

Modulhandbuch

für den Bachelorstudiengang

Bauingenieurwesen (B.Eng.)

SPO-Version ab: Wintersemester 2022

Sommersemester 2024

erstellt am 22.03.2024

von Prof. Andreas Ottl

Fakultät Bauingenieurwesen

Hinweise:

1. Die Angaben zum Arbeitsaufwand in der Form von ECTS-Credits in einem Modul in diesem Studiengang beruhen auf folgender Basis:

1 ECTS-Credit entspricht in der Summe aus Präsenz und Selbststudium einer durchschnittlichen Arbeitsbelastung von 30 Stunden (45 Minuten Lehrveranstaltung werden als 1 Zeitstunde gerechnet).

2. Erläuterungen zum Aufbau des Modulhandbuchs

Die Module sind nach Studienabschnitten unterteilt. Jedem Modul sind eine oder mehrere Veranstaltungen zugeordnet. Die Beschreibung der Veranstaltungen folgt jeweils im Anschluss an das Modul. Durch Klicken auf das Modul oder die Veranstaltung im Inhaltsverzeichnis gelangt man direkt auf die jeweilige Beschreibung im Modulhandbuch.

Modulliste

Studienabschnitt 1:

	-	Baukonstruktion und Entwerfen (B1-BKE)	
		Nr. 01 Baukonstruktion und Entwerfen (B1-BKE)	6
Nr.	02	Baustoffe und Bauchemie (B1-BBC)	8
		Nr. 2.1 Baustoffkunde I (B1-BSK I)	
		Nr. 2.2 Bauchemie (B1-BC)	
Nr.	03	Bautechnische Mechanik (B1-BTM I)	
		Nr. 03 Bautechnische Mechanik I (B1-BTM I)	
Nr.	04	Mathematik für Bauingenieurwesen I (B1-MAB I)	
		Nr. 04 Mathematik für Bauingenieurwesen I (B1-MAB I)	
Nr.	05	Grundlagen digitales Modellieren und IT für das Bauwesen (B1-DMIT)	
		Nr. 05 Grundlagen digitales Modellieren und IT für das Bauwesen (B1-DMIT)	
Nr.	06	Bautechnische Mechanik II (B1-BTM II)	
		Nr. 06 Bautechnische Mechanik II (B1-BTM II)	
Nr.	07	Baukonstruktion und Tragwerke (B1-BKT)	
		Nr. 07 Baukonstruktion und Tragwerke (B1-BKT)	
Nr.	08	Bauphysik (B1-BP)	
N. I.	00	Nr. 08 Bauphysik (B1-BP)	
ıvr.	09	Baustoffe und Boden (B1-BBB)	
		Nr. 9.1 Baustoffkunde II (B1-BSK II)	
N.I.	40	Nr. 9.2 Ingenieurgeologie und Bodenmechanik (B1-IGB)	
INI.	10	Mathematik für Bauingenieurwesen II (B1-MAB II)	
NI.	11	Nr. 10 Mathematik für Bauingenieurwesen II (B1-MAB II)	
IVI.	11	Nr. 11.1 Allgem. Wissenschaftl. Modul I (B1-AWP I)	
		Nr. 11.2 Allgem. Wissenschaftl. Modul II (B1-AWP II)	
		Studienabschnitt 2:	
Nir	12		5/
Nr.	12	Baubetrieb (B2-BB)	
Nr.	12	Baubetrieb (B2-BB)	55
		Baubetrieb (B2-BB)	55 57
		Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I)	55 57 60
Nr.	13	Baubetrieb (B2-BB)	55 60 6
Nr.	13	Baubetrieb (B2-BB)	55 60 67
Nr. Nr.	13 14	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I)	
Nr. Nr.	13 14	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO)	55 57 60 63 63 64
Nr. Nr.	13 14	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I)	55 57 60 62 63 64 67
Nr. Nr. Nr.	13 14 15	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I)	55 57 60 63 63 67 68
Nr. Nr. Nr.	13 14 15	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I)	55 57 60 63 63 64 67 68 70
Nr. Nr. Nr.	13 14 15	Baubetrieb (B2-BB)	55 57 60 63 64 67 68 70 72
Nr. Nr. Nr.	13 14 15	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II)	55 57 60 63 63 64 67 68 70 72
Nr. Nr. Nr. Nr.	13 14 15 16 17	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II) Verkehrswesen I (B2-VW I) Nr. 17.1 Straßenbau I (B2-SR I) Nr. 17.2 Bahnbau I (B2-BN I)	55 57 60 63 63 67 70 72 75 76
Nr. Nr. Nr. Nr.	13 14 15 16 17	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I). Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II) Verkehrswesen I (B2-VW I) Nr. 17.1 Straßenbau I (B2-SR I) Nr. 17.2 Bahnbau I (B2-BN I) Wasser und Umwelt (B2-WuU)	55 57 60 63 63 64 67 72 73 75 76
Nr. Nr. Nr. Nr.	13 14 15 16 17	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II) Nr. 17.1 Straßenbau I (B2-VW I) Nr. 17.2 Bahnbau I (B2-SR I) Nr. 17.2 Bahnbau I (B2-BN I) Wasser und Umwelt (B2-WuU) Nr. 18.1 Wasserbau I (B2-WB I)	55 57 60 67 68 68 70 72 75 76 86 88
Nr. Nr. Nr. Nr.	13 14 15 16 17	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II) Verkehrswesen I (B2-VW I) Nr. 17.1 Straßenbau I (B2-SR I) Nr. 17.2 Bahnbau I (B2-BN I) Wasser und Umwelt (B2-WuU) Nr. 18.1 Wasserbau I (B2-WB I) Nr. 18.2 Siedlungswasserwirtschaft I (B2-SWG I)	55 57 60 67 68 68 70 72 75 76 78 86
Nr. Nr. Nr. Nr.	13 14 15 16 17	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II) Nr. 17.1 Straßenbau I (B2-WI I) Nr. 17.2 Bahnbau I (B2-BN I) Nr. 17.2 Bahnbau I (B2-WI I) Nr. 18.1 Wasserbau I (B2-WI I) Nr. 18.1 Wasserbau I (B2-WI I) Nr. 18.2 Siedlungswasserwirtschaft I (B2-SWG I) Massivbau (B2-MB)	55 57 60 66 67 68 68 70 72 73 75 76 86 82
Nr. Nr. Nr. Nr.	13 14 15 16 17	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Nr. 14 Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II) Nr. 17.1 Straßenbau I (B2-WI I) Nr. 17.2 Bahnbau I (B2-SR I) Nr. 17.2 Bahnbau I (B2-BN I) Wasser und Umwelt (B2-WuU) Nr. 18.1 Wasserbau I (B2-WB I) Nr. 18.2 Siedlungswasserwirtschaft I (B2-SWG I) Massivbau (B2-MB) Nr. 19.1 Stahlbetonbau I (B2-SB I)	55 57 60 66 67 68 67 70 72 73 75 82 82 85
Nr. Nr. Nr. Nr. Nr.	13 14 15 16 17 18	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-GT I) Stahlbau und Holzbau (B2-ST I) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II) Nr. 16.1 Stahlbau I (B2-WI I) Nr. 17.1 Straßenbau I (B2-WI I) Nr. 17.2 Bahnbau I (B2-SR I) Nr. 17.2 Bahnbau I (B2-BN I) Nr. 18.1 Wasserbau I (B2-WU) Nr. 18.1 Wasserbau I (B2-WU) Nr. 18.2 Siedlungswasserwirtschaft I (B2-SWG I) Massivbau (B2-MB) Nr. 19.1 Stahlbetonbau I (B2-SB I) Nr. 19.2 Stahlbetonbau II und Mauerwerk (B2-SB II)	55 57 60 66 67 67 68 77 77 78 78 88 88 88
Nr. Nr. Nr. Nr. Nr.	13 14 15 16 17 18	Baubetrieb (B2-BB) Nr. 12.1 Baubetrieb I (B2-BB I) Nr. 12.2 Baubetrieb II (B2-BB II) Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Nr. 13 Baustatik I (B2-BS I) Nr. 14 Geotechnik I (B2-GT I) Nr. 14 Geotechnik I (B2-GT I) Stahlbau und Holzbau (B2-STHO) Nr. 15.1 Stahlbau I (B2-ST I) Nr. 15.2 Holzbau I (B2-HO I) Baustatik II und CBS (B2-BS II) Nr. 16.1 Baustatik II (B2-BS II) Nr. 17.1 Straßenbau I (B2-WI I) Nr. 17.2 Bahnbau I (B2-SR I) Nr. 17.2 Bahnbau I (B2-BN I) Wasser und Umwelt (B2-WuU) Nr. 18.1 Wasserbau I (B2-WB I) Nr. 18.2 Siedlungswasserwirtschaft I (B2-SWG I) Massivbau (B2-MB) Nr. 19.1 Stahlbetonbau I (B2-SB I)	55 57 60 66 65 68 67 70 72 75 76 86 88 89 90

