
(Mathematics for Engineers 2)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Jürgen Frikel	Informatik und Mathematik	

Zuordnung zu weiteren Studiengängen
Produktions- und Automatisierungstechnik
Maschinenbau

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.	1.	Pflicht	6

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
MA1

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Ingenieurmathematik 2	6 SWS	6

	TM-Kurzbezeichnung
	MA2
Fakultät	
Informatik und Mathem	natik
Angebotsfrequenz	
in jedem Semester	
	Informatik und Mathen Angebotsfrequenz

[BE SPO 2013, MB SPO 2013, PA SPO 2013] Seminaristischer Unterricht und Übung [BE SPO 2017, MB SPO 2019, PA SPO 2019] Seminaristischer Unterricht

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	6 SWS	deutsch	6

Zeitaufwand:

Präsenzstudium	Eigenstudium
90 h	90 h

Studien- und Prüfungsleistung

Schriftl. Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), publizierte Formelsammlungen in Buchform

Inhalte und Qualifikationsziele

Die Studierenden kennen und verstehen den mathematischen Formalismus und besitzen grundlegende Kenntnisse von mathematischen Konzepten, Rechenregeln und Lösungsverfahren aus den folgenden Bereichen:

- Zahlenreihen: Definition und Beispiele wichtiger Zahlenreihen, Konvergenzkriterien
- Potenzreihen und Taylor-Reihen: Konvergenzverhalten, Rechnen mit Potenzreihen, Potenzreihenentwicklung von Funktionen, Taylor-Reihen, lokale Approximation von Funktionen und der Satz von Taylor, Anwendungsbeispiele
- Fourier-Reihen: Bestimmung von Fourier-Reihen von periodischen Funktionen, Konvergenzverhalten und Eigenschaften von Fourier-Reihen
- Differentialrechnung mehrerer Veränderlicher: Funktionen mehrerer Veränderlicher, partielle und totale Differenzierbarkeit (Tangentialebenen), Gradient und Richtungsableitung, Extrema mit und ohne Nebenbedingungen
- Integralrechnung mehrerer Veränderlicher: Parametrisierung von Kurven und Flächen, Doppel- und Dreifachintegrale über Normalbereichen in 2D und 3D sowie Substitutionsregeln, Anwendungen (Schwerpunkte, Volumina, Rotationskörper, Bogenlängen)
- Gewöhnliche Differentialgleichungen (DGL): Einteilung in lineare und nichtlineare DGLn, Lösungsverfahren für DGLn 1. Ordnung (Trennung der Variablen, Variation der Konstanten sowie geeignete Substitutionen), Lösungsstruktur von allgemeinen linearen Differentialgleichungen, Lösungsverfahren für lineare DGL mit konstanten Koeffizienten beliebiger Ordnung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- passende Methoden und Konzepte aus den oben genannten Bereichen zur Lösung gegebener Problemstellungen zu identifizieren (1)
- die gelernten mathematischen Methoden erfolgreich zur Lösung von Problemen einzusetzen und Ergebnisse zu interpretieren (2)
- einfache praktische Problemstellungen mathematisch zu formulieren und zu analysieren (2 und 3)
- weiterführende mathematische Texte selbstständig zu lesen und zu verstehen (3)
- komplexe Zusammenhänge zu strukturieren und Lösungsansätze zu erarbeiten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mathematische Inhalte mündlich und schriftlich unter Verwendung der Fachsprache zu kommunizieren (2)
- mathematische Fragestellungen selbstständig und in Gruppenarbeit zu bearbeiten (3)
- ihre erarbeiteten Lösungswege kritisch zu reflektieren (3)

Angebotene Lehrunterlagen

Tafelanschrift, Übungen

Lehrmedien

Tafel und Beamer

Literatur

- C. Karpfinger, Höhere Mathematik in Rezepten, 3. Auflage, Springer Spektrum, 2017.
- L. Papula, Mathematische Formelsammlung, 12. Auflage, Springer Vieweg, 2017.
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1, 15. Auflage, Springer Vieweg, 2018.
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2, 14. Auflage, Springer Vieweg, 2015.
- Y. Stry, R. Schwenkert, Mathematik kompakt: für Ingenieure und Informatiker, 4. Auflage, Springer-Verlag Berlin Heidelberg, 2013.
- T. Westermann, Mathematik für Ingenieure, 7. Auflage, Springer Vieweg, 2015.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Materialwissenschaften		MW
(Material Sciences)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Sebastian Dendorfer	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.	1.	Pflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Materialwissenschaften	4 SWS	4

Teilmodul		TM-Kurzbezeichnung
Materialwissenschaften		MW
(Material Sciences)		
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Sebastian Dendorfer Prof. Dr. Joachim Hammer	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 h	60 h

Studien- un	d Prüfungs	leistung

Schriftl. Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), Skript

Inhalte und Qualifikationsziele

- Struktur- und Oberflächenanalytik (z.B. LM, REM, XRD, m-CT, XPS)
- Additive Fertigung
- Zyklisches Verhalten, Lebensdauer
- Zeitabhängige Plastizität
- Modellierung zeitabhängiger plastischer Verformung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Verständnis des Aufbaus von Materialien und über die Methoden, die diesen Aufbau untersuchen (2)
- Kenntnis von Unterschieden und charakteristischen Eigenschaften von Materialien (1)
- Fähigkeit zur mechanischen Interpretation von Prüfversuchen (2)
- Fähigkeit zur Berechnung von Belastungszuständen und Festigkeitsnachweisen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Umgang mit Fachbegriffen der Materialwissenschaft (1)
- Fähigkeit zur Beurteilung von Versagen und Einschätzung des Versagensrisikos (3)

Angebotene Lehrunterlagen

Skript

Lehrmedien

Tafel, Overheadprojektor, Rechner/Beamer, Exponate, Versuch

Literatur

Literaturempfehlungen:

• Bergmann, Werkstofftechnik I, Hanser Verlag

Ausserdem siehe Literaturempfehlungen und -verweise in der Veranstaltung sowie im pdf der Veranstaltung

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Medizinische Physik mit Praktikum		MP
(Medical Physics and Laboratory Exercises)		
Modulverantwortliche/r	erantwortliche/r Fakultät	
Prof. Dr. Martin Kammler	Angewandte Natur- und Kulturwissenschaften	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	10

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Medizinische Physik	4 SWS	5
2.	Praktikum Medizinische Physik	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Medizinische Physik		MPV
(Medical Physics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Martin Kammler	Angewandte Natur- und Kult	urwissenschaften
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Peter Bickel	jedes 2.Semester	
Prof. Dr. Martin Kammler		
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung	
Schriftl. Prüfung, 90 Min.	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2), Formelsammlung	

Inhalte und Qualifikationsziele

- Mechanik (Translation, Rotation, Schwingung)
- Gase und Flüssigkeiten
- Thermodynamik und Diffusion
- Strömungslehre
- Elektrizitätslehre
- geometrische Optik
- Wellen
- Atom und Kernphysik
- ionisierende Strahlung,
- Bildgebende Verfahren der Medizin

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Verständnis der mechanischen Grundlagen des menschlichen Körpers
- Einblicke in die Eigenschaften von Gasen und ruhenden Flüssigkeiten
- Verständnis der Voraussetzung für die Messung von Blutdrücken
- Kenntnisse der Physik der strömenden Flüssigkeiten wie zum Beispiel der Blutströmung im menschlichen Körper

- Grundlegendes Verständnis der Thermodynamik und der Diffusion zum Beispiel über Membranen (Osmose und Dialyse)
- Kenntnisse der geometrischen Optik, wie zum Beispiel der Abbildung mit Hilfe eines Mikroskops
- Grundlegende Kenntnisse der Elektrizitätslehre
- Einblick in die Atom und Kernphysik
- Kenntnis der Entstehung und der Eigenschaften ionisierender Strahlung
- Verständnis der bildgebenden Verfahren Röntgen, Röntgentomographie und Kernspin mit den Interpretationen der Bilder

Angebotene Lehrunterlagen

k. A.

Lehrmedien

k. A.

Literatur

Ulrich Harten: Physik für Mediziner- Eine Einführung, Springer Verlag, 12. Auflage 2007 Dieter Meschede: Gerthsen Physik, Springer Verlag, 24. Auflage 2010

Teilmodul		TM-Kurzbezeichnung
Praktikum Medizinische Physik		MPP
(Laboratory Exercises: Medical Physic	s)	
Verantwortliche/r	Fakultät	
Prof. Dr. Martin Kammler	Angewandte Natur- und Kult	urwissenschaften
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Rita Elrod	jedes 2.Semester	
Prof. Dr. Martin Kammler		
Christian Prommesberger (LB)		
Dr. Birgit Striegl		
Prof. Dr. Ernst Wild		
Lehrform		
Praktikum		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung

Präsenz, 10 Ausarbeitungen mit Testat, 1 Präsentation

Zugelassene Hilfsmittel für Leistungsnachweis

k. A.

Inhalte und Qualifikationsziele

Praktische Versuche zu ausgewählten Themen der Physik, die in der Medizin eine besondere Relevanz besitzen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Einblicke in die Vorgehensweise bei physikalischen Experimenten.
- Überprüfung einfacher physikalischer Zusammenhänge
- Kenntnisse der Fehlerbetrachtung und Fehlerrechnung

Literatur

Dieter Meschede: Gerthsen Physik, Springer Verlag 24. Auflage 2010

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Allgemeinwissenschaftliche Wahlpflichtmodule		AW
(General Scientific Elective Modules)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4.	2.	Pflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Allgemeinwissenschaftliches Wahlpflichtmodul 1 Präsentation und Moderation	2 SWS	2
2.	Allgemeinwissenschaftliches Wahlpflichtmodul 2	2 SWS	2

Teilmodul		TM-Kurzbezeichnung
Allgemeinwissenschaftliches Wahlpflichtmodul 1 Präsentation und		РМО
Moderation (Presentation)		
Verantwortliche/r	Fakultät	
Dr. Karin Herzog	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Heidrun Ellermeier (LB) jedes 2.Semester Dr. Karin Herzog Prof. Dr. Claudia Hirschmann Eric Schönfeld (LB) Ursula Wagner (LB)		
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 h	30 h

Studien- und Prüfungsleistung

Mündlicher LN

15minütige Präsentation eines Themas aus dem Bereich "Soft Skills" mit Erstellung einer entsprechenden 3-5 seitigen Präsentationsunterlage mit Kopien für alle.

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte und Qualifikationsziele

- Kommunikation: Kommunikationsmodelle, Kommunikationsstrukturen und Kommunikationsschwierigkeiten, zielgerichtete Kommunikation
- Moderierte Besprechung: Moderationsmethoden; Dokumentation von Ergebnissen und Maßnahmen
- Präsentieren: Zielgruppenanalyse, Strukturieren von Inhalten, Visualisieren von Präsentationsinhalten (z.B. von PowerPoint Folien, Flipchartpapieren, Postern), Einsatz passender Medien bei Präsentationen
- Persönliches Auftreten: Körpersprache, Habitus
- Sprache: Rhetorik
- Soft Skills: Erfordernis im betrieblichen Alltag

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- kongruente Kommunikation zu erkennen (1)
- Missverständnisse in der Kommunikation nachzuvollziehen (2) und Maßnahmen zur Verbesserung der Kommunikation zu formulieren (3)
- Zielgruppenanalysen durchzuführen (3) und das Präsentationvorgehen zielgerichtet zu gestalten (3)
- passende Visualisierungen auszuwählen (2) und zu gestalten (2)
- wichtige Soft Skills im beruflichen Alltag zu beschreiben (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- selbstbewusstes Auftreten zu entwickeln (3)
- Arbeitsergebnisse einzeln, wie auch im Team, zielgerichtet darzustellen (2)
- die persönliche Rolle in verschiedenen Gesprächssituationen zu beurteilen (2)
- das Verhalten auf die kommunikativen Erfordernisse abzustimmen (3)

Angebotene Lehrunterlagen

Skript

Lehrmedien

Rechner/Beamer, Tafel, Video, Overheadprojektor, Flipchart

Literatur

Allhoff, Dieter-W. (2010): Rhetorik & Kommunikation. Ein Lehr- und Übungsbuch. Reinhardt: München.

Edmüller, Andreas & Wilhelm, Thomas (2015): Moderation. Haufe: Planegg/München.

Seifert, Josef W. (2010): Moderation & Kommunikation. Gruppendynamik und

Konfliktmanagement in moderierten Gruppen. GABAL: Offenbach.

Deutscher Managerverband e.V. (2004): Handbuch Soft Skills 1-3. vdf Hochschulverlag: Zürich.

Weitere Informationen zur Lehrveranstaltung

siehe GRIPS

Das Modul PMO wird von der Fakultät Maschinenbau als eigene Veranstaltung angeboten, es handelt sich dabei nicht um ein Modul aus dem allgemeinwissenschaftlichen Fächer-Katalog der Fakultät AM.

Teilmodul		TM-Kurzbezeichnung
Allgemeinwissenschaftliches Wahlpflichtmodul 2		AW2
(General Scientific Elective Module 2)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz		
N.N. in jedem Semester		
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 h	30 h

Studien- und Prüfungsleistung

Klausur o. Studienarbeit o. mdl. LN

Notengewicht 1/2

Zugelassene Hilfsmittel für Leistungsnachweis

k. A.

Inhalte und Qualifikationsziele

- Erweiterung des Fachstudiums durch einen Bereich, der zwar nicht zwingend zur Fachausbildung gehört, jedoch einen Bezug zur beruflichen Ausbildung hat.
- Ein Modul aus dem AW-Modulangebot, dabei sind folgende Fächer ausgeschlossen: Block II (Sozialkompetenz): Moderation; Block IV (Kommunikation): Präsentation; Block V (Methodenkompetenz): Projektmanagement und Qualitätsmanagement

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• Kenntnisse (3) von Zusammenhänge, die über das Fachstudium im engeren Sinne hinausgehen

Angebotene Lehrunterlagen

k. A.

Lehrmedien

k. A.