97
99
101
102
105
106
108
109
111
113
116
118

Studienabschnitt 3:

Modulbezeichnung (ggf. englische Bezeichnung (ggf. englisc	Modul-KzBez. oder Nr.	
Nr. 01 Baukonstruktion und Entwerfer	1	
(Building design)		
Modulverantwortliche/r		
Franz Schindlbeck	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	5

Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 01 Baukonstruktion und Entwerfen	5 SWS	5
	(B1-BKE)		

Teilmodul		TM-Kurzbezeichnung	
Nr. O1 Baukonstruktion und Entwerfen (Building design)	(B1-BKE)	B1-BKE	
Verantwortliche/r	Fakultät		
Franz Schindlbeck	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Franz Schindlbeck	in jedem Semester		
Lehrform			
Seminaristischer Unterricht, Übungen			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	5 SWS	deutsch	5

Präsenzstudium	Eigenstudium
75 Stunden seminaristischer Unterricht	25 Stunden eigenverantwortliches Lernen
(Präsenz)	(Eigenstudium) ; 50 Stunden Studienarbeiten
	und Prüfungsvorbereitung (Eigenstudium)

Studien- und Prüfungsleistung
Prüfungsleistung: schriftliche Prüfung, Dauer 90 Minuten
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplan

Inhalte

- Vertiefte Kenntnisse über Planungsabläufe und Darstellungsmethoden, Maßordnungen und Maßsysteme (Entwurfs-, Werk- und Detailplanung).
- Erlernen und Anwenden von räumlichen Skizzen zur Darstellung von Innen- und Außenräumen (Zentral- und Zweipunktperspektive).
- Die wichtigsten Baustoffe und ihre materialgerechte Verwendung (Schwerpunkt Mauerwerksbau, Ausbau).
- Die wichtigsten Konstruktionselemente: Wand, Dach, Decke, Treppe (Schwerpunkt Massivbau).
- Lastabtragung, statisches System (Mauerwerksbau)
- Gründungssysteme (Massivbau).

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- den Kontext zwischen Konstruktion, Funktion und Form eines Gebäudes zu erkennen und die erworbenen Kenntnisse auf geplante Vorhaben anzuwenden (3).
- Bauaufgaben unter Berücksichtigung der Vorgaben des Auftraggebers, der Umgebung (z.B. der Topographie) und unter Einhaltung der gesetzlichen Rahmenbedingungen (BayBO, BauGB, BauNVO) zu lösen (2).

• Entwurfs-, Eingabe-, und Werkplanungen in den jeweiligen Maßstäben zeichnerisch und inhaltlich richtig zu erstellen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die wichtigsten beim Bauen verwendeten Entwurfs- und Konstruktionsprinzipien anzuwenden (2)
- geplante Bauaufgaben konzeptionell zu lösen (3)
- durch Zeichnungen und Skizzen ihre räumlichen Ideen darzustellen. (2)
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- ihre Leistungen zu kommunizieren (Präsentationsübungen) (2)

Angebotene Lehrunterlagen

Vorlesungsskripten, Planbeispiele, Probeklausuren, Materialmuster

Lehrmedien

Multimediale Vortragsvorlesung, Tafelanschrieb, Exkursionen

Literatur

- Johannes Kister und Ernst Neufert, Bauentwurfslehre, Springer Vieweg Verlag, 2015
- Jose L. Moro, Baukonstruktion vom Prinzip zum Detail, 3 Bände, Springer Verlag, 2008
- Frick, Knöll, Baukonstruktionslehre, 2 Bände, Verlag Vieweg und Teubner, 2010
- Dierks, Schneider, Wormuth, Baukonstruktion, Werner Verlag, 2011
- Wendehorst, Bautechnische Zahlentafeln, Springer Vieweg Verlag, 2015 Online Publikationen der Ziegel- und Holzindustrie

Modulbezeichnung (ggf. englische Bezeit	Modul-KzBez. oder Nr.	
Nr. O2 Baustoffe und Bauchemie (B1-BBC)		2
(Construction Materials and Construction Chemistry)		
Modulverantwortliche/r Fakultät		
Prof. Charlotte Thiel Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	6

Empfohlene Vorkenntnisse		

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 2.1 Baustoffkunde I (B1-BSK I)	3 SWS	3
2.	Nr. 2.2 Bauchemie (B1-BC)	3 SWS	3

Teilmodul		TM-Kurzbezeichnung
Nr. 2.1 Baustoffkunde I (B1-BSK I)		B1-BSK I
(Construction Materials)		
Verantwortliche/r	Fakultät	
Prof. Charlotte Thiel	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Florian Scharmacher Prof. Charlotte Thiel	in jedem Semester	
Lehrform		
Seminaristischer Unterricht mit Übu	ngen und Praktika	

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
9	[SWS oder UE]		[ECTS-Credits]
1.	3 SWS	deutsch	3

Präsenzstudium	Eigenstudium
33 Stunden seminaristische	60 Stunden eigenverantwortliches Lernen,
Lehrveranstaltungen, 4 Praktika	Studienarbeiten

Studien- und Prüfungsleistung

Studienleistung: schriftliche Ausarbeitung von Übungen m.E.

Prüfungsleistung für das Gesamtmodul B1-BBC: schriftliche Prüfung, Dauer: 120 Minuten (Teil B1-BSK 60 Minuten und Teil B1-BC 60 Minuten)

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

Baustoffkundliches Grundlagenwissen

Allgemeinen Grundlagen

Systematik, Dichte, Stoffkennwerte (Chemische und physikalische Eigenschaften wie Porigkeit, bauphysikalische Kennwerte etc.)

Festigkeit und Verformungsverhalten (reversible, irreversible, lastabhängige und lastunabhängige Verformungen). Dauerhaftigkeit (Dauerstandfestigkeit, dauerschwingfestigkeit, Wasserbeständigkeit, Frostbeständigkeit, chemische Angriffe, Korrosion, Brandbeständigkeit) Sicherheitsbegriff (Beanspruchung und Beanspruchbarkeit)

Fe- Metalle

Gusswerkstoffe, Baustähle, Beton- und Spannstähle; Herstellung, Gefüge,

Beeinflussungsmöglichkeiten, Schweißen, Spezielle

Prüfungen Nichteisenmetalle

Überblick Aluminium, Kupfer, Korrosionsproblematik

Holz

Wald und Holz, Holz und Umwelt, Struktur und Aufbau, Physikalische Eigenschaften,

Holzfeuchte, Holzarten, konstruktive Holzprodukte, Einführung in den Holzschutz

Überblick über Kunststoffe im Bauwesen

Überblick über Dämmstoffe

Fähigkeit zur Ausführung von ausgewählten Baustoffprüfungen

Praktische Übungen im Labor: Grundlagen

Praktische Übungen im Labor: Holz und seine Eigenschaften

Nachhaltiger Umgang mit Baustoffen, Überblick Arbeits- und Umweltschuz

Exkursionen: z.B. Zementwerk

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Die Studierenden

- kennen in die baustoffwissenschaftlichen Grundlagen um Baustoffe beurteilen, richtig auswählen und anwenden zu können (1).
- verstehen die Stoffgesetze, Modellannahmen und Beanspruchungen (3).
- haben einen Überblick über die metallischen und organischen Baustoffe des konstruktiven Ingenieurbaus bezüglich ihrer Herstellung, Beeinflussbarkeit, technologischen Eigenschaften und sinnvollen Anwendungsgebiete (2).
- sind fähig im Rahmen von Übungen die erlernten Kenntnisse unmittelbar auf kleine Beispiele zu übertragen (3).
- sind in der Lage selbständig grundlegende Entscheidungen zur Baustoffwahl zu treffen oder selbstständig Informationen zu Baustoffen zu beurteilen (2).
- können bei der Bauausführung baustoffspezifische Maßnahmen ergreifen (2)
- sind in der Lage fundamentale Ursachen von Bauschäden zu erkennen. (2)
- Sie verfügen somit über fundierte Grundlagenkenntnisse zur weitgehenden Beantwortung der baustoffspezifischen Fragestellungen im Kontext des Entwurfs und der Ausführung von Bauwerken sowie zu deren Dauerhaftigkeit. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- baustoffkundliche Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (3).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Praktikumsunterlagen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb Exkursionen, Praktikum, Exponate

Literatur

- Härig S., Günther K., Klausen D.: Technologie der Baustoffe. Verlag C. F. Müller, Heidelberg, 1994.
- Krenkler, K.: Chemie des Bauwesens. Band 1: Anorganische Chemie, Springer, Berlin. 1980.
- Rostásy, F. S.: Baustoffe. Kohlhammer, Stuttgart, 1983.
- Schäffler, H., Bruy E., Schelling, G.: Baustoffkunde. Vogl Buchverlag, Würzburg, 1996.
- Scholz, Hiese: Baustoffkenntnis. Werner Verlag.
- · Wendehorst Baustoffkunde.
- Weißbach W.: Werkstoffkunde und Werkstoffprüfung. Vieweg, Braunschweig, 1994.
- Wesche, K. (Hrsg.): Baustoffe für tragende Bauteile. Band 1 4, Bauverlag, Wiesbaden, 1996.
- Reinhardt, H-W.: Ingenieurbaustoffe. Ernst & Sohn, 2010.
- Informationsdienst Holz: Holzschutz Bauliche Maßnahmen
- Informationsdienst Holz: Holz als konstruktiver Baustoff
- Informationsdienst Holz: Baustoffe für den konstruktiven Holzbau
- Wagenführ, A.: Holzatlas, 2021
- Niemz, P., Sonderegger, W.: Holzphysik. Hanser Verlag, 2021
- Umdrucke zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Teilmodul		TM-Kurzbezeichnung	
Nr. 2.2 Bauchemie (B1-BC)		B1-BC	
(Construction Chemistry)			
Verantwortliche/r	Fakultät		
Christine Rieger (LBA)	hristine Rieger (LBA) Angewandte Natur- und Kult		
Lehrende/r / Dozierende/r Angebotsfrequenz			
Christine Rieger (LBA) in jedem Semester			
Lehrform			
Seminaristischer Unterricht mit Übungen sowie Praktikum			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	3 SWS	deutsch	3

Präsenzstudium	Eigenstudium
30 Stunden seminaristischer Unterricht;	16 Stunden Bearbeitung
12 Stunden Bauchemie-Praktikum (Präsenz)	online gestellter Aufgaben;
	12 Stunden Vorbereitung zu den
	Praktikumsversuchen und Bearbeitung
	der Kontrollfragen (für Antestate);
	20 Stunden eigenverantwortliches Lernen,
	ergänzendes Literaturstudium und
	Prüfungsvorbereitung

Studien- und Prüfungsleistung	
Studienleistung: schriftliche Ausarbeitung von Übungen m.E.	
Zugelassene Hilfsmittel für Leistungsnachweis	
siehe Studienplan	

Inhalte

- Berechnungen in der Chemie
- Wässrige Lösungen
- Chemische Gleichgewichte
- Säure-Base-Reaktionen
- Redoxreaktionen
- Elektrochemische Prozesse
- Metallkorrosion, Korrosionsschutz
- Silicatchemie
- Erhärtungsreaktionen
- Baustoffkorrosion
- Organische Verbindungen im Bauwesen
- Kunststoffe
- Klebstoffe
- Bautenschutz
- Bitumen, Teer, Asphalt
- Holz, Holzschutz
- Schadstoffe in Innenräumen
- Praktikumsversuche zu folgenden Themen:

halbquantitative Analyse von Bauwasser in Bezug auf betonangreifende Inhaltsstoffe, qualitative chemische Analyse von Mauerausblühungen, Korrosionsverhalten und -schutz von Baumetallen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Grundlagen der anorganischen und organischen Chemie und deren Anwendung auf bauchemische Zusammenhänge zu verstehen (3)
- Abläufe chemischer Prozesse im Bauwesen, wie Erhärtungsreaktionen von Bindemitteln nachzuvollziehen (2)
- Wirkungsweise von Polymermodfizierungen von Beton, organisch-chemischer Zusatzmittel und Oberflächenschutzsystemen zu beschreiben (3)
- Ursachen und Auswirkungen chemischer Schädigungsreaktionen auf zementgebundene Baustoffe, von Biokorrosion und Mauerausblühungen zu erkennen und zu beheben (3)
- Bauwasser und dessen mögliche Aggressivität zu beurteilen und entsprechende Schutzmaßnahmen für Baumaterialien zu ergreifen (3)
- einfache bauanalytische Untersuchungen vor Ort durchzuführen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage.

- verantwortungsbewusst die Verhaltensregeln in einem Chemielabor stets einzuhalten, um sich und andere nicht zu gefährden (3)
- Sicherheitsvorschriften im Umgang mit Chemikalien und Gefahrstoffen pflichtbewusst umzusetzen (3)
- eigenständig chemische Versuche durchzuführen (3)

• gewonnene analytische Daten und deren Bedeutung in der Gruppe zu diskutieren (3)

Angebotene Lehrunterlagen

für Vorlesung: Foliensammlung, Aufgabenpool mit Lösungen (online)

für Praktikum: Praktikumsskriptum, Kontrollaufgaben

Lehrmedien

Multimedialer seminaristischer Unterricht mit Tafelanschrieb, Fachvorträge

Literatur

- Benedix, Roland: "Bauchemie für das Bachelor-Studium"; 2. Auflage; Springer Vieweg Wiesbaden 2014
- Knoblauch, Harald und Schneider, Ulrich: "Bauchemie"; 7. Auflage; Werner Verlag Düsseldorf 2013
- Karsten, Rudolf: "Bauchemie"; 11. Auflage; VDE Verlag Berlin 2003
- Praktikums-Skriptum und Foliensätze zur Vorlesung "Bauchemie", OTH Regensburg
- Riedel, Erwin: "Allgemeine und anorganische Chemie"; 12. Auflage; de Gruyter Verlag Berlin 2018

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. O3 Bautechnische Mechanik (B1-BTM I)		3
(Basic Mechanics I)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Joachim Gschwind Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
1.	1.	Pflicht	8

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 03 Bautechnische Mechanik I (B1-	8 SWS	8
	BTM I)		

Teilmodul		TM-Kurzbezeichnung	
Nr. O3 Bautechnische Mechanik I (B1-BTM I)		B1-BTM I	
(Basic Mechanics I)			
Verantwortliche/r	Fakultät		
Prof. Dr. Joachim Gschwind	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Ursula Albertin-Hummel in jedem Semester			
Lehrform			
Seminaristischer Unterricht mit Übungen und Praktikum			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	8 SWS	deutsch	8

Präsenzstudium	Eigenstudium
120 Stunden seminaristischer Unterricht	120 Stunden eigenverantwortliches Lernen,
	Studienarbeiten, Prüfungsvorbereitung

Studien- und Prüfungsleistung
Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplan

Inhalte

Einleitung, Allgemeines:

Bedeutung, Aufbau und Zielsetzung der Baustatik, Sicherheitsbegriff,

Grundbegriffe und Einheiten, Aufbau einer statischen Berechnung

Kräfte und Momente:

Zusammensetzung und Zerlegen von Kräften und Momenten, Beherrschung der Gleichgewichtsbedingungen, Gleichgewicht von Kräften und Momenten in der Ebene

Kenntnis der an Bauwerken angreifenden Lasten, Lastarten, Lastannahmen

Auflagerreaktionen ebener Tragwerke (statisch bestimmte Systeme):

Begriff des Trägers, Tragwerksformen und ihre Idealisierung

Lagerarten, zusammengesetzte Tragwerke, Schnittprinzip,

Bestimmung der Auflagerreaktionen am einfachen Träger, Gelenkträger, Dreigelenkrahmen, geknickten und geneigten Träger, Fachwerken

Schnittgrößen ebener Tragwerke (statisch bestimmte Systeme):

Erweiterung des Schnittprinzips, Arten von Schnittgrößen,

Beherrschung der Ermittlung und Darstellung von Schnittgrößen, Superpositionsprinzip,

Differentielle Zusammenhänge zwischen Schnittgrößen und äußeren Belastungen,

Ermittlung von Schnittgrößen an Gelenkträgern, Dreigelenkrahmen,geknickten und geneigten Trägern

statisch bestimmte Fachwerke (statische Bestimmtheit, Nullstäbe, Knotenpunktverfahren, Ritterschnittverfahren, graphische Kontrolle)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage.

- die wichtigsten Elemente und Tragwerke der Statik zu erkennen (1).
- mit diesen Elementen und Tragwerken umzugehen (2).
- das Schnittprinzip und die Gleichgewichtbedingungen sicher anzuwenden (3).
- Auflagerkräfte und Schnittkraftlinien an statisch bestimmten Systemen zu ermitteln (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- statische Aufgabenstellungen zu erfassen (1).
- mechanische Zusammenhänge zu erkennen und anzuwenden (3).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

Gross, D., Hauger, W., Schröder, J., Wall, W.: Technische Mechanik, Band 1: Statik, 12.

Auflage, 2013, Springer Verlag, Berlin

Duddeck H., Ahrens H.: Statik der Stabtragwerke. Im Betonkalender 1998, Teil I, Ernst&Sohn-Verlag Berlin.

Hirschfeld K.: Baustatik. Springer-Verlag, Berlin

Krätzig W.B., Wittek U.: Tragwerke 1. Springer-Verlag, Berlin usw. 5. Auflage 2010

Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. O4 Mathematik für Bauingenieurwesen I (B1-MAB I)		4
(Mathematics for Civil Engineering I)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Susanne Rockinger Informatik und Mathematik		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
1.	1.	Pflicht	6

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 04 Mathematik für	6 SWS	6
	Bauingenieurwesen I (B1-MAB I)		

Teilmodul		TM-Kurzbezeichnung
Nr. 04 Mathematik für Bauingenieurwesen I (B1-MAB I)		B1-MAB I
(Mathematics for Civil Engineering I)		
Verantwortliche/r Fakultät		
Prof. Dr. Susanne Rockinger	Informatik und Mathematik	
Lehrende/r / Dozierende/r Angebotsfrequenz		
Siegmar Dietrich (LB)	in jedem Semester	
Prof. Dr. Susanne Rockinger		
Lehrform		
seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	6 SWS	deutsch	6

Präsenzstudium	Eigenstudium
90 h seminaristische Lehrveranstaltungen	90 h eigenverantwortliches Lernen

Studien- und Prüfungsleistung
Prüfungsleistung: schriftliche Prüfung; Dauer: 90 Minuten
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplan

Inhalte

Die Studierenden haben grundlegende Kenntnisse in den Bereichen:

- Reelle Zahlen
- Gleichungen und Ungleichungen
- Funktionen und Kurven
- Differentialrechnung von Funktionen einer Veränderlichen
- Integralrechnung von Funktionen einer Veränderlichen
- Potenzreihenentwicklung
- Statistik

Allgemeine Grundlagen:

Reellen Zahlen, Gleichungen, Ungleichungen, binomischer Lehrsatz

Funktionen und Kurven:

Definition und Darstellung einer Funktion, allgemeine Funktionseigenschaften (Nullstellen, Symmetrie, Monotonie), Grenzwerte von Folgen und Funktionen, Stetigkeit einer Funktion, Polynome, Potenz- und Wurzelfunktionen, trigonometrische Funktionen (Sinus, Kosinus, Tangens, Winkelmaße: Gradmaß, Bogenmaß, Gonmaß), Exponentialfunktionen, Logarithmusfunktionen

Differentialrechnung von Funktionen einer Veränderlichen:

Differenzierbarkeit einer Funktion, Ableitungsregeln (Summenregel, Produktregel, Quotientenregel, Kettenregel), logarithmische Ableitung, höhere Ableitungen, Anwendungen der Differentialrechnung (Tangente und Normale, Linearisierung einer Funktion, Mittelwertsatz der Differentialrechnung, Kurvendiskussion, Extremwertaufgaben, Tangentenverfahren von Newton)

Integralrechnung von Funktionen einer Veränderlichen:

Stammfunktionen, bestimmtes und unbestimmtes Integral, Fundamentalsatz der Differential- und Integralrechnung, Grundintegrale, Berechnung bestimmter Integrale unter Verwendung einer Stammfunktion, elementare Integrationsregeln, Integrationsmethoden (Substitution, partielle Integration, Partialbruchzerlegung), numerische Integration (Trapezformel, Simpson-Formel), Anwendungen der Integralrechnung (Flächenberechnungen, Bogenlänge einer ebenen Kurve, Volumen, Schwerpunkt und Massenträgheitsmoment eines Rotationskörpers)

Potenzreihenentwicklung:

Unendliche Reihen (Grundbegriffe, Konvergenzkriterien), Potenzreihen (Definitionen, Konvergenzverhalten, Eigenschaften), Taylorreihen (Taylorpolynome, Satz von Taylor, Taylorreihen, Anwendungsbeispiele, Integration durch Potenzreihenentwicklung, Grenzwertregel von L'Hospital)

Statistik:

Beschreibende Statistik (tabellarische und graphische Auswertung statistischer Daten, Kennwerte einer Stichprobe: Mittelwert, Median, Varianz, Standardabweichung, Quantile, Boxplot), Schließende Statistik (Dichte, Verteilungsfunktion, Normalverteilung, Erwartungswert und Varianz einer Zufallsvariable, Quantile)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, aus ihrem späteren Tätigkeitsfeld erwachsende mathematische Probleme als solche zu erkennen, sie korrekt zu formulieren und nach Wahl eines geeigneten Verfahrens zu lösen. Dies bedeutet insbesondere, dass die Studierenden in der Lage sind

- im Bereich der reellen Zahlen sicher zu arbeiten (2)
- Gleichungen und Ungleichungen in einer Unbekannten zu lösen (2)
- die im Bauingenieurwesen häufig auftretenden Funktionstypen zu erkennen (1)
- Fertigkeiten und Methoden der Differential- und Integralrechnung einer Veränderlichen bei Aufgabenstellungen aus dem Bauingenieurwesen anzuwenden (2)
- Problemstellungen aus dem Bereich der Differential- und Integralrechnung durch numerische Verfahren zu lösen (2)
- Anwendungsbereiche und Grenzen der Polynomapproximation durch Taylorentwicklung zu beurteilen (3)
- statistische Daten tabellarisch, graphisch und rechnerisch auszuwerten und aus diesen Daten statistische Schlussfolgerungen zu ziehen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mathematische Aufgabenstellungen zu erfassen (2)
- mathematische Zusammenhänge in korrekter Fachsprache wiederzugeben (2)
- fachliche Fragen zu stellen (2)
- fachliche Fragen angemessen zu beantworten (2)
- fachliche Inhalte in Lerngruppen zu diskutieren (2)
- mathematische Aufgabenstellungen eigenständig oder in einer Lerngruppe zu lösen (3)

Angebotene Lehrunterlagen

Skript zur Vorlesung, Lehrvideos, umfangreiche Sammlung von Übungsaufgaben mit detaillierten Lösungswegen, Probeklausuren mit Lösungen

Lehrmedien

Multimediale Vortragsvorlesung (Simulationen mit MAPLE, Beamer, Tafelanschrieb)

Literatur

Skript zur Vorlesung:

Rockinger, Susanne: Mathematik für Bauingenieure, Teil I, Lehrplattform ELO

Lehrbücher:

Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler. Band 1. Springer Vieweg, Wiesbaden 2018.