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Auswahl für Wahlpflichtmodul A und B		WPA, WPB
(Mandatory Elective Module A)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
5.	2.	Wahlpflicht	4

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
keine	

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Aktorik und Sensorik	4 SWS	4
2.	Analytik	4 SWS	4
3.	Grundlagen der numerischen Strömungsberechnung	4 SWS	4
4.	Handhabungstechnik und Robotik	4 SWS	4
5.	Musculoskeletal Computation	4 SWS	4
6.	Werkstoffeigenschaften und -prüfung	4 SWS	4

Teilmodul		TM-Kurzbezeichnung
Aktorik und Sensorik		AS
(Intelligent Actors and Sensors)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schlegl	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Thomas Schlegl	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht (3SWS), Übungen (1SWS)		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5. [BE SPO 2013, BE	4 SWS	deutsch	4
SPO 2017], 6. o. 7.			
[PA SPO 2013]			

Präsenzstudium	Eigenstudium
60 h	60 h

Studien- und Prüfungsleistung

[BE SP02013] Klausur 90 Min.

Schriftl. Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, 1 beliebig bedrucktes oder beschriebenes DIN A4 Blatt

Inhalte und Qualifikationsziele

- Grundbegriffe und Bedeutung von Aktorik und Sensorik in Maschinenbau, Produktionsund Automatisierungstechnik
- Klassifikation von Sensoren: Innere und äußere Sensoren
- Grundbegriffe des maschinellen Sehens; wesentliche Komponenten eines Bildverarbeitungssystems
- Technische Prinzipien und Eigenschaften bildgebender Sensoren: CCD und CMOS-Technologie; Auswirkungen auf die Einsatzbarkeit der Sensoren
- Strukturierung und Beleuchtung von Bildszenen: Vereinzelung von Objekten im Sichtbereich, Arten und Technologie der Beleuchtung; Kriterien zur Wahl der Beleuchtung bei konkreten Aufgaben
- Elemente der Bildentstehung und -verarbeitung: Lichtintensität, Absorption und Reflexion; ortsdiskretisiertes Bild
- Arithmetische und logische Bildoperatoren zur Verarbeitung von Farb-, Grauwert- und Schwarz/Weiß-Bildern
- Nachbarschaftsfilter und morphologische Filter
- Geometrie der optischen Abbildung: Kameramodell, perspektivische und inverse perspektivische Transformation; Homogene perspektivische Transformationsmatrix
- Allgemeines geometrisches Kameramodell: Beschreibung einer Pan-/Tilt-Montage; Verfahren zur Kamerakalibration
- Hierarchie von Bildverarbeitungsoperationen und grundlegende Bildverarbeitungstechniken: Unstetigkeitsdetektion und Ähnlichkeitsabfrage
- Merkmalsbasierte Bildbeschreibung: Invarianz von Merkmalen; typische Merkmale mit/ ohne Objektbezugspunkt
- · Objektklassifikation, -lokalisierung und -vermessung
- Aktive und passive Stereoskopie zur Raumpunktbestimmung; structured light-Verfahren
- Direkte Entfernungsbestimmung durch Impuls- und Phasenmessverfahren
- Beschleunigungsmessung mit unkompensierten und kompensierten Beschleunigungssensoren
- Messung von Kräften und Drehmomenten: einachsige und mehrachsige Kraftsensoren

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Datenblattangaben von Sensoren für automatisierungstechnische Anwendungen einzuschätzen (1)
- Sensoren für automatisierungstechnische Aufgaben anforderungsgerecht auszuwählen (1)
- Systeme zur Sensordatenverarbeitung aufgabenspezifisch auszulegen (2)
- Bildverarbeitungssysteme hinsichtlich ihrer Funktionalität zu bewerten (2)
- Bildverarbeitungssysteme für Anwendungen in der Produktions-, Automatisierung und Robotertechnik auszulegen (2)
- Bildverarbeitungssysteme für Aufgaben der Objekterkennung, Objektlokalisierung und der Qualitätsanalyse programmieren (2)
- Algorithmen zur Bildverarbeitung aufgabenspezifisch auszuwählen und zu bedaten (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Analyse- und Berechnungsergebnisse in Fachgesprächen zu präsentieren (1)
- die zentrale Bedeutung moderner Sensoren und Aktoren für die Funktionalität moderner automatisierungstechnischer und robotischer Systeme zu erkennen und zu verteidigen (1)

- ethische Implikationen des Einsatzes von Aktoren, Sensoren und Bildverarbeitungssystemen zu erkennen (1)
- Technikfolgen beim Einsatz von Aktoren und Sensoren abzuschätzen (1)
- sozioökonomische Aspekte der Aktorik und Sensorik für die gesamtgesellschaftliche Entwicklung in Europa zu durchdringen (1)

Angebotene Lehrunterlagen

Skript, Tutorials, Übungen

Lehrmedien

Rechner/Beamer, Overheadprojektor, Tafel, Versuche

Literatur

Teilmodul		TM-Kurzbezeichnung
Analytik		AY
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Walter Rieger	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60	60

Studien- und Prüfungsleistung
Klausur, 90 Minuten
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

- 1. Wissen und Verstehen
- a) Allgemeine und theoretische Grundlagen
- Grundbegriffe der Analytischen Chemie
- Analytische Qualitätskontrolle und Qualitätssicherung
- Fehler und Fehlerbetrachtung
- b) Probenvorbereitung
- Probennahme
- Probenpräparation
- c) Chemische und biochemische Analysenmethoden
- Gravimetrie
- Titrimetrie
- 1) Säure-Base-Titrationen
- 2) Komplexometrie
- 3) Redoxtitrationen
- Enzymatische Analyse
- Immunchemische Analyse
- Grundlagen der Polymerase Chain Reaction (PCR)
- d) Elektrochemische Analysenmethoden
- Allgemeines
- Konduktometrie
- Potentiometrie
- e) Instrumentelle Analytik
- Atomabsorptions- und Emissionsspektroskopie
- Massenspektrometrie
- Chromatographie
- Radiometrische Analysemethoden
- Elektrophoretische Trennmethoden

2. Einsatz, Anwendung und Erzeugung von Wissen

- a) Aneignung der Kenntnis der Funktionsweisen, Bedeutung und Anwendungen chemischanalytischer Methoden sowie instrumentell-analytischer Methoden
- b) Erlangen der Fähigkeit, grundsätzliche Theorien zu den analytischen Methoden beurteilen zu können
- c) Kompetenz des Erkennens und der Beseitigung von Matrixeffekten bei analytischen Methoden
- d) Fähigkeit, analytisch chemische Problemstellungen zu beurteilen und geeignete Verfahren zur Lösung auszuwählen
- e) Kompetenz der kritischen Beurteilung von Messwerten
- f) Fähigkeit Fehlerabschätzung und statistische Methoden anzuwenden

3. Kommunikation und Kooperation

- a) Berufsunabhängige Grundbegriffe und Kenngrößen der Analytischen Chemie und der instrumentellen Analytik
- b) Einordnung allgemeiner analytischer Veröffentlichungen

4. Wissenschaftliches Selbstverständnis und Professionalität

- a) Zunehmende Bedeutung der Analytik im Rahmen interdisziplinärer Projekte
- b) Die Rolle und Bedeutung der Analytik im Kontext mit Fragestellungen aus der Lebensmittel- oder Medizintechnik

c) Bedeutung der Analytik beim Umwelt- und Klimaschutz

Literatur

- G. Schwedt, Analytische Chemie; Wiley-VCH Verlag GmbH & Co. KGaA; Auflage: 3 (7. Dezember 2016)
- M. Otto, Analytische Chemie, Wiley-VCH, 4. Aufl., 2011
- Gerdes, Eberhard, Qualitative Anorganische Analyse: Ein Begleiter für Theorie und Praxis, Springer, Berlin; Auflage: 2., korr. u. überarb. A. 2013
- Riedel, Erwin, Allgemeine und Anorganische Chemie, de Gruyter Berlin; 11. Auflage 2013
- Gerhard Werner (Herausgeber, Übersetzer), Tobias Werner (Herausgeber, Übersetzer),
 Daniel C. Harris (Autor), Lehrbuch der Quantitativen Analyse, Springer Spektrum, 8.
 Auflage, 2014

Teilmodul		TM-Kurzbezeichnung
Grundlagen der numerischen Strömungsberechnung		GNS
Verantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Lars Krenkel	nur im Wintersemester	
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
3	[SWS oder UE]		[ECTS-Credits]
5	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung
Studienarbeit
Zugelassene Hilfsmittel für Leistungsnachweis
k. A.

Inhalte und Qualifikationsziele

In der Lehrveranstaltung Numerische Strömungsberechnung werden theoretische und praktische Kenntnisse zur numerischen Berechnung von Strömungen kompressibler/inkompressibler Fluide anhand biomedizinischer Problemstellungen vermittelt. Ausgangspunkt dafür ist eine kurze vorstellung der wichtigsten theoretischen Grundlagen der numerischen Strömungsmechanik (Computational Fluid Dynamics - CFD) sowie ein praktischer Einstieg in Funktionsweise und Anwendung moderner CFD-Software.

Folgende Inhalt werden (aufbauend auf den Modulen GWS, BFM sowie NV) thematisiert:

- Grundgleichungen zu kompressiblen und inkompressiblen, reibungsbehafteten Strömungen
- Einführung in die Theorie der Strömungs- und Temperatur-Grenzschichten
- Einführung in die Turbulenzmodellierung
- Grundlagen zur räumlichen und zeitlichen Diskretisierung mittels Finite-Volumen-Verfahren
- Einführung in numerische Lösungsverfahren
- Theoretische und praktische Einführung in die numerische Gittergenerierung
- Praktische Einführung in die numerische Strömungsberechnung mittels Strömungslöser am Beispiel von biologischen/biomedizinischen Strömungen
 - Einfluss von numerischen und geometrischen Randbedingungen
 - Stabilität und Konvergenz
 - Qualitätskriterien, numerische Genauigkeit und numerische Fehler
- Vermittlung erster praktischer Erfahrungen im Umgang mit dem kommerziellen ANSYS ICEM CFD und ANSYS FLUENT Softwarepaket

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- grundlegende biomedizinische/biofluidmechanische Strömungsfragen zu abstrahieren (1) und mittels eines kommerziellen CFD-Softwarepaketes zu untersuchen (2).
- geeignete numerische Randbedingungen und numerische Modelle zur Beschreibung eines strömungsmechanischen Problems auszuwählen (2) und praktisch anzuwenden (2).
- Wichtige Einflussgrößen und Fehlerquellen im Rahmen einer numerischen Strömungsberechnung zu identifizieren (1) und grundlegend zu bewerten (2).
- Ergebnisse numerischer Strömungsberechnungen darzustellen und zu bewerten (2).
- grundlegende Strömungsvorgängen mit Hilfe von CFD wissenschaftlich zu analysieren (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Praktische Aufgabenstellungen in Projektteams strukturiert und synergetisch zu bearbeiten (2) sowie erzielte Ergebnisse in entsprechender Fachterminologie im Plenum zu präsentieren (2).die Grundlagen der numerischen Strömungsberechnung ingenieurgemäßig zu verstehen (2) und verständlich zu beschreiben (1).
- eigenständig Problemlösungen zu grundlegenden biofluidmechanischen Fragestellungen mittels kommerzieller CFD Software ingenieurswissenschaftlich zu erarbeiten (2).
- Vorliegende numerische Berechnungsansätze sowie numerische Ergebnisse im Kontext Genauigkeit, Zuverlässigkeit, möglicher Fehler/Probleme bzw. genereller Aussagekraft/ Qualität zu bewerten (2).

Angebotene Lehrunterlagen

Übungsunterlagen, Lehrbuchempfehlungen

Lehrmedien

Tafel/ Overheadprojektor/ Beamer, PC

Literatur

wird in der Veranstaltung bekannt gegeben. Exemplarisch: H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson Prentice Hall; J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer Verlag.

Weitere Informationen zur Lehrveranstaltung

HINWEIS: das Bachelormodul GNB unterschiedet sich vom Mastermodul NSB durch eine reduzierte Bearbeitungstiefe der theoretischen Grundlagen sowie stärkere Vereinfachung/ Abstraktion der behandelten praktischen Fragestellungen.

Teilmodul		TM-Kurzbezeichnung
Handhabungstechnik und Robotik		HR
(Introduction to Robotics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schlegl Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Thomas Schlegl jedes 2.Semester		
Lehrform		
Seminaristischer Unterricht (3 SWS), Übungen (1 SWS)		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 h	60 h

Studien- und Prüfungsleistung

Klausur, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, 1 beliebig bedrucktes oder beschriebenes DIN-A4-Blatt

Inhalte und Qualifikationsziele

- Grundbegriffe und Bedeutung der Robotik in Maschinenbau, Produktions- und Automatisierungstechnik
- Unterscheidung verschiedener Robotertypen: Manipulationssysteme, Lokomotionssysteme, Teleoperationssysteme, emotional robots
- Räumliche Anordnung von Objekten über homogene Koordinaten; Repräsentation der Orientierung im Raum über Rotationsmatrizen, Quaternionen, Euler-Parameter und reduzierte Winkelsätze
- Programmiersprachliche Formulierung von Aktionsplänen für Roboter
- Innere und äußere Transformationsgleichung eines Manipulators
- Parametrierung von Aktionsplänen durch verschiedene Verfahren mit oder ohne Sensorunterstützung
- Beschreibung eines Manipulators durch ein Kinematik-Modell gemäß Denavit-Hartenberg-Vereinbarungen; Geometrische Herleitung von Kinematik-Modellen für Roboter von geringer bis moderater Komplexität
- Numerische, analytische und gemischte Berechnung inverser Kinematik-Modelle von Manipulatoren
- Bahnplanung in Gelenk- und Arbeitskoordinaten
- Wegeplanung für Manipulatoren in beschränkten Arbeitsräumen mittels 2D-Distanztransformation
- Betriebsarten von Manipulatoren
- Lage- und Bahnregelung von Manipulatoren mittels Inverser-System-Technik
- Indirekte und direkte Kraftregelung von Manipulatoren; hybride Regelung;
 Impedanzregelung
- Abstraktion und Modularisierung von Roboteraufgaben mittels Transformationsgraph und Formulierung natürlicher/künstlicher Beschränkungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- manipulatorische und lokomotorische Eigenschaften von Robotersystemen zu guantifizieren (2)
- Roboteraufgaben für Produktions- und Automatisierungssysteme zu abstrahieren, zu modularisieren und graphisch zu repräsentieren (3)
- mittels Einsatz von Computer-Aided-Engineering-Werkzeugen Einsatzfälle für Robotersysteme zu analysieren und zu synthetisieren (3)
- Aktionspläne für Roboter methodisch zu erstellen und zu parametrieren (2)
- manipulatorische und lokomotorische Fähigkeiten von Robotern durch Integration bildgebender und haptischer Sensoren zu erweitern (1)
- das Bewegungs- und Regelungsverhalten von Robotern an durch Prozess und Nutzer spezifizierte Vorgaben anzupassen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage.