Rießinger, Thomas: Mathematik für Ingenieure. Springer, Berlin-Heidelberg 2017.

Rjasanowa, Kerstin: Mathematik für Bauingenieure. Hanser, München-Wien 2006.

Sanal, Ziya: Mathematik für Ingenieure. Springer Vieweg, Wiesbaden 2020.

Stingl, Peter: Mathematik für Fachhochschulen. Hanser, München 2009.

Westermann, Thomas: Mathematik für Ingenieure. Springer, Berlin-Heidelberg 2020.

Formelsammlung:

Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler. Springer Vieweg, Wiesbaden 2017.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 05 Grundlagen digitales Modellieren und IT für das Bauwesen		5
(B1-DMIT)		
(Introduction into digital Modeling and IT for Civil Engineering)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Euringer Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
1.	1.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 05 Grundlagen digitales	5 SWS	5
	Modellieren und IT für das Bauwesen		
	(B1-DMIT)		

Teilmodul	TM-Kurzbezeichnung			
Nr. 05 Grundlagen digitales Modellieren und IT für das Bauwesen		B1-DMIT		
(B1-DMIT)				
(Introduction into digital Modeling and				
Verantwortliche/r	Fakultät			
Prof. Dr. Thomas Euringer	Euringer Bauingenieurwesen			
Lehrende/r / Dozierende/r Angebotsfrequenz				
Prof. Dr. Thomas Euringer in jedem Semester				
Lehrform				
Seminaristischer Unterricht mit Übungen				

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
1.	5 SWS	deutsch	5

Präsenzstudium	Eigenstudium
90 Stunden seminaristischer Unterricht	90 Stunden eigenverantwortliches Lernen,
(Präsenz)	Studienarbeiten und Prüfungsvorbereitung
	(Eigenstudium)

Studien- und Prüfungsleistung
Prüfungsleistung: Schriftl. Prüfung; Dauer: 90 Minuten
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplan

Inhalte

Themenkomplex CAD / BIM:

- Einführung: Verfügbarkeit von bauspezifischer CAD-/BIM-Software an der OTH-Regensburg
- Software- und Hardwareguide für das Studium: Welchen Rechner und welche Software sollte ich zur Verfügung haben?
- · Geometrische, topologische, semantische Basismodelle
- Bauwerksinformationsmodelle Gesamtschau CAD- und BIM-fähige Tools für das Bauwesen,
- Verbreitung, Einsatzmöglichkeiten, Vor- und Nachteile der Systeme
- CAD / BIM (Building Information Modelling): Einführung in computergestütztes Modellieren und Entwerfen
- CAD-Grundbegriffe Draht-, Flächen-, Volumenmodelle
- Modellierungstechniken 2D- / 2,5D- / 3D- / 4D- / 5D- und 6D-Modelle
- modellorientiertes Arbeiten parametrisches Modellieren
- objektorientiertes Modellieren
- Ineinandergreifen verschiedener Systeme / Techniken
- Datenaustausch, Schnittstellen
- Visuelle Programmierschnittstelle wie z.B. Revit Dynamo

Die Inhalte werden an mindestens zwei, i.d.R. drei verschiedenen Modellierungssystemenvermittelt, die sowohl gute Verbreitung in der Industrie finden als auch zukunftsorientiertes Arbeiten garantieren.

Themenkomplex Tabellenkalkulation

Lösung bauspezifischer, tabellenorientierter Probleme Datenaufbereitung, Solver, Verweise, Im- und Export von Daten VBA in Excel: Makrorekorder, Funktionen und Module: siehe auch unten.

Themenkomplex Programmierung

Einführung, Überblick computerorientierter

- Methoden
- Prozesse
- Modelle

im Bauwesen

- Konstrukte einer Programmiersprache
- Programmtechnische Umsetzung und Implementierung, Algorithmen
- Überblick SW-Engineering
- Entwicklungsumgebungen

Einführung in

- Python

- Installation von Python, Entwicklungsumgebung (u.a. Visual Studio Code), Sprachkonstrukte, Datentypen, Operatoren, Pakete
- numpy Vektoren, Matrizen, lineare Algebra
- matplotlib Plotbibliothek
- scipy Weiterführende Methoden zur Numerik auf Basis numpy
- sympy Symbolische Mathematik, "Computeralgebra

- pandas Dataframe u.a. praktisch für Excel In-/Output
- Excel-Visual Basic for Applications
 - Sprachkonstrukte, Datentypen, Operatoren
 - Eigene Funktionen und Sub-Prozeduren
 - Daten I/O

Themenkomplex Computeralgebra

Symbolische und numerische Lösung von ingenieurmathematischen Aufgaben

- iterative Methoden
- numerische Methoden
- · graphische Darstellung

auf Basis Python SciPy und SymPy

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- den Markt und die Möglichkeiten, CAD- und BIM-Software im Bauwesen einzusetzen grob zu überblicken (2)
- mit mindestens zwei verbreiteten Modellierungssystemen einfache Bauwerke zu modellieren (2)
- nach einer Einführung die Methodik des Building Information Modeling (BIM) die Grundsätze des zeitgemäßen Arbeitens zu verstehen (1)
- parametrisches und bauteilorientiertes Arbeiten grundsätzlich anzuwenden (2)
- Tabellenkalkulationsaufgaben mit Bezug auf das Bauingenieurwesen korrekt und redundanzfrei abzubilden
- Einfache Algorithmen in Python und VBA zu implementieren (1)
- Mathematische Aufgaben auf Basis Python SymPy symbolisch zu lösen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mit mindestens zwei CAD-Systemen bauspezifische Modellierungsaufgaben anzugehen (2)
- die Methodik des modellorientierten Arbeitens als Basis für datenreiche Bauwerks-Informationsmodelle zu überblicken (2)
- eine Entscheidungsgrundlage für Vor- und Nachteile der verschiedenen Modellierungstoolsund Modellierungsmethoden zu erarbeiten (2)
- nach Anfertigung der Studienarbeit- mindestens ein Modellierungstool praxisnahe und modellierungstechnisch auf dem Stand der Technik anzuwenden (2)
- tabellenorientierte Datenstrukturen korrekt in Excel zu abzubilden (2)
- Entwicklungsumgebungen (IDE's) nutzen (1)
- Einfache Algorithmen in ein Programm umsetzen (1)
- Einfache iterative Verfahren zu implementieren (1)
- Datenstrukturen redundanzfrei aufzubauen (1)
- Nutzung von Software für symbolische Computeralgebra (2)

Angebotene Lehrunterlagen

Vorlesungsskripte, Vorlagedaten, Schulungsunterlagen; E-Learning-Plattform, ergänzende selbst produzierte Lehrvideos

Lehrmedien

Multimediale Vorlesung unter anderem in CIP-Pools mit Arbeit am Rechner

Literatur

Dokumentationen / Onlinehilfen / Workgroups / Usergroups zu den verwendeten CAD-/ BIM-Systemen wie

- Autodesk (AutoCAD / Revit / Navis Works)
- Nemetschek (Allplan, ArchiCAD)
- ggf. Siemens NX
- ggf. Tekla Structures
- CAD Modellierung im Bauwesen: Integrierte 3D- Planung von Brückenbauwerken, Prof. Dr.-Ing. Th. Euringer (Hrsg.), Fakultät Bauingenieurwesen – Bauinformatik/CAD, Ostbayerische Technische Hochschule Regensburg, 2011
- Praxishandbuch Allplan, Markus Philipp, Hanser Verlag,
- Rjasanowa, K.: Mathematische Modelle im Bauwesen, Hanser Verlag, 2010
- python.orgSkripten zur Lehrveranstaltung (mit weiteren Literaturhinweisen) auf der E-Learning-Plattform

Weitere Informationen zur Lehrveranstaltung

Studierende brauchen auch in der Vorlesung einen eigenen Rechner. Es wird nur Software verwendet, die für Studierende kostenlos bezogen werden kann.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 06 Bautechnische Mechanik II (B1-BTM II)		6
(Basic Mechanics II)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Joachim Gschwind Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.	1.	Pflicht	6

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 06 Bautechnische Mechanik II	6 SWS	6
	(B1-BTM II)		

Teilmodul		TM-Kurzbezeichnung	
Nr. 06 Bautechnische Mechanik II (B1-BTM II)		B1-BTM II	
(Basic Mechanics II)			
Verantwortliche/r	Fakultät		
Prof. Dr. Joachim Gschwind	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Joachim Gschwind in jedem Semester Prof. Dr. Othmar Springer			
Lehrform			
Seminaristischer Unterricht mit Übungen			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gomes outstand	[SWS oder UE]		[ECTS-Credits]
2.	6 SWS	deutsch	6

Präsenzstudium	Eigenstudium
- 90 Stunden seminaristischer Unterricht	- 90 Stunden eigenverantwortliches Lernen,
(Präsenz)	Studienarbeiten, Prüfungsvorbereitung
	(Eigenstudium)

Studien- und Prüfungsleistung
Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplan
Sierie Studieripian

Inhalte

Schnittgrößen ebener Tragwerke (statisch bestimmte Systeme):

Ermittlung von Schnittgrößen an gemischten Systemen

Ermittlung der Lastannahmen auf Tragwerke

Grundlagen der Festigkeitslehre:

Zusammenhang zwischen Art Ermittlung der Lastannahmen auf Tragwerke

Berechnung der Querschnittskennwerte (Flächenträgheitsmomente), Schwerpunktberechnung, zusammengesetzte Querschnitte

Biegebeanspruchung, Biegung mit Längskraft, Doppelbiegung und schiefe Biegung,

Querschnittskern, Querschnitt mit versagender Zugzone

Differentielle Zusammenhänge zwischen Verformungen, Schnittgrößen und äußeren Belastungen

Verformungsberechnung (mittels Tabellenwerken/Superpositionsprinzip und mittels Differentialgleichungsbeziehungen)

Schubspannungen aus Querkraftbeanspruchung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Bedeutung der unterschiedlichen Lastannahmen zu kennen (1)
- auf Bauwerke einwirkende Lasten zu erkennen und zu ermitteln (2).
- ihre Behandlung im Rahmen des Sicherheitskonzeptes anzuwenden (3).
- die wichtigsten Elemente und Kenngrößen der Festigkeitslehre zu erkennen und mit ihnen umzugehen (1).
- diese Kenngrößen und ihre Bedeutung für die Mechanik einzuordnen (2).
- grundlegende Querschnittswerte zuverlässig zu ermitteln (2).
- Spannungs- und Verformungsberechnungen zuverlässig durchzuführen (2).
- bemessungsbestimmende Kriterien zu erkennen und mit ihrer Kenntnis die Bemessung durchzuführen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- statische Aufgabenstellungen von der Ermittlung der Lasten bis hin zur Querschnittsbemessung zu erfassen (1).
- mechanische Zusammenhänge zu erkennen und anzuwenden (3).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Berechnungsbeispiele, Bemessungstabellen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

Gross, D., Hauger, W., Schröder, J., Wall, W.: Technische Mechanik, Band 1: Statik, 12.

Auflage, 2013, Springer Verlag, Berlin

Duddeck H., Ahrens H.: Statik der Stabtragwerke. Im Betonkalender 1998, Teil I, Ernst&Sohn-Verlag Berlin.

Hirschfeld K.: Baustatik. Springer-Verlag, Berlin

Krätzig W.B., Wittek U.: Tragwerke 1. Springer-Verlag, Berlin usw. 5. Auflage 2010

Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse:

Lehrveranstaltungen B1-BTM I

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 07 Baukonstruktion und Tragwerke (B1-BKT)		7
(Building construction and structures)		
Modulverantwortliche/r Fakultät		
Prof. Florian Weininger Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
2.	1.	Pflicht	5

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 07 Baukonstruktion und Tragwerke (B1-BKT)	5 SWS	5

Teilmodul		TM-Kurzbezeichnung
Nr. O7 Baukonstruktion und Tragwerke (B1-BKT)		B1-BKT
(Building construction and structures)		
Verantwortliche/r	Fakultät	
Prof. Florian Weininger Bauingenieurwesen		
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Florian Weininger in jedem Semester		
Lehrform		
Seminaristischer Unterricht, Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	5 SWS	deutsch	5

Präsenzstudium	Eigenstudium
50 Stunden seminaristischer Unterricht	10 Stunden eigenverantwortliches Lernen
(Präsenz); 25 Stunden virtuelle	(Eigenstudium); 25 Stunden Studienarbeiten
Lehrveranstaltung (teilw. in Gruppen)	und Kurzübungen (Eigenstudium); 40 Stunden
	Prüfungsvorbereitung (Eigenstudium)

Studien- und Prüfungsleistung

Studienleistungen: schriftliche Ausarbeitung von Übungen m.E.

Prüfungsleistung: schriftliche Prüfung, Dauer 90 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

- Grundlagen bzgl. der Teilbereiche Baugrund, Gründung, Keller Außenwände, Decken, Steil- und Flachdächer, Aussteifen und Fügen sowie Dämmen und Dichten.
- Prinzipien und Konstruktionen der Gebäudehülle hinsichtlich ihres Aufbaus, ihrer Wirkungsweise und ihrer Fügetechniken.
- Verständnis für Tragstrukturen und Ihre Materialisierung
- Grundlegende Funktion und Ausbildung der lastabtragenden Elemente in einem Bauwerk
- Erkennen von Tragwerken
- Konstruktive Analyse von Anschlüssen
- Beiträge zur geschichtlichen Entwicklung der Tragwerke
- Gebaute Umwelt und Baukultur

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Grundlegende Funktionsprinzipien von Gebäuden zu verstehen (2)
- Außenwand- und Dachkonstruktionen zu benennen. (1)

- die Aufgaben der Gebäudehülle mit ihren Bestandteilen wie Sonnenschutz, Fenster, Fassade, Dach zu erfassen. (1)
- die Funktionsweise und die Einbindung des Tragwerks in dem Gesamtzusammenhang eines Bauwerkes zu verstehen. (1)
- Position und die Wirkungsweise tragender Bauteile im Gesamtsystem Gebäude zu identifizieren (1)
- einfache Konstruktive Aufgabenstellungen planerisch umzusetzen. (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- konstruktive Zusammenhänge zu erkennen (1).
- Fachbegriffe im Dialog mit anderen Planern anzuwenden (2)
- Kompetenzen und Aufgabenbereiche anderer Fachdisziplinen zuzuordnen. (2)
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- die eigene fachliche Kompetenzentwicklung auf Basis von Grundlagenwissen zielgerichtet voranzutreiben. (2)

Angebotene Lehrunterlagen

Vorlesungsskripten, Planungsbeispiele, Materialmuster

Lehrmedien

Multimediale Vortragsvorlesung, Videos, Exkursionen

Literatur

- Frick, Knöll | Baukonstruktionslehre, 2 Bände | Verlag Vieweg und Teubner |2010
- Anton Pech |Baukonstruktionen | div Bände |Springer-Verlag | 2006
- Jose L. Moro | Baukonstruktion vom Prinzip zum Detail | div. Bände |Springer Verlag|
 2012
- Heino Engel | Tragsysteme | Structure Systems | 2006

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 08 Bauphysik (B1-BP)		8
(Building Physics)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Oliver Steffens	Angewandte Natur- und Kulturwissenschaften	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.	1.	Pflicht	4

Empfohlene Vorkenntnisse
Nr. 4 Mathematik für Bauingenieure I (B1-MAB I)