- mit textuell oder/und graphisch spezifizierten Einsatzfällen von Robotern umzugehen (2)
- Datenblattangaben für Roboter zu verstehen (2)
- robotergestützte Lösungen für komplexe produktions- und automatisierungstechnische Aufgaben im Team zu erarbeiten (1)
- Analyse- und Designergebnisse zu robotertechnischen Themen im Fachgespräch zu präsentieren (1)

- die zentrale Bedeutung der Robotik für die Sicherung des Produktionsstandorts Europa zu erkennen (1)
- Robotik als Motor der Arbeitswende im Kontext von Industrie 4.0 zu verstehen (1)
- Technikfolgen beim Einsatz von Aktoren und Sensoren, wie die Freistellung Geringqualifizierter für höherwertige berufliche Aufgaben, abzuschätzen (1)
- ethische Implikationen des Einsatzes von Robotern, wie etwa mehr geringqualifizierte Arbeitslose, zu erkennen (1)
- sozioökonomische Aspekte der Robotik für die gesamtgesellschaftliche Entwicklung in Europa zu durchdringen (1)

Angebotene Lehrunterlagen

Skriptum

Lehrmedien

Rechner/Beamer, Tafel, Overheadprojektor, Videos

Literatur

Teilmodul		TM-Kurzbezeichnung
Musculoskeletal Computation		MSC
(Muskuloskelettale Berechnung)		
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Sebastian Dendorfer	jedes 2.Semester	
Simon Groß		
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 h	60 h

Studien- und Prüfungsleistung	
Studienarbeit	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2)	

Inhalte und Qualifikationsziele

- Grundlagen der Muskuloskelettalen Berechnung
- Forward/ Inverse Dynamics
- Mechanische Grundelemente des menschlichen K\u00f6rpers
- Anwendung von Berechnungstools
- Muskelrekrutierung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Verständnis der Berechnungsabläufe
- · Mechanik der Muskelaktivierung
- · Anwendung von Berechnungssoftware
- Selbstständiges Lösen von Fragestellungen aus der Ergonomie
- Belastungsanalyse von Implantaten und Prothesen

Angebotene Lehrunterlagen

Tutorials, Fachaufsätze

Lehrmedien

Rechner/Beamer, Tafel, Vorführung

Literatur

Teilmodul		TM-Kurzbezeichnung	
Werkstoffeigenschaften und -prüfung		WUP	
Verantwortliche/r	Fakultät		
Prof. Dr. Helga Hornberger	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Helga Hornberger	jedes 2.Semester		
Lehrform			
seminaristischer Unterricht, Übungen			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60	60

Studien- und Prüfungsleistung

Klausur, 90 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

- Werkstoffeigenschaften und -prüfung mit Beispielen aus den Biomaterialien, wie z.B.: Elastizität und Plastizität, Zugversuch, E-Modul, Zugfestigkeit, Härteprüfung, Bruchzähigkeit, Ermüdung, Spannungsrisskorrosion, Gefügeuntersuchungen
- Von der Werkstoffprüfung zur Bauteilprüfung, Einfluss von Geometrie und Oberflächenmodifikation
- ausgehend von metallischen Werkstoffen werden die Eigenschaften und Prüfung von keramischen Werkstoffen und Polymeren verglichen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Zusammenhänge zwischen Mikrostruktur und Werkstoffeigenschaften erkennen und erläutern können
- die wichtigsten Werkstoffprüfungen verstehen und erläutern können
- Einblick in die unterschiedlichen Werkstoffgruppen und ihre Charakterisierung bekommen
- Biomaterialien in diesem Kontext einordnen und im Dialog mit Werkstoffspezialisten Entscheidungen zur Materialanwendung oder Auswahl treffen können

Angebotene Lehrunterlagen

pdf Folien der Vorlesung

Lehrmedien

Rechner/ Beamer, Exponate

Literatur

siehe Veranstaltung

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Betriebswirtschaft und Recht		BWR
(Business Economics and Law)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
5.	2.	Pflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Betriebswirtschaft und Recht	4 SWS	4

Teilmodul		TM-Kurzbezeichnung
Betriebswirtschaft und Recht		BWR
(Business Economics and Law)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 h	60 h

Studien- und Prüfungsleistung
Klausur, 90 Min.
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2), Gesetzestexte

Inhalte und Qualifikationsziele

1. Wissen und Verstehen

Überblick über Grundzusammenhänge und Methoden der Betriebswirtschaftslehre und des Medizinprodukterechtes:

- a) Überblick über die betriebliche Wertschöpfungskette, Gestaltung der Produktion, Überblick über die Produktionsfaktoren Betriebsmittel, Werkstoffe und Arbeit
- b) Die Bedeutung der Betriebswirtschaftslehre für den Ingenieur (Abgrenzung)
- c) Wirtschaft und wirtschaftliches Prinzip
- d) Grundbegriffe der Finanzierung: Finanzierungsarten und -planung
- e) Überblick über wichtige Aspekte des Medizinprodukterechts
- f) Einblick in die Haftungsproblematik

2. Einsatz, Anwendung und Erzeugung von Wissen

- a) Fähigkeit zur Berücksichtigung der betriebswirtschaftlichen Grundzusammenhänge bei technischen Entscheidungen
- b) Fähigkeit zur Anwendung von Methoden der Betriebswirtschaft bei der Lösung von Führungsaufgaben in der Berufspraxis
- c) Kenntnis der einschlägigen rechtlichen Normen im Bereich der Medizintechnik
- d) Verständnis von Struktur und Ziel der rechtlichen Vorgaben, Einblick in die juristische Denkweise
- e) Kenntnis der grundlegenden Haftungsproblematik und -risiken

3. Kommunikation und Kooperation

- a) Umgang mit der relevanten betriebswirtschaftlichen Terminologie
- b) Verständnis der regulatorischen Grundlagen für die Zertifizierung von Medizinprodukten

4. Wissenschaftliches Selbstverständnis und Professionalität

- a) Einschätzung und Bewertung betriebswirtschaftlicher Grundzusammenhänge
- b) Grundverständnis der Zusammenhänge von Produktqualität und Patientensicherheit und Einordnung dieser Anforderungen in den regulatorischen Kontext

Angebotene Lehrunterlagen

Übungsaufgaben, Foliensätze

Lehrmedien

Overheadprojektor, Rechner/Beamer, vhb

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Biofluidmechanik		BFM
(Biofluidics)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
5.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
GWS

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Biofluidmechanik	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Biofluidmechanik		BFM
Verantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Lars Krenkel	jedes 2.Semester	
Lehrform		
[BE SPO2013] Seminaristischer Unterricht und Übung [BE SPO2017] Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4. [BE SPO2017], 5.	4 SWS	deutsch	5
[BE SPO2013]			

Präsenzstudium	Eigenstudium
60	90

Studien- und Prüfungsleistung

[BE SPO 2013] Klausur 90 Min.

[BE SPO 2017] schriftliche Prüfung, 120 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), kein eigenes Schreibpapier, keine sonstigen Hilfsmittel

Inhalte und Qualifikationsziele

In der Lehrveranstaltung Biofluidmechanik werden, aufbauend auf dem Modul "Grundlagen der Wärmetechnik und Strömungsmechanik (GWS)", weiterführende Themen der Strömungsmechanik mit besonderem thematischen Schwerpunkt auf biomedizinische Strömungen vermittelt. Der Schwerpunkt liegt dabei auf der Vermittlung von physikalischem Verständnis für Strömungsvorgänge in biologisch/medizinischen Systemen sowie deren quantitative Erfassung.

Folgende Themeninhalt werden vermittelt:

- Einführung in die Besonderheiten der biomedizinischen Strömungen.
- Herleitung der Grundgleichungen der Strömungsmechanik für: reibungsfreie/ reibungsbehaftete, kompressible/inkompressible, laminare/turbulente sowie kontinuierliche/pulsierende Strömungen.
- Grundlagen zu nicht Newton'schen Fluiden.
- spezielle Rheologie des Blutes.
- Einführung in die Grundlagen der Grenzschichttheorie.
- Einführung in die Ähnlichkeitstheorie/Dimensionsanalyse.
- Analyse von ausgewählten physiologischen bzw. patho-physiologischen biomedizinischen Strömungen bzw. relevanten biofluidmechanischen Problemstellungen: bsp. Herz-/ Kreislauf-Strömungen, Atemwegsströmung, Strömungen in künstlichen Organen.
- Übersicht zu experimenteller Strömungsmesstechnik in der Biofluidmechanik.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Biofluidmechanische Probleme zu erfassen (1) und zu analysieren (3).
- fluidmechanische Prinzipien anzuwenden, um strömungsrelevante biomedizinische Vorgänge mit angemessenen Methoden quantitativ mathematisch zu beschreiben (3).
- Strömungsmechanische Problemstellungen unter Ausnutzung dimensionsanalytischer Zusammenhänge zu skalieren (2).
- Ähnlichkeiten und Unterschiede zwischen biologischen und technischen Fluidsystemen diskutieren (2).
- Einfluss von Strömungen auf biomedizinische Systeme bewerten (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Sachverhalte und Ergebnisse der Biofluidmechanik in ingenieurgemäßer Art zu verstehen (2), verständlich zu beschreiben (1) sowie zu quantitativ zu formulieren (2).
- eigenständig Problemlösungen zu grundlegenden biofluidmechanischen Problemen ingenieurswissenschaftlich zu erarbeiten (3).

Angebotene Lehrunterlagen

Übungsunterlagen, Lehrbuchempfehlungen

Lehrmedien

Rechner/Beamer, Tafel, Overheadprojektor

Literatur

wird in der Veranstaltung bekannt gegeben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Biomechanik II		BM2
(Biomechanics II)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Biomechanics II	5 SWS	5

Teilmodul		TM-Kurzbezeichnung
Biomechanics II		BM 2
(Biomechanik II)		
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Sebastian Dendorfer	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Übunge	n	

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	5 SWS	deutsch	5

Präsenzstudium	Eigenstudium
75 h	75 h

Studien- und Prüfungsleistung	
Schriftl. Prüfung, 90 Min.	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2)	

Inhalte und Qualifikationsziele

- Grundlagen des Bewegungsapparates
- Bestimmung von Belastungen im Bewegungsapparat
- Mechanische Eigenschaften von biologischen Geweben
 - Knochen
 - Muskel
 - Sehnen/Bänder
- Grundlagen der Mechanobiologie
- Einfluss des Alters auf die Biomechanik des menschlichen Körpers
- Einfluss von mentaler Belastung auf den Bewegungsapparat
- Implantate und Prothesen für unfallchirurgische und orthopädische Anwendungen
 - Frakturversorgung
 - Gelenkersatz
- Trauma Biomechanik
 - Einstufung von Verletzungen
 - Auswirkungen von Kopfverletzungen
- Einführung in die muskuloskelettale Simulation
 - Inverse-dynamische Modellbildung
 - Validierung
- Experimentelle Messung von biomechanischen Größen
 - Motion Capture
 - Elektromyographie
 - Stressmessung
 - Kraftmessung
- Kritische Beurteilung und Präsentation von wissenschaftlicher Fachliteratur (Präsentation auch auf Englisch)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Methoden und Ergebnisse von Fachliteratur kritisch zu diskutieren (3)
- Mechanobiologische Auswirkungen zu beurteilen (3)
- Biomechanische Aspekte des Bewegungsapparates zu beschreiben (1)
- Grundlagen der unfallchirugischen und orthopädischen Versorgung zu beschreiben (1) und zu beurteilen (3)
- Materialgesetze und den Aufbau von biologischen Geweben zu beschreiben (1)
- Belastungen im menschlichen K\u00f6rper abzusch\u00e4tzen und zu berechnen (2)
- Verletzungskriterien zu beschreiben (1)
- Muskuloskelettale Modelle zu beschreiben (1) und grundlegende Validierungsmethoden zu beschreiben (1)
- Die grundlegenden biomechanischen Veränderungen im menschlichen Körper aufgrund des Alters und von Degenerationsprozessen zu beschreiben (1)
- Experimentelle Messmethoden in der Biomechanik zu beschreiben (1) und Ihre Anwendungsgebiete zu beurteilen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Kritisch wissenschaftliche Ergebnisse zu beurteilen (3)
- Die Bedeutung von wissenschaftlichen Erkenntnissen auf die Entwicklung von neuen Prozessen und Methoden zu erkennen (1)
- Wissenschaftliche Publikationen auf Englisch zu verstehen und zu präsentieren (2)

Angebotene Lehrunterlagen

Skript, Folien

Lehrmedien

Tafel, Overheadprojektor, Rechner/Beamer, Exponate, Versuche, Exkursionen

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Biomedizinische Software		BMS
(Biomedical Software)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Sebastian Dendorfer Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Biomedizinische Software	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Biomedizinische Software		BMS
(Biomedical Software)		
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Moritz Bengler (LB) Prof. Dr. Sebastian Dendorfer	jedes 2.Semester	
Martin Pankofer (LB)		
Lehrform		
Seminaristischer Unterricht, Übung, Praktikum		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
g	[SWS oder UE]		[ECTS-Credits]
3.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung

Studienarbeit

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

- Verwendung von Ingenieur- Software für das Design von med. Geräten
- Grundlagen der Bildverarbeitung
- Weiterführende Programmierung zur Bewertung von med.-physikalischen Versuchen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fähigkeit zur Erstellung eigener Auswertungssoftware
- Fähigkeit zur Erstellung von Programmen zur Datenverarbeitung
- · Kenntnisse der Bildverarbeitung
- Fähigkeit zur Verwendung von CAD- Systemen

Angebotene Lehrunterlagen

Folienkopien / Skript

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Diagnostische und Therapeutische Systeme		DTS
(Diagnostic and Therapeutic Systems)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Lars Krenkel	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4.	2.	Pflicht	5

Verpflichtende Voraussetzungen		
keine		
Empfohlene Vorkenntnisse		
keine		

Inhalte
siehe Teilmodul

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Diagnostische und Therapeutische	4 SWS	5
	Systeme		

Teilmodul		TM-Kurzbezeichnung
Diagnostische und Therapeutische Systeme		DTS
(Diagnostic and Therapeutic Systems)		
Verantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Lars Krenkel jedes 2.Semester		
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung	
Schriftl. Prüfung, 90 Min.	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2)	

Inhalte und Qualifikationsziele

- Grundlagen zur medizinischen Diagnostik/Therapie (Grundkonzepte, Leitlinien, Terminologie, etc.)
- Physikalische Grundlagen zur bildgebenden Diagnostik (Röntgen, CT, Ultraschall, MRT)
- Technische/medizinische Grundlagen zu Systemen zur h\u00e4modynamischen \u00dcberwachung kritisch kranker Patienten
- Technische/medizinische Grundlagen der künstlichen Beatmung (Atemwegszugang/sicherung, Beatmungsverfahren, Grundlagen zu Beatmungssystemen, Indikationen)
- Technische/medizinische Grundlagen zur Therapie von Organversagen mittels k\u00fcnstlichen Organen (bsp. Dialyse,ECMO, k\u00fcnstliches Herz)
- Exemplarische Bewertung von diagnostischen und therapeutischen Systemen mittels ingenieurswissenschaftlichen Ansätze anhand ausgewählter Erkrankungen/Pathologien
- Technische und diagnostische Grundlagen zu Labordiagnostik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- grundlegende Abläufe und Prinzipien im Rahmen der medizinischen Diagnostik/Therapie von Patienten zu verstehen (2)
- wichtigste technisch-apparative diagnostische und therapeutische Systeme zu benennen (1), deren Funktionsprinzip zu verstehen (3) und im Kontext verschiedener Pathologien eine Anwendung zu beurteilen (3).

• wichtige therapeutisch/diagnostische Problemstellungen zu untersuchen und mit physiologisch/physikalisch/ingenieurstechnischen Grundlagen zu korrelieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Lösungsansätze für therapeutisch/diagnostische Systementwicklung aufzustellen (2)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (3)
- Die Schwierigkeit innovativer,interdisziplinärer Systementwicklung im medizinischen Umfeld zu verstehen und sinnvolle Lösungsansätze zu erarbeiten (2)

Angebotene Lehrunterlagen

Zusammenfassung der Vorlesungsfolien, Lehrbuchempfehlungen

Lehrmedien

Tafel, Rechner/Beamer

Literatur

Literatur wird in der Veranstaltung bekannt gegeben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Grundlagen der FEM		GFE
(Fundamentals of FEM)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Marcus Wagner Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
5.	2.	Pflicht	5

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
keine	

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Grundlagen der FEM	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Grundlagen der FEM		GFE
(Fundamentals of FEM)		
Verantwortliche/r	Fakultät	
Prof. Dr. Marcus Wagner	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Valter Böhm	jedes 2.Semester	
Prof. Dr. Sebastian Dendorfer		
Prof. Dr. Aida Nonn		
Prof. Dr. Marcus Wagner		
Lehrform		
[BE SPO 2013] Seminaristischer Unterricht, Übung, Praktikum		
[BE SPO 2017] Seminaristischer Unterricht		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
5.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung

Schriftl. Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, Lehrbuch "Wagner, M.: Lineare und nichtlineare FEM, Springer-Vieweg", Ausdruck der Übungsunterlage. Kurze textbezogene Eintragungen, Textmarkierungen und Lesezeichen zur Seitenmarkierung sind erlaubt.

Inhalte und Qualifikationsziele

- Einführung in die Grundlagen der Finite-Elemente-Methode für die Elastostatik und Dynamik
- Verschiebungsansatz, Formfunktion, Steifigkeits-und Massenmatrix
- Merkmale und Eigenschaften einfacher Finiter Elemente
- Vorgehensweise bei der Erstellung von Simulationsmodellen:
- Modellerstellung, Idealisierung, Diskretisierung, Auswahl geeigneter Elemente,
- Vernetzung, Randbedingungen, Belastungen
- Berechnung: Analysearten und -optionen
- Darstellung und Auswertung der Simulationsergebnisse. Fehlerbetrachtungen
- Einblick in weitere Anwendungen der FEM: Kontaktprobleme, Nichtlinearitäten, Temperaturfeldanalysen und gekoppelte Feldprobleme

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundlagen der Finite-Elemente-Methode anzugeben (1)
- einfache FE-Simulationsmodelle zu erstellen (1)
- eine kommerzielle FE-Software zur Lösung einfacher Simulationsaufgaben einzusetzen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mit englischsprachiger Software und Nutzerhandbüchern umzugehen (2)
- die Grenzen der Prognosefähigkeit der FEM und sich daraus ergebender Risiken grundsätzlich zu beurteilen (3)

Angebotene Lehrunterlagen

Buch [1], Software, Tutorials, Übungen

Lehrmedien

Overheadprojektor, Rechner/Beamer, Tafel

Literatur

[1] Wagner, M.: Lineare und nichtlineare FEM, Springer-Vieweg

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Grundlagen der Wärmetechnik und Strömungsmechanik		GWS
(Fundamentals of Thermodynamics and Technical Fluid Mechanics)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Lars Krenkel Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	2.	Pflicht	8

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Grundlagen der Wärmetechnik und	7 SWS	8
	Strömungsmechanik		

Teilmodul		TM-Kurzbezeichnung
Grundlagen der Wärmetechnik und Strömungsmechanik		GWS
(Fundamentals of Thermodynamics and	d Technical Fluid Mechanics)	
Verantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel	Prof. Dr. Lars Krenkel Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Lars Krenkel jedes 2.Semester		
Lehrform		
[BE SPO 2013] Seminaristischer Unterricht und Übung [BE SPO 2017] Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	7 SWS	deutsch	8

Präsenzstudium	Eigenstudium
105 h	135 h

Studien- und Prüfungsleistung

Schriftl. Prüfung, 120 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), eine Formelsammlung wird im Rahmen der Prüfung zur Verfügung gestellt, ansonsten KEINE.

Inhalte und Qualifikationsziele

Teil Wärmetechnik:

- Größen und Einheitensysteme
- Grundbegriffe der Thermodynamik (Systeme, Systemgrenzen, ideales Gas, etc.)
- Thermische, kalorische Zustandsgrößen
- Thermische, kalorische, kanonische Zustandsgleichungen
- Prozessgrößen
- 0., 1. und 2. Hauptsatz der Thermodynamik
- Grundlagen zu Zustandsänderungen (geschlossenes, offenes System) idealer Gase
- Grundlagen zu Kreisprozesse und Wärmeübertragung
- Grundlagen zu Anergie und Exergie

Teil Strömungsmechanik:

- Stoffeigenschaften von Fluiden
- Grundlagen zur Kinematik von Fluiden
- Grundlagen zur Hydrostatik
- Hydrostatische/Aerostatische Grundgleichungen in ruhenden, translatorisch beschleunigten und rotatorischen Systemen
 - Grundlagen der Hydrodynamik reibungsfreier Strömungen
 - Kontinuität/Massenerhaltung
 - Bernoulligleichung (klassische Formulierung, Zusatzterme, rotatorische systeme)
 - Impulsmomentensatz
 - Drehmomentensatz

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Teil Wärmetechnik:

- Wichtige grundlegende Einheiten, Begriffe und Konzepte der Thermodynamik zu verstehen und anzuwenden (3)
- grundlegende technisch relevante thermodynamische Probleme ingenieursmäßig zu abstrahieren und zu analysieren (3)
- problemspezifische Zustandsänderungen zu erkennen und physikalisch zu interpretieren (3)
- mathematische Beschreibung von Zustandsänderungen aufzustellen und Lösungsansätze gezielt auszuwählen (2)
- erzielten Lösungen zu diskutieren und auf ihre Plausibilität prüfen zu können (3)

Teil Strömungsmechnik:

- Wichtige grundlegende Einheiten, Begriffe und Konzepte der Strömungsmechanik im Rahmen der behandelten Themen zu verstehen und anzuwenden (3)
- grundlegende technisch relevante strömungsmechanische Probleme im Rahmen der behandelten Themen ingenieursmäßig zu abstrahieren und zu analysieren (3)
- mathematische Beschreibung von fluidmechanischen Systemen aufzustellen und Lösungsansätze gezielt auszuwählen (2)

• erzielten Lösungen zu diskutieren und auf ihre Plausibilität prüfen zu können (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die grundlegenden Gleichungen der Thermodynamik zur Bewertung von Energiewandlungsprozessen heranzuziehen und zielgerichtet anzuwenden (2)
- die grundlegenden Gleichungen der Strömungsmechanik zur Bewertung von fluidmechanischen Problemstellungen heranzuziehen und zielgerichtet anzuwenden (2)
- fluidmechanische, thermodynamische sowie einfache gekoppelte Systeme und technische Anlagen zu abstrahieren, zu untersuchen und Analysen auszuarbeiten sowie die erzielten Ergebnisse in geeigneter Terminologie zu kommunizieren (2)
- Lösungsansätze für Fragestellungen der Strömungsmechanik und Thermodynamik zu finden (2)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (3)

Angebotene Lehrunterlagen

Formelsammlung, Übungen, Lehrbuchempfehlungen

Lehrmedien

Tafel, Overheadprojektor, Rechner/Beamer

Literatur

Literatur wird in der Veranstaltung bekannt gegeben.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Konstruktion		KON
(Engineering Design)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
[BE SPO2017] 3. u. 4.; [BE SPO2013] 4. u. 5.	2.	Pflicht	8

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Konstruktion / CAD	4 SWS	5
2.	Konstruktives Entwurfsprojekt / Methodik	2 SWS	3

Teilmodul		TM-Kurzbezeichnung
Konstruktion / CAD		КО1
(Engineering Design/CAD)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Moritz Burger (LB)	jedes 2.Semester	
Prof. Dr. Thomas Schratzenstaller		-
Lehrform		
[BE SPO 2013] Seminar, Übung, Praktikum [BE SPO 2017] Seminar		

Studiensemester gemäß Studienplan		Lehrsprache	Arbeitsaufwand
	SWS oder UE		[ECTS-Credits]
[BE SPO2017] 3., [BE	4 SWS	deutsch	5
SPO2013] 4.			

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung

[BE SP02013] Studienarbeit

[BE SP02017] Studienarbeit mit Prüfung

Notengewicht 2/3

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte und Qualifikationsziele

- Konstruktionsprojekt "Baugruppe": Rechnerunterstütztes Konstruieren (CAD) einer Baugruppe mit kinematischen Elementen
- · Entwicklung eines Lösungskonzepts
- Darstellen einer Lösungsidee in Form einer Handskizze
- Konstruktive Gestaltung von Maschinenteilen, Vorauslegung und Festigkeitsnachweis
- CAD-Entwurf und BauteilberechnungProduktdokumentation: Erstellen von Festigkeitsnachweis, Stücklisten, Baugruppen-, Roh- und Einzelteilzeichnungen, Konstruktionsbegründungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundlagen der technischen Mechanik anzuwenden (2)
- die Grundlagen des technischen Zeichnens anzuwenden (2)
- Lösungsprinzipien zu entwickeln und in Form von Handskizzen darzustellen (3)
- mit CAD-Software umzugehen (2)

- Vorauslegungen durchzuführen (3)
- die Eignung und die Sicherheit gängiger Maschinenelemente rechnerisch zu überprüfen (3)
- Bauteile fertigungs-, montage-, festigkeits-, werkstoffgerecht u. dgl. zu gestalten (2)
- Zusammenbauzeichnungen und Fertigungszeichnungen mittels CAD zu erstellen (3)
- Berechnungsdokumentationen zu erstellen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- eigenständige Konzepte zu entwickeln, rechnerisch zu überprüfen und mittels CAD auszuarbeiten (3)
- gängige Maschinenelemente eigenverantwortlich auszulegen (3)
- die Entwicklung zu dokumentieren (3)
- die Bedeutung von Nachweisrechnungen hinsichtlich des Spannungsfeldes Sicherheit/ Produkthaftung und Wirtschaftlichkeit zu verstehen (2)
- ethische Aspekte und gesellschaftlichen Sanktionen bei Schäden an Leib, Leben, Gesundheit und Eigentum von Menschen durch Produkte grundsätzlich zu verstehen (2)

Angebotene Lehrunterlagen

- Aufgabenstellung, Hinweise zur Anfertigung der Hausarbeit, Fachliteratur, Kataloge zu Halbzeugen und Normteilen
- Normen, Software, CAD-Schulungsunterlagen, Übungen

Lehrmedien

Overheadprojektor, Tafel, CAD-Arbeitsplatz für jeden Teilnehmer, Berechnungsprogramme, Exponate, Rechner/Beamer, Internet

Literatur

Teilmodul	TM-Kurzbezeichnung			
Konstruktives Entwurfsprojekt / Methodik		K02		
(Engineering Design Project / Methods)				
Verantwortliche/r Fakultät				
Prof. Dr. Thomas Schratzenstaller Maschinenbau				
Lehrende/r / Dozierende/r Angebotsfrequenz				
Prof. Dr. Thomas Schratzenstaller jedes 2.Semester				
Lehrform				
[BE SPO2013] Seminar, Übung, Praktikum [BE SPO2017] Seminar				

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
[BE SPO2017] 4., [BE SPO2013] 5.	2 SWS	deutsch	3

Präsenzstudium	Eigenstudium
30 h	60 h

Studien- und Prüfungsleistung

[BE SP02013] Studienarbeit

[BE SP02017] Studienarbeit mit Prüfung

Notengewicht 1/3

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

- Methodisches Konstruieren (MeKo) und Lösungsfindung: Produktentwicklungsprozess /
 -Phasen, Klären d. Aufgabenstellung, Sammeln von Forderungen u. Wünschen beim Erstellen der Anforderungsliste
- Gesamt- und Teilfunktionen, Physikalisch-Technische Effekte, Wirkfläche, Wirkbewegung, Variationsgesichtspunkte
- Bewertung und Auswahl von Lösungen (Techn.-wirtschaftliches Konstruieren, Nutzwertanalyse)
- Konstruktionsprojekt (KoP) "Medizinprodukt" Stand der Technik, Anforderungsliste, Funktionsstruktur, mechanisches Ersatzsystem, Wirkprinzipien, Bewertung und Auswahl von Lösungen, Konzipierung, Auskonstruktion
- 3D-CAD-Entwurf zur favorisierten Prinziplösung
- Produktdokumentation: Zusammenbauzeichnung, Stückliste, Baugruppen-, Rohteil-, Einzelteilzeichungen, "Detaillierfähiger Entwurf"
- Konstruktionsbegründung und MontageanleitungDokumentation der Ergebnisse in Form einer Ausarbeitung und Präsentation der Ergebnisse

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Anforderungslisten zu klären (2) bzw. Produkte für zu planen (2).
- Systeme zu abstrahieren (2), Funktionen aufzuteilen (2) und intuitiv sowie diskursiv Physikalisch-Technische Effekte für Teilfunktionen zu finden (2).
- Prinzipielle Lösungen z.B. mit Hilfe des Morphologischen Kastens zusammenzustellen (2) und systematisch auszuwählen (3) oder zu bewerten (3).
- Recherchen zu bestehenden Lösungen für Medizinprodukte durchzuführen (2)
- 3D-CAD-Entwürfe zu erstellen (2) und normkonforme Zeichnungen abzuleiten (2)
- Vorteile der Konstruktion zu begründen (2) und die Montage anzuleiten (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- den Menschen als späteren Kunden als wichtigsten Maßstab für die zu entwickelnden Medizinprodukte zu erkennen (2).
- in der Gruppe methodisch Entwicklungsprojekte zu bearbeiten (2)
- ihre Entwicklungsergebnisse vor der Gruppe zu präsentieren (2)

Angebotene Lehrunterlagen

- Fachbücher, VDI-Richtlinien 2222, 2221, 2225
- Aufgabenstellung, Hinweise zur Anfertigung der Hausarbeit, Fachliteratur, Kataloge, Normen, Software

Lehrmedien

Overheadprojektor, Tafel, Rechner-Arbeitsplatz für jeden Teilnehmer, Exponate, Rechner/Beamer, Internet

Literatur

Modulbezeichnung (ggf. englische Bezeichnung (ggf. englisc	Modul-KzBez. oder Nr.	
Maschinenelemente der Medizintechnik		MEB
(Machine Elements of Medical Enginee		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Maschinenelemente der	4 SWS	5
	Medizintechnik		

Teilmodul		TM-Kurzbezeichnung
Maschinenelemente der Medizintechnik		MEB
(Machine Elements of Biomechanics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Thomas Schratzenstaller	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung

Schriftl. Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), Roloff- Matek Maschinenelemente Lehrbuch und Tabellenbuch

Inhalte und Qualifikationsziele

- Festigkeitsnachweis dynamisch beanspruchter Bauteile
- Schraubenverbindungen
- Bolzenverbindungen und Wälzlager jeweils Grundlagen und Berechnung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fähigkeit zur Dimensionierung und Berechnung einfacher Maschinenelemente
- Kenntnisse zur Anwendung und Auswahl von Maschinenelementen speziell im Hinblick auf medizintechnische Fragestellungen

Angebotene Lehrunterlagen

k. A.

Lehrmedien

Rechner/Beamer, Tafel, Exponate

Literatur

Roloff/Matek: Maschinenelemente Lehrbuch und Tabellenbuch

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Med. Materialien & Methoden / Hygiene		MMH
(Med. Materials & Methods / Hygiene)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Sebastian Dendorfer Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4.	2.	Pflicht	7

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Med. Materialien & Methoden /	6 SWS	7
	Hygiene		

Teilmodul		TM-Kurzbezeichnung
Med. Materialien & Methoden / Hygiene		ММН
(Med. Materials & Methods / Hygiene		
Verantwortliche/r	Fakultät	
Prof. Dr. Sebastian Dendorfer	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Florian Erzinger Prof. Dr. Helga Hornberger Prof. Dr. Lars Krenkel Prof. Dr. Ulf Noster Lisa Obermaier Prof. Dr. Thomas Schratzenstaller Lisa Wiesent (LB)	jedes 2.Semester	
Praktikum Praktikum		
FIANUNUIII		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	6 SWS	deutsch	7

Präsenzstudium	Eigenstudium
90 h	120 h

Studien- und Prüfungsleistung

LN m.E.

Präsenz, 3 Ausarbeitungen mit Testat

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), Formelsammlung, Skript

Inhalte und Qualifikationsziele

Grundlegende Erkenntnisse der ersten Studiensemester aus den Materialwissenschaften, der Technischen Mechanik, der Biomechanik, der Implantattechnik, Anatomie/Physiologie sowie der Strömungsmechanik werden in diesem Modul mit Hilfe von Versuchen in Kleingruppen vertieft diskutiert.

- Einführung in den Umgang mit biologischen Materialien
- Versuchsplanung, Versuchsvorbereitung und Durchführung
- Grundlagen der Statistik
- Präparation von biologischen Materialien
- Bestimmung von ausgewählten mechanischen Eigenschaften von biologischen und technischen Materialien
- Analyse des Aufbaus von Materialien
- Auswertung und Aufbereitung von Versuchsergebnissen
- Präsentation von Versuchsmethoden und -ergebnissen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Mikro- und makrostrukturell den Aufbau von Biogeweben zu beschreiben (1)
- Biologische Gewebe zu präparieren (2)
- Versuche zur Bestimmung von mechanischen Kennwerten zu analysieren und auszuwerten (3)
- Kritisch Versuchsergebnisse zu diskutieren (3)
- Physiologische Grundlagen zu beschreiben (1)
- Den Aufbau von Materialien zu analysieren und mit mechanischen Kennwerten zu korrelieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- In Teams erfolgreich Versuche durchzuführen (3)
- Ergebnisse und Methoden zu beschreiben und zu präsentieren (2)

Angebotene Lehrunterlagen

Vorlesungsunterlagen Materialwissenschaften

Lehrmedien

Versuche, Vorführungen, Exponate

Literatur

ed. Mow, Huiskes; Basic Orthopaedic Biomechanics and Mechano-Biology; Lippincott & Wilkins, 3rd Edition

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Mess- und Regelungstechnik		MRT
(Measurement and Control Engineering)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Hermann Ketterl	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4.	2.	Pflicht	6

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
MA1, MA2, GEE, GPR	

	Inhalte
Ì	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Mess- und Regelungstechnik	5 SWS	6

Teilmodul		TM-Kurzbezeichnung	
Mess- und Regelungstechnik		MRT	
(Measurement and Control Engineering	g)		
Verantwortliche/r	Fakultät		
Prof. Dr. Hermann Ketterl	Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz			
Prof. Dr. Hermann Ketterl	jedes 2.Semester		
Prof. Dr. Stephan Lämmlein			
Lehrform			
[BE SPO2013] Seminaristischer Unterricht, Übung [BE SPO2017] Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	5 SWS	deutsch	6

Präsenzstudium	Eigenstudium
75 h	105 h

Studien- und Prüfungsleistung

Schriftl. Prüfung, 120 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier

Inhalte und Qualifikationsziele

- Aktive und passive Messaufnehmer
- Zweck des Messens, Einheitensysteme, Basissysteme, Basiseinheiten
- Statischer Messfehler, systematischer und zufälliger Messfehler
- Messunsicherheit, dynamische Messfehler, digitale Messdatenerfassung
- Praxisnahe Beispiele von Messaufnehmern
- Regelungstechnische Grundbegriffe
- Beschreibung linearer Systeme im Zeit- und Frequenzbereich
- Eigenschaften wichtiger Übertragungsglieder im Zeit- und Freguenz-Bereich
- Analyse des Verhaltens linearer Regelkreise
- Stabilität von Systemen
- Einstellverfahren für lineare Regelkreise

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Bedeutung von messtechnischen Fachbegriffen zu kennen. (1)
- Gesetzmäßigkeiten zur Erkennung sowie Korrektur systematischer Fehler zu verstehen und anzuwenden. (2)

- Rechenverfahren zur Berechnung der Messunsicherheit auszuführen. (2)
- die Methode des Minimums der Fehlerquadrate handzuhaben. (2)
- digitale Messdatenerfassung nach Zeit- und Wertachse richtig entwickeln zu können. (3)
- digitale Messdaten im Zeit- und Frequenzbereich zu untersuchen. (2)
- die Funktionsweise der wichtigsten aktiven und passiven Sensoren anzugeben. (1)
- ein Verständnis von rückgekoppelten Systemen zu entwickeln. (3)
- regelungstechnische Problemstellungen zu begreifen und selbstständig zu lösen. (3)
- Regelkreise mithilfe von Standard-Gliedern auszulegen. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Datenblätter elektronischer Messsysteme in englischer Sprache zu benutzen. (1)
- messtechnische Aufgabenstellungen im Spannungsfeld verschiedener Disziplinen und Gewerke zu entwerfen und dabei ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen.(2)
- Chancen und Gefahren messtechnischer Anwendungen im Wandel der Zeit in Hinblick auf Sicherheitsrelevanz von Anlagen, bzw. ethischen Aspekten (z.B. Schutz personenbezogener Daten) einzuschätzen. (3)

Angebotene Lehrunterlagen

Skript, Übungen

Lehrmedien

Rechner/Beamer, Tafel

Literatur

Literaturliste siehe Skript

Modulbezeichnung (ggf. englische Bezeichnung)

Projektarbeit (Student Project)

Modulverantwortliche/r

Prof. Dr. Sebastian Dendorfer

Modul-KzBez. oder Nr.
PA

Modulname: Projektarbeit

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
5.	2.	Pflicht	6

Fakultät

Maschinenbau

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Projektarbeit	4 SWS	6

Teilmodul		TM-Kurzbezeichnung	
Projektarbeit		PA	
Verantwortliche/r	Fakultät		
Prof. Dr. Sebastian Dendorfer	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Valter Böhm	in jedem Semester		
Moritz Burger (LB)			
Prof. Dr. Sebastian Dendorfer			
Prof. Dr. Thomas Schratzenstaller			
Ulrich Schultheiss (LB)			
Lehrform			
Seminaristischer Unterricht, Übungen, Seminar			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
9	[SWS oder UE]		[ECTS-Credits]
5.	4 SWS	deutsch	6

Präsenzstudium	Eigenstudium
60 h	120 h

Studien- und Prüfungsleistung

Sonstiger LN

Projektarbeit u. mündl. Leistungsnachweis

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte und Qualifikationsziele

- · Projektorganisation, Projektstrukturierung, Projekt-Controlling
- Fallbeispielorientierte Problem- und Zielanalyse
- Datenerhebung und -darstellung, Schwachstellenanalyse
- Zielorientierte Problembearbeitung und -lösung im Team unter Berücksichtigung von methodischen, systemtechnischen und wertanalytischen Vorgehensweisen
- Systematische Dokumentation der Ergebnisse und Präsentation des Projekts

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- das im Studium erworbene interdisziplinäre Fach- und Methodenwissen unter Anleitung flexibel anzuwenden (3)
- digitale Medien zur Informationsbeschaffung zu nutzen (3)
- bei der Ideenfindung im Team zu kooperieren (2)
- eine konkrete Problemstellung systematisch zu analysieren, Lösungsvarianten zu entwickeln, zu bewerten und umzusetzen (3)

- gruppenintern und mit externen Wertschöpfungspartnern effektiv zu kommunizieren (2)
- im Team wissenschaftlich zu arbeiten (2)
- Ergebnisse und Erkenntnisse aus dem Projekt zu präsentieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- im Team zu kooperieren, Aufgaben zu verteilen und die Projektdurchführung zu planen (3)
- sich selbständig und eigenverantwortlich in neue Themen einzuarbeiten (3)
- die Bedeutung des Entwicklungsprozesses für die ökonomische Wertschöpfungskette zu erkennen (3)
- die Notwenigkeit der Berücksichtigung aktueller wissenschaftlicher Erkenntnisse für ressourcenschonende und energieeffiziente Entwicklungen zu erkennen (3)
- ethische Aspekte und gesellschaftlichen Sanktionen bei Schäden an Leib, Leben, Gesundheit und Eigentum von Menschen durch Produkte grundsätzlich zu verstehen (2)

Angebotene Lehrunterlagen

Projekt-, fallspezifische Arbeitsunterlagen und Fachbücher

Lehrmedien

Overheadprojektor, Rechner/Beamer, Exponate

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Projektmanagement und Qualitätssicherung		PQS
(Project Management and Quality Assurance)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Claudia Hirschmann Maschinenbau		

Zuordnung zu weiteren Studiengängen
Maschinenbau

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
5. [MB], 4. [BE]	2.	Pflicht	4

Verpflichtende Voraussetzungen

Hinweis für MB: Das Modul PQS zählt zu den praxisbegleitenden Lehrveranstaltungen und kann daher nur belegt werden, wenn die Zugangsvoraussetzung zum praktischen Studiensemester vorliegt.

Empfohlene Vorkenntnisse

MPV [BE]

Inhalte
siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Projektmanagement und Qualitätssicherung	4 SWS	4

Teilmodul		TM-Kurzbezeichnung
Projektmanagement und Qualitätssicherung (Project Management and Quality Assurance)		PQS
Verantwortliche/r	Fakultät	
Prof. Dr. Claudia Hirschmann Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Otto Appel Wolfgang Dötter (LB) Prof. Dr. Claudia Hirschmann Prof. Dr. Manfred Hopfenmüller	in jedem Semester	
Lehrform		
[BE SPO2013, MB SPO2013] Seminaristischer Unterricht und Übung [BE SPO2017, MB SPO2019] Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5. [MB SPO2013, MB	4 SWS	deutsch	4
SPO2019], 4. [BE			
SPO2013], 6. [BE			
SPO2017]			

Präsenzstudium	Eigenstudium
60 h	60 h

Studien- und Prüfungsleistung

[BE SP02013, MB SP02013] Schriftl. Prüfung, 90 Min [MB SP02019, BE SP02017] Klausur 90. Min.

Zugelassene Hilfsmittel für Leistungsnachweis

keine außer Taschenrechner

Inhalte und Qualifikationsziele

- Internationale Bedeutung der Themen Qualität (Q), Q-Management/-Sicherung, Begriff und ggf. Dimensionen von "Qualität", kontinuierliche Verbesserung (PDCA), "Rule of Ten", Q-Auszeichnungen
- Qualitätsmanagement (QM): QM im Produktlebenszyklus und Produktentstehungsprozess, Qualitätspolitik, Qualitätsmanagementsysteme (QMS), Normenreihe ISO 9000ff, ISO 9001, integrierte Managementsysteme nach gängigen Normen, Total Quality Management (TQM), EFQM, ggf. Branchenspezifische Ausprägungen (z.B. Hinweis zur ISO 13485)
- Qualitätsmethoden und Werkzeuge: Ishikawa- Diagramm und 8M, Fehlerbaumanalyse (FTA), Fehler-Möglichkeits-und-Einfluss-Analyse (FMEA), Quality Function Deployment (QFD) mit HoQ, 8D- Bericht, Kano- Modell, Benchmarking, Poka Yoke, 5s-Methode, 5-W-Methode, Flussdiagramm, Prozesssteckbrief, ggf. "die Qualitätswerkzeuge Q7",
- ggf. Entscheidungsbäume, ggf. ausgewählte Gefährdungsanalysen
- Methoden der Qualitätssicherung, Audits, Zertifizierungen
- Qualitätscontrolling, Qualitätskosten
- Qualität und Recht: Maschinenrichtlinie, Produktsicherheit, -haftung, CE-Kennzeichnung, GS-Zeichen
- Produkt-, Produktionsrisikomanagement, Safety Integrity Level (SIL), ggf. Schutzeinrichtungen
- Digitalisierung und ihre Auswirkung auf die Themen Q-Management/-Sicherung, Prozessmanagement, Safety, Security
- Qualitätsregelkarten (QRK)
- ggf.: Einführung in statistische Prozessregelung (SPC) mit Merkmalsarten, Stichproben,
- ggf.: Messsystemanalyse (MSA), Prozessfähigkeitsuntersuchung (PFU), Prüflabore
- Grundlagen des Projektmanagements: Projektdefinition, Projektphasen, magisches Dreieck/'Teufelsquadrat', Einflussfaktoren, sowie z.B. Projektauftrag, Projektsteckbrief, Projektziele, SMART Regel, ggf. SWOT- Analyse, ggf. DIN 69901, ggf. PMBOK Guide, Beispiele großer Projekte, etc.
- Projekt-Organisation: Organisationsformen, Projektleitung, Projekt-Team, Kommunikation, Informations-Management, sowie ggf.: z.B. Kommunikationsmodelle, Umfeld-, Stakeholder-, Rollen-Analyse und Zuständigkeiten
- Verschiedene Methoden des Projektmanagements:
- Projektplanung, Planungsmethoden: Projektstrukturplan, Netzpläne mit Berechnungen, Zeit-, Kostenpläne, Vorgangsliste, Gantt-Diagramm, sowie z.B. Aufwandsschätzungen, Quality Gates, etc.
- Projekt- Zeitmanagement, -Kostenmanagement,
- Projekt-Risikomanagement, sowie ggf. Änderungsmanagement, ggf.: Problemlösemethoden, aktuelle Trends im Projektmanagement, etc.
- Projekt Controlling und Projekt Dokumentation, Meilenstein-Trendanalyse (MTA), sowie ggf. Projektkennzahlen, ggf. Performance Indizes, etc.
- Ggf. Fallbeispiel mit MS Project

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Ausprägungen von Qualität anzugeben (1) und Verbesserungspotentiale im Qualitätsmanagement und QMS zu nennen und zu planen (2)
- Verbesserungsmöglichkeiten der Qualität von Produkten, Prozessen und Projekten zusammenzustellen (2)
- Grundlagen des Qualitätsmanagements, der Qualitätssicherung zu nennen (1)

- ausgewählte Aspekte der ISO 9000, ISO 9001, aus TQM und EFQM und zu integrierten Managementsystemen zusammenzustellen (2) und ein QMS hinsichtlich ISO 9001, TQM und EFQM einzuschätzen und zu analysieren (2)
- Diagramme und Dokumentationen zu den Qualitätsmethoden und Werkzeugen: Ishikawa-Diagramm und 8 M, FTA, FMEA, QFD und HoQ, 8D-Bericht, Kano-Modell, Benchmarking, Poka Yoke, 5s-Methode, Flussdiagramm, Prozesssteckbrief zu erstellen, zu analysieren und zu interpretieren (3)
- ggf.: die Qualitätswerkzeuge Q7 auszuführen (2)
- Checklisten, Arbeits-/Verfahrens-Anweisungen, Durchführung von Audits, Reviews, Vorbereitung auditrelevanter Szenarien handzuhaben (2)
- Vorgehensweisen bzgl. Q-Controlling und Q-Kosten zusammenzustellen (2)
- Bedeutung von Impact-Analysen bzgl. Produktsicherheit und Produkthaftung, sowie im Produkt- und Produktions-Risikomanagement anzugeben (1), die Bedeutung des SIL darzustellen (3), Zusammenhang von Q und Recht, CE, GS zusammenzustellen und zu bewerten (3), ggf. Schutzeinrichtungen bezüglich SIL zu beurteilen (3)
- Digitalisierung und ihre Auswirkung auf ausgewählte Q-Themen zu nennen (1)
- ggf.: Merkmalsarten zusammenzustellen (2)
- QRK zu erstellen und zu interpretieren (3), ggf.: die zugehörigen Berechnungen und Kennwerten anzuwenden und zu beurteilen (3)
- ggf.: PFU mit den gängigen Kennwerten darzustellen (3) und ggf. MSA darzustellen (3)
- Grundlagen des Projektmanagements zu nennen (1)
- Projektdefinition, Projektphasen, magisches Dreieck/'Teufelsquadrat', Einflussfaktoren, sowie z.B. Projektauftrag, Projektsteckbrief, Projektziele anzugeben und zu benutzen (2), SMART Regel darzustellen (3),
- ggf. SWOT- Analyse, ggf.: ausgewählte Aspekte zu DIN 69901, PMBOK Guide, Beispiele großer Projekte zusammenzustellen (2)
- Projekt- Organisationsformen und zugehörige Aspekte, Kommunikation, Informations-Management, sowie ggf.: z.B. Kommunikationsmodelle, Umfeld-, Stakeholder-, Rollen-Analyse und Zuständigkeiten darzustellen (3)
- geeignete und vorhandene Projekt-Organisationen zu beurteilen (3); sowie z.B. Aufgaben der Projektleitung und des Projekt-Teams zu planen und zu entwickeln und zusammenzustellen (3)
- Diagramme, Dokumentationen, Berechnungen zu verschiedenen Planungsmethoden, wie Projektstrukturplan, Netzpläne mit Berechnungen, Zeit-, Kostenpläne, Vorgangsliste, Gantt-Diagramm, Aufwandsschätzungen, Quality Gates zu erstellen, zu analysieren, zu interpretieren und zu bewerten (3)
- SMART-Regel zu benutzen (2), ggf.: SWOT-Analyse auszuarbeiten und zu beurteilen (3)
- Projekt- Zeit-, Projekt-Kosten-und Projekt-Risiko- Management auszuarbeiten und darzustellen (3)
- Projekt Controlling und Projekt Dokumentation zu planen, aufzubauen und darzustellen (3), MTA auszuarbeiten und zu interpretieren (3), sowie ggf.: Performance Indizes und Projektkennzahlen zu berechnen und zu interpretieren (3)
- Projekt-Planungssoftware anzugeben (1)
- die oben genannten Projekt- Methoden an einem Fallbeispiel auszuarbeiten und zu interpretieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

 Produkt- und Produktionssicherheit und entsprechendes Risikomanagement als ethische Verantwortung einzuschätzen, zu empfehlen (3) und in ethischer Verantwortung handzuhaben und auszuführen (2)

- Originalmaterial in englischer Sprache z.B. zu EFQM und TQM handzuhaben (2) und internationale, interdisziplinäre Bedeutung von PQS- Themen anzugeben (1)
- ihre eigene Verantwortung für sichere und Regularien-konforme Produkte und Prozesse von guter Qualität einzuschätzen und zu entwickeln (3)
- fachübergreifende Auswirkungen ihres Handelns und Technikfolgen hinsichtlich Qualität und z.B. Haftung und in Projekten zu nennen und einzuschätzen (3)
- den Grundgedanken des TQM und dessen übergreifende Auswirkungen einzuschätzen (3)
- sachgerecht PQS- Positionen in Planungs- und Entscheidungsprozessen zu entwickeln, aufzuzeigen und darzustellen (3)
- nutzbringende und sachlich begründete Anregungen hinsichtlich PQS für Produkte, Produktentwicklungen, Produktionsprozesse und Projekte zu entwickeln, vorzuschlagen und bewerten (3)
- Teamarbeit z.B. insbesondere bei Risikoanalysen (z.B. FMEA), bei einer FTA, bei Problem-Ursache-Analysen (z.B. Ishikawa-Diagramm) oder bei 8D-Berichten auszuführen und zu reflektieren (3)
- Teamarbeit in Projekten auszuführen und zu reflektieren (3)
- ggf. das ,Vier-Augen-Prinzip' anzugeben und zu benutzen (2)
- Methoden des Projektmanagements, z.B. aus der Kommunikation, Planung, etc. auch in andere Bereiche zu übertragen, zu benutzen und zu entwickeln (3)
- die Rolle und Bedeutung der Qualitätssicherung in den verschiedensten Bereichen sowie auch im Projektmanagement zu reflektieren, zu beurteilen und einzuschätzen (3)
- Qualitätssicherung und Projektmanagement in verschiedenen Branchen zu kennzeichnen und deren jeweilige Bedeutung einzuschätzen (3)
- Managementaufgaben im Projektmanagement oder Qualitätsmanagement auszuführen, zusammenzustellen, einzuschätzen und zu reflektieren (3)
- die eigene Verantwortung sowohl für gute Qualität von Produkten und in der Produktion als auch für ein gutes Projektergebnis anzugeben, einzuschätzen und zu entwickeln (3)

Angebotene Lehrunterlagen

Skript

englisch-sprachiges Originalmaterial

Lehrmedien

Rechner/Beamer, Videos, Vorführungen, Overheadprojektor, Tafel

Literatur

- Benes/Groh: Grundlagen des Qualitätsmanagements, Hanser.
- Brüggemann/Bremer: Grundlagen Qualitätsmanagement: Von den Werkzeugen über Methoden zum TQM, Springer.
- DIN EN ISO 9000, Qualitätsmanagementsysteme Grundlagen und Begriffe.
- DIN EN ISO 9001, Qualitätsmanagementsysteme Anforderungen.
- DIN 69901-2, Projektmanagement Projektmanagementsysteme Teil 2: Prozesse, Prozessmodell.
- Fiedler: Controlling von Projekten, Springer.
- Jakoby: Projektmanagement für Ingenieure, Springer Vieweg.
- Kairies: Professionelles Produktmanagement für die Investitionsgüterindustrie, expert.
- Kraus/Westermann: Projektmanagement mit System, Springer.
- Linß: Qualitätsmanagement für Ingenieure, Hanser.
- Litke: Projektmanagement: Handbuch für die Praxis, Hanser.
- Olfert/Steinbuch: Kompakt-Training Projektmanagement, Kiehl
- Schelle/Linssen: Projekte zum Erfolg führen, dtv.
- Schwanfelder: Internationale Anlagengeschäfte, Gabler.
- Sommerhoff/Kamiske: EFQM zur Organisationsentwicklung, Hanser.
- Suzaki: Modernes Management im Produktionsbetrieb. Hanser.
- Theden/Colsman: Qualitätstechniken: Werkzeuge zur Problemlösung und ständigen Verbesserung, Hanser.
- Wolf: Projektarbeit bei kleinen und mittleren Vorhaben. Expert.
- Zollondz: Grundlagen Qualitätsmanagement. De Gruyter

Weitere Informationen zur Lehrveranstaltung

Das Modul wird in Blockform oder wöchentlich oder gemischt (teils in Blockform, teils wöchentlich) angeboten.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Technische Mechanik - Dynamik		DYN
(Engineering Mechanics - Dynamics)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Lars Krenkel	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

	Inhalte
Ì	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Technische Mechanik - Dynamik	4 SWS	5

Teilmodul		TM-Kurzbezeichnung
Technische Mechanik – Dynamik		B-DYN
(Engineering Mechanics - Dynamics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Lars Krenkel Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Lars Krenkel	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	4 SWS	deutsch	5

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung

Schriftl. Prüfung, 120 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), eine Formelsammlung wird im Rahmen der Prüfung zur Verfügung gestellt, ansonsten KEINE.

Inhalte und Qualifikationsziele

- Grundbegriffe der Dynamik
- Massenträgheitsmomente
- Kinematik und Kinetik des Massepunktes
- Kinematik und Kinetik des Starren Körpers
- · Kinematik und Kinetik der Relativbewegung
- Energie- und Arbeitssätze
- Einführung in die Grundlagen der Maschinendynamik und Schwingungstechnik.
- Darstellung von Schwingungen im Zeit- und Frequenzbereich.
- Schwingungen mit einem und mehreren Freiheitsgraden, freie und erzwungene Schwingungen.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fähigkeit zur Berechnung von Massenträgheitsmomenten, Impuls, Drall, Arbeit, Energie und Leistung
- Fähigkeit zur Berechnung der Bewegung eines Massepunktes
- Fähigkeit zur Berechnung der Bewegung eines Starren Körpers Fähigkeit zur Berechnung von Relativbewegungen
- Kenntnis der Grundlagen der Schwingungslehre und Maschinendynamik.

• Grundlegendes Verständnis von mechanischen Schwingungen

Angebotene Lehrunterlagen

Formelsammlung, Übungen, Lehrbuchempfehlungen

Lehrmedien

Overheadprojektor, Rechner/Beamer, Tafel

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Industriepraktikum		IP
(Industrial Placement)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Lars Krenkel Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
6.	3	Pflicht	22

Verpflichtende Voraussetzungen
siehe SPO
Empfohlene Vorkenntnisse
keine

Inhalte
siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Industriepraktikum		22

Teilmodul		TM-Kurzbezeichnung	
Industriepraktikum		IP	
(Industrial Placement)			
Verantwortliche/r	Fakultät	Fakultät	
Prof. Dr. Lars Krenkel	Maschinenbau	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	Angebotsfrequenz	
N.N.	in jedem Semester		
Lehrform			
Praktikum			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
6.		deutsch	22

Präsenzstudium	Eigenstudium
-	-

Studien- und Prüfungsleistung

Leistungsnachweis mit Erfolg

Bericht

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte und Qualifikationsziele

Aus den nachfolgend aufgeführten Gebieten sind höchstens 3 auszuwählen:

- 1. Entwicklung, Projektierung, Konstruktion
- 2. Fertigung, Fertigungsvorbereitung und -steuerung
- 3. Planung, Betrieb und Unterhaltung von Maschinen und Anlagen
- 4. Prüfung, Abnahme und Qualitätssicherung
- 5. Technischer Vertrieb

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Einführung in die Tätigkeit des Ingenieurs anhand konkreter Aufgabenstellung im industriellen Umfeld.
- Fertigkeit zur praktischen Anwendung im Studium erworbener Kenntnisse

Angebotene Lehrunterlagen

k. A.

Lehrmedien

k. A.

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Allgemeinwissenschaftliches Wahlpflichtmodul 3		AW3
(General Scientific Elective Module 3)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
6.	3.	Wahlpflicht	2

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Allgemeinwissenschaftliches	2 SWS	2
	Wahlpflichtmodul 3		

Teilmodul		TM-Kurzbezeichnung
Allgemeinwissenschaftliches Wahlpflic	htmodul 3	AW3
(General Scientific Elective Module 3)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	in jedem Semester	
Lehrform		
[BE SPO 2013] Seminaristischer Unterricht, Übung [BE SPO 2013] Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
6. [BE SPO2013], 7. [BE SPO2017]	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 h	30 h

Studien- und Prüfungsleistung

Klausur u./o. StA u./o. mdlLN

Zugelassene Hilfsmittel für Leistungsnachweis

k. A

Inhalte und Qualifikationsziele

- Erweiterung des Fachstudiums durch einen Bereich, der zwar nicht zwingend zur Fachausbildung gehört, jedoch einen Bezug zur beruflichen Ausbildung hat.
- Ein Modul aus dem AW-Modulangebot, dabei sind folgende Fächer ausgeschlossen: Block II (Sozialkompetenz): Moderation; Block IV (Kommunikation): Präsentation; Block V (Methodenkompetenz): Projektmanagement

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• Kenntnisse (3) von Zusammenhänge, die über das Fachstudium im engeren Sinne hinausgehen

Angebotene Lehrunterlagen

k. A.

Lehrmedien

k. A.

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Auswahl für Wahlpflichtmodule C und	D	WPC, WPD
(Mandatory Elective Module D)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7.	3.	Wahlpflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

	Inhalte
Ì	siehe Teilmodul

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Digitalisierung und Ethik	4 SWS	4
2.	Ingenieurinformatik	4 SWS	4
3.	Keramische Werkstoffe	4 SWS	4
4.	Lasergestützte und Additive Fertigung	4 SWS	4
5.	Oberflächentechnik	4 SWS	4
6.	Physikalisch-chemische und biochemische Laborpraxis	4 SWS	4
7.	Sterilisation und Verpackung	4 SWS	4

Teilmodul		TM-Kurzbezeichnung
Digitalisierung und Ethik (Digitalization and Ethics)		DEM
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Kriza	Angewandte Natur- und Kulturwissenschaften	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Thomas Kriza		
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60	60

Studien- und Prüfungsleistung
Kombination aus Präsentation und kurzer Seminararbeit
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte und Qualifikationsziele

Die Lehrveranstaltung thematisiert die technischen Entwicklungen der Digitalisierung und die mit ihr einhergehenden gesellschaftlichen Veränderungen und ethischen Fragen. Thematisiert werden insbesondere:

- technische Aspekte der Digitalisierung: u.a. künstliche Intelligenz, Big Data-Analysen, soziale Netzwerke, Smart Homes, digitalisierte Medizin- und Biotechnik, ...
- Auswirkungen der Digitalisierung auf die Gesellschaft, das Individuum und die Berufswelt: u.a. menschliche Beziehungen und Kommunikation in sozialen Netzwerken, personalisierte (Wahl-)Werbung in sozialen Netzwerken, Leben und Arbeiten in der Industrie 4.0, der "gläserne" Mensch/Bürger/Patient, ...
- ethische Fragen der Digitalisierung: u.a. "Welchen Stellenwert haben Privatsphäre und Datenschutz in einer digitalen Welt?", "Wie können wir von den technischen Entwicklungen der Digitalisierung als freie und selbstbestimmte Individuen mit einer unantastbaren Menschenwürde solidarisch profitieren?"Die Auswahl der Beispiele und Anwendungsfelder wird einen direkten Bezug zum Studienfach der Teilnehmenden aufweisen. Spezielle technische Vorkenntnisse sind nicht erforderlich.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• zentrale technische Aspekte der Digitalisierung zu kennen (1) und den Kern ihrer Funktionsweise zu verstehen (3).

- die Auswirkungen der Digitalisierung auf die Gesellschaft und auf das individuelle und berufliche Leben des Menschen an konkreten Fällen einzuschätzen und dabei sowohl die Potentiale als auch die Risiken der Technik im Blick zu behalten (2)
- grundlegende kulturelle Wertvorstellungen und Menschenbilder zu kennen (1) und die technischen Potentiale der Digitalisierung vor diesem Hintergrund ethisch beurteilen zu können (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- zentrale ethische und philosophische Fragen der Digitalisierung zu verstehen und dabei reflektierte eigene ethische Positionen einzunehmen und vor anderen zu begründen (3)
- in freien Diskussionen mit anderen ein Bewusstsein für ethisch verantwortliches Handeln im Umgang mit den technischen Möglichkeiten der Digitalisierung herauszubilden (3).

Angebotene Lehrunterlagen

z. B. Präsentationen, Texte

Lehrmedien

z. B. Tafel, Beamer

Literatur

- Shanahan, M. (2015). The Technological Singularity. Cambridge: MIT Press.
- Harari, Y. (2017). Homo Deus. Eine Geschichte von Morgen. München: C.H. Beck.
- Greenwald, G. (2014). Die globale Überwachung. Der Fall Snowden, die amerikanischen Geheimdienste und die Folgen. München: Droemer.
- Kosinski, M., Stillwell, D. & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. PNAS, 110 (15), S. 5802-5805
- => Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.

Teilmodul		TM-Kurzbezeichnung
Ingenieurinformatik		II
(Computer Science for Engineers)		
Verantwortliche/r	Fakultät	
Prof. Dr. Fredrik Borchsenius	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Fredrik Borchsenius Prof. Dr. Aida Nonn Prof. Dr. Oliver Webel	in jedem Semester	
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
9	[SWS oder UE]		[ECTS-Credits]
7.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
45 h	75 h

Studien- und Prüfungsleistung

Klausur 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), Skript, Übungen

Inhalte und Qualifikationsziele

- · Einführung in Matlab und Simulink
- Lineare Gleichungssysteme
- Ausgleichsrechnung
- Optimierungsaufgaben
- Nichtlineare Gleichungssysteme
- Dynamische Systeme

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Strukturierte Programme in Matlab zu erstellen (2)
- Simulink-Modelle zu verstehen und einfache Modelle zu erstellen (2)
- Matlab-Programme zur Lösung von linearen Gleichungssystemen, Optimierungsproblemen, Ausgleichsproblemen, nichtlinearen Gleichungssystemen und dynamischen Systemen zu erstellen (3)
- Numerische Lösungsverfahren zu unterscheiden und auszuwählen (1)
- die Ergebnisse zu visualisieren und zu interpretieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Berechnungsverfahren für technische Probleme zu strukturieren (2)
- mit englischsprachiger Software und Nutzerhandbuch umzugehen (2)

Angebotene Lehrunterlagen

Skript

Lehrmedien

Rechner/Beamer, Tafel

Literatur

Teilmodul		TM-Kurzbezeichnung
Keramische Werkstoffe		KWS
(Ceramic Materials)		
Verantwortliche/r	Fakultät	
Prof. Dr. Helga Hornberger	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Helga Hornberger	jedes 2.Semester	
Andreas Hüttner		
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
7. [BE SPO2013] und	4 SWS	deutsch	4
6. [BE SPO2017]			

Präsenzstudium	Eigenstudium
60	60

Studien- und Prüfungsleistung

Klausur, 90 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

- Grundlagen keramischer Werkstoffe einschließlich der Gläser: Bindungen, Strukturen und Gefüge
- Sintern und Diffusionsprozesse
- Herstellung von Bauteilen aus Glas oder Keramik
- Mechanische Eigenschaften und ihre Charakterisierung
- Thermische Eigenschaften
- Keramische Biomaterialien im Einsatz

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Strukturen und Eigenschaften keramischer Werkstoffe zu verstehen (1)
- Mit den Grundzügen der Herstellung von keramischen Bauteilen vertraut sein (1)
- Unterschiedliche keramische Werkstoffe und ihre Anwendung als Biomaterial kennen (1)
- Zusammenspiel von Herstellung, Mikrostruktur und Eigenschaften der keramischen Werkstoffe verstehen, Chancen und Limitation im Einsatz erkennen (3)
- Die praktische Bedeutung von Kennwerten keramischer Werkstoffe kennen und erläutern können (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mit Fachwörtern präzise und sorgfältig umzugehen (1)
- Mögliche Chancen und Risiken beim Einsatz von keramischen Materialien in Medizinprodukten zu verstehen (3)

Angebotene Lehrunterlagen

pdf Folien der Vorlesung

Lehrmedien

Tafel, Rechner/Beamer, Exponate

Literatur

Literaturempfehlungen:

• H. Salmang und H. Scholze, Keramik, 7. Auflage Springer-Verlag Berlin Heidelberg 2007

Ausserdem siehe Literaturempfehlungen und -verweise in der Veranstaltung sowie im pdf der Veranstaltung

Teilmodul	TM-Kurzbezeichnung	
Lasergestützte und Additive Fertigung	LAF	
(Laser Based and Additive Manufacturing)		
Verantwortliche/r	Fakultät	
Prof. Dr. Stefan Hierl	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Stefan Hierl	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60	60

Studien- und Prüfungsleistung
Klausur, 90 Min.
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

- Aufbau und Funktionsweise von Laserstrahlquellen
- Grundlagen zur Strahlführung und –formung
- Grundlagen zur Wechselwirkung von Laserstrahlung mit Materie
- Anwendung des Lasers beim Strukturieren, Bohren, Beschriften, Schneiden, Schweißen und Löten
- Additive Fertigungsverfahren mit und ohne Laserunterstützung
- · Arbeitssicherheit bei lasergestützter und additiver Fertigung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Strahlquellen, Strahlführungs- und Formungskomponenten für die o.g. Anwendungen auszuwählen bzw. grob auszulegen (2),
- die Einsatzmöglichkeiten und -grenzen des Lasers für die o.g. Verfahren im Wesentlichen zu beurteilen (3),
- die Einsatzmöglichkeiten und -grenzen additiver Fertigungsverfahren im Wesentlichen einzuschätzen (2),
- die wichtigsten Gefährdungen beim Einsatz lasergestützter und additiver Fertigungsverfahren zu erkennen und zu beurteilen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• den sinnvollen Einsatz der Lasermaterialbearbeitung und der additiven Fertigung in der industriellen Fertigungstechnik einzuschätzen(3).

Angebotene Lehrunterlagen

Präsentationsfolien (auszugsweise), Lehrbücher, Fachartikel, Informationsmaterial von Firmen, Patente, Normen, Übungsaufgaben

Lehrmedien

Rechner/Beamer, Videos, Tafel, Exponate

Literatur

siehe Literaturliste

Teilmodul		TM-Kurzbezeichnung
Oberflächentechnik		ОТ
(Surface Engineering)		
Verantwortliche/r	Fakultät	
Prof. Dr. Ulf Noster	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Helga Hornberger	nur im Sommersemester	
Prof. Dr. Ulf Noster		
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 h	60 h

Studien- und Prüfungsleistung

Klausur, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2)

Inhalte und Qualifikationsziele

- Grundlagen der elektrochemischen und chemischen (Hochtemperatur) Korrosion, Aufbau von elektrochemischen Korrosionssystemen.
- Funktionale Trennung von Werkstoffvolumen und Werkstoffoberfläche im Rahmen der Oberflächentechnik.
- Einfluss von Korrosion und Oberflächenbehandlung auf die Lebensdauer (Ermüdungseigenschaften) von Bauteilen.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die verschiedenen Korrosionsarten, z.B. Kontaktkorrosion, Lochfraß, Spannungsrisskorrosion, Schwingungsrisskorrosion zu beschreiben (1).
- Verschiedene Methoden der Korrosionsprüfung zu benutzen (2) und zu bewerten (3).
- das Verhalten von Bauteilen mit gradierten (örtlich unterschiedlichen) Werkstoffeigenschaften bei mechanischen Beanspruchungen zu beschreiben (1) und zu untersuchen (2).
- Möglichkeiten der Beeinflussung von Bauteilrandschichten aufzuzählen (1).
- Methoden zur Prüfung von Bauteiloberflächen auszuwählen (2) und deren Ergebnisse zu bewerten (3).

• Verfahren zur Beeinflussung von Bauteiloberflächen (Randschichten) durch mechanische, thermische und chemische Effekte, z.B. Fertigung, Kugelstrahlen, Einsatzhärten, örtliche Kaltverfestigung, Eigenspannungen auszuwählen (2), das optimale Verfahren zu empfehlen (3) und dessen Auswirkung abzuschätzen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mit Fachbegriffen aus dem Gebiet der Korrosion und der Oberflächentechnik umzugehen
 (1) und sowohl mit Fachleuten als auch fachfremden Personen über diese Themen diskutieren zu können (2).
- mit Fachleuten und interdisziplinären Projektteams Lösungen auszuarbeiten (2), diese zu beurteilen (3) und nach Umsetzung deren Auswirkungen zu bewerten (3).
- sowohl fachliche Aspekte zu bewerten (3) als auch die Auswirkungen auf Ressourcen und Umwelt zu beurteilen (3).

Angebotene Lehrunterlagen

Arbeitsunterlagen auf eLearning-Plattform

Lehrmedien

Tafel, Beamer, Exponate

Literatur

wird in der Veranstaltung bekanntgegeben

Teilmodul		TM-Kurzbezeichnung	
Physikalisch-chemische und biochemische Laborpraxis		LP	
(Laboratory Practice)			
Verantwortliche/r	Fakultät		
Prof. Dr. Lars Krenkel	Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz			
Dr. Birgit Striegl nur im Sommersemester			
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 h	90 h

Studien- und Prüfungsleistung	
Klausur, 90 Min.	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2), alle	

Inhalte und Qualifikationsziele

- Basiswissen fürs Labor (chemisches Rechnen, Qualität und Reinheit von Chemikalien, Dokumentieren im Labor, Bewerten von Messergebnissen).
- Grundlegende und biochemische Labortätigkeiten.
- Basis-Messmethoden im Labor (Wiegen, Volumen- und Dichtebestimmung, pH-Wert- und Brechungsindex-Messung etc.). Physikalisch-chemische Analysemethoden.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- selbständig Tätigkeiten im Laborbetrieb auszuführen (2).
- Versuchsansätze zu berechnen (2).
- molekularbiologische und biochemische Arbeitsschritte umzusetzen (2).
- Vorliegende Versuchsanweisungen auszuführen (2) und zu prüfen (3).
- Stoffe und Materialien mittels physikalisch-chemischer Methoden zu analysieren (3).
- Analysenergebnisse zu interpretieren, bewerten und beurteilen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• wissenschaftliche Arbeitsweisen in Forschungsprojekten selbständig anzuwenden (2).

• sich im Laborbetrieb von Forschungseinrichtungen selbständig zu orientieren und einzubringen (2).

Angebotene Lehrunterlagen

Tafelanschrift, Versuchsanleitungen

Lehrmedien

Rechner/Beamer, Tafel, praktische Vorführungen

Literatur

- Laborpraxis Band 1 bis 4, 6. Auflage, Herausgeber aprentas, Springer International Publishing Switzerland 2017
- Einführung in die Laborpraxis, 3. Auflage, Bruno P. Kremer, Horst Bannwarth, Springer-Verlag Berlin Heidelberg 2014

Teilmodul		TM-Kurzbezeichnung	
Sterilisation und Verpackung		SUV	
(Sterilisation and packaging)			
Verantwortliche/r	Fakultät		
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	aschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz		
N.N.	unregelmäßig wiederholende	e Lehrveranstaltung	
Lehrform			
Vorlesung			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60	60

Studien- und Prüfungsleistung
Klausur, 90 Minuten
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2), kein eigenes Schreibpapier

Inhalte und Qualifikationsziele

1. Wissen und Verstehen

Im Rahmen dieser Vorlesung werden Grundkenntnisse der Hygiene als Voraussetzung zur effektiven Sterilisation vermittelt.

Den Schwerpunkt der Vorlesung bilden die verschiedenen Methoden zur Desinfektion und Sterilisation von Medizinprodukten. Die Voraussetzungen für die Wiederaufbereitung und Kennzeichnung sterilisierter Medizinprodukte werden ebenfalls besprochen.

Den Abschluss bildet der Vorlesungsteil zum Thema Verpackung von Medizinprodukten. Es werden die Anforderungen der Medizinprodukteverordnung und der relevanten Normen und Leitfäden erklärt.

2. Einsatz, Anwendung und Erzeugung von Wissen

Grundlegendes Verständnis der Anforderungen an die Hygiene, Desinfektion, Sterilisation und Verpackung von Medizinprodukten

3. Kommunikation und Kooperation

Fähigkeit zur Anwendung der relevanten Normen und der aktuellen europäischen Gesetze für Medizinprodukte

4. Wissenschaftliches Selbstverständnis und Professionalität

Kenntnis und Anwendung der regulatorisch wesentlichen Dokumente für die Herstellung von Medizinprodukten in Europa, sowie die Fähigkeit zur Erarbeitung angemessener Lösungsstrategien für die Herstellung steriler Produkte.

Angebotene Lehrunterlagen

keine

Lehrmedien

Rechner/ Beamer, Tafel

Literatur

Medizinprodukte-Richtlinie 93/42/EWG und Medizinproduktverordnung, sowie relevante ISO Normen

Weitere Informationen zur Lehrveranstaltung

Die Veranstaltung wird derzeit nicht angeboten

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Bachelorarbeit		BA
(Bachelor Thesis)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7.	3.	Pflicht	12

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Bachelorarbeit		12

Teilmodul		TM-Kurzbezeichnung
Bachelorarbeit		ВА
(Bachelor Thesis)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Prof. Dr. Thomas Schratzenstaller Maschinenbau	
Lehrende/r / Dozierende/r Angebotsfrequenz		
N.N. in jedem Semester		
Lehrform		
-		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gernais otadieripian	[SWS oder UE]		[ECTS-Credits]
7.		deutsch	12

Präsenzstudium	Eigenstudium
-	360h

Studien- und Prüfungsleistung

Bachelorarbeit

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte und Qualifikationsziele

- Selbstständige ingenieurmäßige Bearbeitung eines zusammenhängenden Themas
- Aufbereitung der Ergebnisse in wissenschaftlicher Form
- Dokumentation der Ergebnisse in wissenschaftlicher Form

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fertigkeit zur selbstständigen ingenieurmäßigen Bearbeitung eines größerenzusammenhängenden Themas (3)
- Fertigkeit zur Aufbereitung der Ergebnisse in wissenschaftlicher Form (3)
- Fertigkeit zur Dokumentation der Ergebnisse in wissenschaftlicher Form (3)

Angebotene Lehrunterlagen

k. A.

Lehrmedien

k. A.

Literatur

keine Literaturangaben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Fremdsprache		FRS
(Foreign language)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
5. [BE SPO2017], 6. [BE SPO2013]	3.	Wahlpflicht	6

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Fremdsprache 1	2 SWS	3
2.	Fremdsprache 2	2 SWS	3

Teilmodul		TM-Kurzbezeichnung	
Fremdsprache 1		FRS 1	
(Foreign language 1)			
Verantwortliche/r	Fakultät		
Prof. Dr. Thomas Schratzenstaller	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
N.N.	in jedem Semester		
Lehrform			
[BE SPO2013] Seminaristischer Unter [BE SPO2017] Seminaristischer Unter			

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
5. [BE SPO2017], 6. [BE SPO2013]	2 SWS	deutsch	3

Präsenzstudium	Eigenstudium
30 h	60 h

Studien- und Prüfungsleistung

Klausur u./o. mündl. LN u./o. StA

Zugelassene Hilfsmittel für Leistungsnachweis

k. A.

Inhalte und Qualifikationsziele

- Erweiterung des Fachstudiums durch eine Fremdsprache
- Ein Wahlpflichtmodul aus dem Sprachenprogramm der OTH Regensburg und der Studienbegleitenden Fremdsprachenausbildung (SFA) der Universität Regensburg, dabei sindausgeschlossen: UNIcert ® I Französisch/Kurs 1, UNIcert ® I Italienisch/Kurs 1, UNIcert ® ISpanisch/Kurs 1, sowie alle UNIcert ® Grund- und Aufbaukurse Englisch.
- In Sonderfällen (z. B. anderer Kurs nicht belegbar) werden auch Sprachkurse der VirtuellenHochschule Bayern (vhb) anerkannt

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Studierende entwickeln ihre kommunikative Kompetenz in der gewählten Sprache auf der angemessenen Niveaustufe.

Grundlegende Aspekt der Sprachentwicklung, u.a. Grammatik, Wortschatz und interpersonelle Kommunikation, werden auf der passenden Niveaustufe behandelt.

Weitere Details können dem Modulhandbuch des Allgemeinwissenschaftlichen Wahlpflichtprogramms (AW-Programms) entnommen werden.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Studierende entwickeln passend zur Niveaustufe Strategien für die erfolgreiche Kommunikation in der gewählten Fremdsprache und mit anderen Kulturen.

Weitere Details können dem Modulhandbuch des Allgemeinwissenschaftlichen Wahlpflichtprogramms (AW-Programms) entnommen werden.

Angebotene Lehrunterlagen

k. A.

Lehrmedien

k. A.

Literatur

Teilmodul		TM-Kurzbezeichnung	
Fremdsprache 2		FRS2	
(Foreign language 2)			
Verantwortliche/r	Fakultät		
Prof. Dr. Thomas Schratzenstaller	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
N.N.	in jedem Semester		
Lehrform			
[BE SPO2013] Seminaristischer Unterricht, Übung [BE SPO2017] Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang [SWS oder UE]	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
5. [BE SPO2017], 6. [BE SPO2013]	2 SWS	deutsch	3

Präsenzstudium	Eigenstudium
30 h	60 h

Studien- und Prüfungsleistung

Klausur u./o. mündl. LN u./o. StA

Zugelassene Hilfsmittel für Leistungsnachweis

k. A.

Inhalte und Qualifikationsziele

- Erweiterung des Fachstudiums durch eine Fremdsprache
- Ein Wahlpflichtmodul aus dem Sprachenprogramm der OTH Regensburg und der Studienbegleitenden Fremdsprachenausbildung (SFA) der Universität Regensburg, dabei sindausgeschlossen: UNIcert ® I Französisch/Kurs 1, UNIcert ® I Italienisch/Kurs 1, UNIcert ® ISpanisch/Kurs 1, sowie alle UNIcert ® Grund- und Aufbaukurse Englisch.
- In Sonderfällen (z. B. anderer Kurs nicht belegbar) werden auch Sprachkurse der VirtuellenHochschule Bayern (vhb) anerkannt

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Studierende entwickeln ihre kommunikative Kompetenz in der gewählten Sprache auf der angemessenen Niveaustufe.

Grundlegende Aspekt der Sprachentwicklung, u.a. Grammatik, Wortschatz und interpersonelle Kommunikation, werden auf der passendenNiveaustufe behandelt.

Weitere Details können dem Modulhandbuch des Allgemeinwissenschaftlichen Wahlpflichtprogramms (AW-Programms) entnommen werden.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Studierende entwickeln passend zur Niveaustufe Strategien für die erfolgreiche Kommunikation in der gewählten Fremdsprache und mit anderen Kulturen.

Weitere Details können dem Modulhandbuch des Allgemeinwissenschaftlichen Wahlpflichtprogramms (AW-Programms) entnommen werden.

Angebotene Lehrunterlagen

k. A.

Lehrmedien

k. A.

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Vertiefung Biologie		BIO
(Advanced Biology)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7.	3.	Pflicht	7

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

	Inhalte
Ì	siehe Teilmodul

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Vertiefung Biologie	5 SWS	7

Teilmodul		TM-Kurzbezeichnung
Vertiefung Biologie	ertiefung Biologie	
(Advanced Biology)	Advanced Biology)	
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.	5 SWS	deutsch	7

Präsenzstudium	Eigenstudium
75 h	135 h

Studien- und Prüfungsleistung
Klausur, 90 Min.
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2), kein eigenes Schreibpapier

Inhalte und Qualifikationsziele

1. Wissen und Verstehen

Im Rahmen der Veranstaltung werden die Voraussetzungen für die Herstellung von Medizinprodukten besprochen, die den Anforderungen nach biologischer Sicherheit von gemäß der Norm ISO 10993-ff entsprechen müssen:

- a) Teil 1 der Norm: Risikomanagement und biologische Sicherheit von Medizinprodukten
- b) Kategorisierung von Medizinprodukten gem. ISO 10993
- c) Testverfahren zum Nachweis der biologischen Sicherheit
- d) Strategie zur Auswahl geeigneter Teste und die Bewertung von Testberichten
- e) Normenkonforme Dokumentation
- f) Teil 12: Probenvorbereitung
- g) Teil 18: Materialcharakterisierung

2. Einsatz, Anwendung und Erzeugung von Wissen

Grundlegendes Verständnis der Anforderungen an die biologische Verträglichkeit von Medizinprodukten

3. Kommunikation und Kooperation

Fähigkeit zur Anwendung der relevanten Normen und der aktuellen europäischen Gesetze für Medizinprodukte

4. Wissenschaftliches Selbstverständnis und Professionalität

Kenntnis und Anwendung der regulatorisch wesentlichen Dokumente für die Herstellung von Medizinprodukten in Europa, sowie die Fähigkeit zur Erarbeitung angemessener Lösungsstrategien für die Herstellung von Medizinprodukten.

Angebotene Lehrunterlagen

(s. GRIPS-Plattform)

Lehrmedien

Rechner / Beamer; Tafel; eLearning / GRIPS

Literatur

ISO 10993 ff

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Wahlpflichtmodul E		WPE
(Mandatory Elective Module E: Interdisciplinary module)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schratzenstaller Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7.	3.	Wahlpflicht	3

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

	Inhalte
Ì	siehe Teilmodul

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Wahlpflichtmodul E	2 SWS	3

Teilmodul		TM-Kurzbezeichnung
Wahlpflichtmodul E		WPE
(Mandatory Elective Module E: Interdi	sciplinary module)	
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schratzenstaller	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	in jedem Semester	
Lehrform		
virtuell		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
g-man - man prant	[SWS oder UE]		[ECTS-Credits]
7.	2 SWS	deutsch	3

Präsenzstudium	Eigenstudium
30 h	60 h

Studien- und Prüfungsleistung

Klausur o. StA o. mdlLN

Zugelassene Hilfsmittel für Leistungsnachweis

k. A.

Inhalte und Qualifikationsziele

Ein Fach aus dem Programm der virtuellen Hochschule Bayern aus dem Fachgebiet Medizin oder Gesundheitswesen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, k. A.

Angebotene Lehrunterlagen

k. A.

Lehrmedien

k. A.

Literatur