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 08 Bauphysik (B1-BP)	4 SWS	4

Teilmodul		TM-Kurzbezeichnung	
Nr. 08 Bauphysik (B1-BP)		B1-BP	
(Building Physics)			
Verantwortliche/r	Fakultät		
Prof. Dr. Oliver Steffens	Angewandte Natur- und Kulturwissenschaften		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Rita Elrod	in jedem Semester		
Prof. Dr. Oliver Steffens			
Lehrform			
Seminaristischer Unterricht mit Übungen und Praktikum			

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
2.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
36 h Seminaristischer Unterricht mit Übungen;	78 h für eigenverantwortliches Lernen,
4 Praktikumsversuche (jeweils 90 Minuten)	Bearbeitung der Übungen, Erstellung
	der Ausarbeitungen zum Praktikum,
	Prüfungsvorbereitung

Studien- und	Prüfungsleistung
--------------	------------------

Studienleistung: Teilnahmenachweis mit Erfolg Prüfungsleistung: schriftliche Prüfung 90 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

WÄRME:

Einfu#hrung in die Wa#rmelehre (Begriffe, Konzepte), Wärmespeicherung, Wa#rmetransport, Wa#rmedurchgang durch Bauteile, Wa#rmeschutzanforderungen (DIN 4108), Wärmeverluste durch Lüftung, Wärmebrücken, Wa#rmebilanz eines Geba#udes (Gebäudeenergiegesetz).

FEUCHTE:

Relative Luftfeuchte, hygrisches Gleichgewicht, Berechnungen der relativen Feuchte in Abhängigkeit von örtlichen Temperaturen, Schimmelrisiko, Feuchtebilanz bei Lüftung, Wasserdampfdiffusion durch Bauteile, Diffusionswiderstandszahl, Glaser-Verfahren.

SCHALL:

Schallwellen, Schallfeldgrößen und Schallpegel, Schallausbreitung (Luftschall), Schallfelder in geschlossenen Ra#umen (Absorption und Nachhallzeit), Schalldurchgang durch Bauteile (Schallda#mmmaß), Bergersches Gesetz.

PRAKTIKUM:

Versuche zum Vorlesungsstoff: Wärmepumpe, Wärmeleitfähigkeit, U-Wert und Glaser-Verfahren, Kundtsches Rohr (Schallwellen/Absorption).

Fehlerrechnung (praktikumsbegleitend): systematische Fehler, zufa#llige Fehler, Gauß-Verteilung, absolute und relative Fehler, lineare Fehlerfortpflanzung.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die physikalischen Grundlagen der Wärmespeicherung und des Wärmetransports zu kennen (1)
- die im Bau üblichen Kenngrößen zu benennen und zu interpretieren (2)
- den stationären Wärmetransport durch Bauteile zu berechnen (U-Wert, Temperaturprofil)
 (2)
- die relative Luftfeuchte und ihre Abhängigkeit von der Temperatur zu beschreiben (1)
- die relative Luftfeuchte bei unterschiedlichen Temperaturen zu berechnen (2)
- Wasserdampfdiffusion durch Bauteile zu kennen (1)
- Den Glaser-Nachweis für den Feuchteschutz durchzuführen (3)
- Ursachen, Konsequenzen und Risiken von Wärmebrücken zu beschreiben (2)
- die physikalischen Grundlagen und die Phänomenologie des Schalls und seiner Ausbreitung zu verstehen (1)
- korrekt mit Schallpegeln zu rechnen (Addition, Subtraktion, Mittelung) (2)
- die Schallausbreitung in Räumen zu erklären (2) und die Nachhallzeit zu berechnen (Sabine-Formel) (2)
- die Definition des Luftschalldämmmaßes von Bauteilen zu kennen (1)
- das Bergersche Gesetz zu kennen (1)
- einfache Luftschall-Berechnungen einschaliger Bauteile (Schalldämmmaß) durchzuführen
 (3)
- einfache bauphysikalische Messungen durchzuführen (2)
- physikalische Messungen gemäß wissenschaftlicher Standards zu planen (3), durchzuführen (3), zu dokumentieren (3) und zu interpretieren (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- gute Teamarbeit zu schätzen (1)
- Arbeitspakete im Team aufzuteilen und gemeinsam ein Thema zu bearbeiten (2)
- sich selbst zu organisieren (2)
- Abgabefristen einzuhalten (2)

Angebotene Lehrunterlagen

Vorlesungsskript, Lehrvideos, Übungsaufgaben, Software-Tools, Zusatzmaterial

Praktikumsanleitungen, Kontrollaufgaben, Foliensammlung (Vorlesung)

Literatur

- 1)Fischer, Jenisch, Stohrer, Homann, Freymuth, Richter, Häupl: Lehrbuch der Bauphysik, Vieweg+Teubner, 2008.
- 2) Willems, Schild, Dinter: Handbuch Bauphysik, 2 Bände, Vieweg, 2006.
- 3)Fasold, Veres: Schallschutz und Raumakustik in der Praxis, Verlag Bauwesen, 2003. Schneider-Bautabellen für Ingenieure, Werner-Verlag, 2014.
- 4) Vorlesungsskript "Wärme und Feuchte" (Prof. Dr. Steffens)
- 5) Vorlesungsskript "Akustik und Schallschutz" (Prof. Dr. Steffens)

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. O9 Baustoffe und Boden (B1-BBB)		9
(Construction Materials and Geological Engineering)		
Modulverantwortliche/r Fakultät		
Prof. Charlotte Thiel	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.	1.	Pflicht	4

Verpflichtende Voraussetzungen		

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 9.1 Baustoffkunde II (B1-BSK II)	4 SWS	4
2.	Nr. 9.2 Ingenieurgeologie und Bodenmechanik (B1-IGB)	3 SWS	3

	TM-Kurzbezeichnung		
	B1-BSK II		
Fakultät			
Bauingenieurwesen			
Angebotsfrequenz			
in jedem Semester			
Lehrform			
Seminaristischer Unterricht mit Übungen und Praktika			
	Bauingenieurwesen Angebotsfrequenz in jedem Semester		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
33 Stunden seminaristische	80 Stunden eigenverantwortliches Lernen,
Lehrveranstaltungen, 6 Stunden Praktika	Studienarbeiten

Studien- und Prüfungsleistung

Studienleistung:

- erfolgreiche Teilnahme am Praktikum und anerkannter Praktikumsbericht
- erfolgreiche Bearbeitung der Studienarbeiten mit Abgabe der bearbeiteten Studienarbeit
- Besuch der Exkursionen und Vorträge

Prüfungsleistung für das Gesamtmodul B1-BBB: schriftliche Prüfung, Dauer: 150 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

Baustoffkundliches Grundlagenwissen

Allgemeinen Grundlagen

Systematik, Dichte, Gefügekenngrößen, Porigkeit, Feuchte, Verarbeitungskennwerte

Mechanische Kennwerte

Festigkeit und Verformungsverhalten (reversible, irreversible, spannungsabhängige und spannungsunabhängige Verformungen). Dauerhaftigkeit

Wasserbeständigkeit, Frostbeständigkeit, chemische Angriffe, Korrosion,

Brandbeständigkeit Sicherheitsbegriff

Beanspruchung und Beanspruchbarkeit

Naturstein und Gesteinskörnung für Beton

Beurteilung der Gesteinsbeschaffenheit und Einsatz von Natursteinplatten, Aufbereitung für den Einsatz als Zuschlagstoff in Beton und Mörtel. Ton im Bauwesen

Mineralische Bindemittel

Zement, Kalk, Gips, sonstige Bindemittel, Hochofenschlacke

Beton

Herstellung, Einbau und Nachbehandlung, Mischungsberechnung, Beanspruchung und daraus folgende Grenzwerte der Zusammensetzung, Frisch- und Festbetonprüfungen, Zusatzmittel und Zusatzstoffe, Sonderbetone

Mörtel und Estriche

Putz und Mauermörtel, Estriche für Hoch- und Industriebau

Mauersteine

Keramische Ziegel, Kalksandstein, Porenbeton, Beton

Überblick über den Baustoff Glas

Fähigkeit zur Ausführung von ausgewählten Baustoffprüfungen

Praktische Übungen im Labor:

Dauerhaftigkeit, Bindemittel, Festigkeiten

Beton im Bestand, Gesteinskunde, Frisch- und Festbeton,

Bitumen und Asphalt, Exkursionen: Zementwerk u./o. Ziegelwerk

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Die Studierenden

- kennen in die baustoffwissenschaftlichen Grundlagen um Baustoffe beurteilen, richtig auswählen und anwenden zu können (1).
- verstehen die Stoffgesetze, Modellannahmen und Beanspruchungen (3).
- haben einen Überblick über die Baustoffe des konstruktiven Ingenieurbaus bezüglich ihrer Herstellung, Beeinflussbarkeit, technologischen Eigenschaften und sinnvollen Anwendungsgebiete (2).
- sind fähig im Rahmen von Übungen die erlernten Kenntnisse unmittelbar auf kleine Beispiele zu übertragen (3).
- sind in der Lage selbständig grundlegende Entscheidungen zur Baustoffwahl zu treffen oder selbstständig Informationen zu Baustoffen zu beurteilen (2).
- können bei der Bauausführung baustoffspezifische Maßnahmen ergreifen (2)
- sind in der Lage fundamentale Ursachen von Bauschäden zu erkennen. (2)
- Sie verfügen somit über fundierte Grundlagenkenntnisse zur weitgehenden Beantwortung der baustoffspezifischen Fragestellungen im Kontext des Entwurfs und der Ausführung von Bauwerken sowie zu deren Dauerhaftigkeit. (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- baustoffkundliche Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (3).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Praktikumsunterlagen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb Exkursionen, Praktikum, Exponate

Literatur

- Härig S., Günther K., Klausen D.: Technologie der Baustoffe. Verlag C. F. Müller, Heidelberg, 1994.
- Krenkler, K.: Chemie des Bauwesens. Band 1: Anorganische Chemie, Springer, Berlin. 1980.
- Rostásy, F. S.: Baustoffe. Kohlhammer, Stuttgart, 1983.
- Schäffler, H., Bruy E., Schelling, G.: Baustoffkunde. Vogl Buchverlag, Würzburg, 1996.
- Scholz, Hiese: Baustoffkenntnis. Werner Verlag.
- Springenschmid, R.: Betontechnologie für die Praxis. Bauwerk-Verlag, Berlin, 2007.
- Weber R., Tegelaar R.: Guter Beton. Verlag Bau + Technik,2001.
- Weißbach W.: Werkstoffkunde und Werkstoffprüfung. Vieweg, Braunschweig, 1994.
- Wesche, K. (Hrsg.): Baustoffe für tragende Bauteile. Band 1 4, Bauverlag, Wiesbaden, 1996.
- Reinhardt, H-W.: Ingenieurbaustoffe. Ernst & Sohn, 2010.
- Umdruck zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Teilmodul	TM-Kurzbezeichnung		
Nr. 9.2 Ingenieurgeologie und Bodenmechanik (B1-IGB)		B1-IGB	
Verantwortliche/r	Fakultät		
Prof. Dr. Thomas Wolff	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Thomas Wolff	in jedem Semester	in jedem Semester	
Lehrform			
Seminaristischer Unterricht mit Übungen und Praktika			

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
2.	3 SWS	deutsch	3

igenverantwortliches Lernen, Literaturstudium, Ausarbeitungen m
i

Studien- und Prüfungsleistung

Studienleistung: anerkannte Ausarbeitung zu den Praktika, anerkannte Studienarbeiten Prüfungsleistung für das Gesamtmodul B1-BBB: schriftliche Prüfung, Dauer: 150 Minuten (BSK: 90 min, IGB: 60 min)

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

Geologische Grundlagen:

Einführung in die Geologie, Gesteine, Fels, Gebirge, Verwitterung und Verkarstung, Abtrag, Transport, Sedimentation, Diagenese, Geologische Karten, Natursteine - Nutzung und Lagerstätten

Bodeneigenschaften und Bodenklassifizierung:

Bodenbenennung und -beschreibung, Dichten, Wichten, Wasser und Kalkgehalt, Plastizitätsgrenzen, Lagerungsdichte, Bodenklassifizierung, Durchlässigkeit (Darcy), Last-Verformungsverhalten (Steifigkeit, Ersatzmoduli); Reibungswinkel und Kohäsion (Scherfestigkeit nach Mohr-Coulomb),

Erdbau:

Gewinnung von Boden- und Felsklassen, Homogenbereiche, Frostempfindlichkeit, Frostschutzschichten, Einbau, Verdichtung, Proctorversuch, Verdichtungskontrollen u. a. Lastplattenversuch, Durchlässigkeitsermittlung

Baugrunderkundung:

Schürfe, Sondier- und Bohrverfahren, Probenahme, Korrelationen, Auswertung und Interpretation

Wasser im Boden: Einfluss, Grundlagen der Entwässerung von Böden und Wasserhaltung Wasserhaltung: Arten und Dimensionierung

Spannungen im Boden: Prinzip der totalen und effektiven Spannungen im Halbraum

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Locker- u. Festgesteine entsprechend deren Genese ingenieurgeologisch zu zuordnen (1)
- die natürlicher Baustoffe Boden und Fels zu benennen und zu klassifizieren (2)
- die wichtigsten Eigenschaften und Kennwerte zu ermitteln und zu interpretieren (3)
- Baugrunderkundungsverfahren aufgabenspezifisch auszuwählen (3)
- die Wirkung von Wasser im Boden zu erfassen (3)
- das Prinzip der totalen und effektiven Spannungen im Halbraum anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- weiterführenden Vorlesungen im Rahmen der Ausbildung mit einem besseren Grundverständnis zu folgen (2)
- ingenieurtechnische Zusammenhänge bei geotechnischen Fragestellungen zwischen Erkundung, Planung und Ausführung wahrzunehmen (1-2)
- weitere Verständnisfrage im Rahmen der interdisziplinäre Ausbildung zum Bauingenieur zu formulieren (2)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Exkursionen, Praktika

Literatur

- Engel, J., v. Soos, P.: Eigenschaften von Boden und Fels ihre Ermittlung im Labor. In: Grundbau-Taschenbuch Band 1, 7. Auflage; Ernst & Sohn, Berlin, 2008.
- Engel, J., Lauer, C.: Einführung in die Boden- und Felsmechanik: Grundlagen und Berechnungen. Fachbuchverlag Leipzig (Hanser), 2010.
- Floss, R.: Handbuch ZTVE-StB: Kommentar und Leitlinien mit Kompendium Erd- und Felsbau. 4. Auflage, Kirschbaum-Verlag, Bonn, 2011.
- Prinz, H.; Strauß, R.: Abriss der Ingenieurgeologie. 4. Auflage, Elsevier, Spektrum Akademischer Verlag, München, 2006.
- Powrie, W.: Soil Mechanics. Spon Press, London and New York, 2002.
- Normen, Richtlinien und Merkblätter
- Skript zur Vorlesung (mit weiteren Literaturangaben)

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 10 Mathematik für Bauingenieurwesen II (B1-MAB II)		10
(Mathematics for Civil Engineering II)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Susanne Rockinger	. Dr. Susanne Rockinger Informatik und Mathematik	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.	1.	Pflicht	4

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 10 Mathematik für	4 SWS	4
	Bauingenieurwesen II (B1-MAB II)		

Teilmodul	TM-Kurzbezeichnung	
Nr. 10 Mathematik für Bauingenieurwesen II (B1-MAB II)		B1-MAB II
(Mathematics for Civil Engineering II)		
Verantwortliche/r Fakultät		
Prof. Dr. Susanne Rockinger Informatik und Mathematik		
Lehrende/r / Dozierende/r Angebotsfrequenz		
Siegmar Dietrich (LB) in jedem Semester		
Prof. Dr. Susanne Rockinger		
Lehrform		
Seminaristischer Unterricht		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
2.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 h seminaristische Lehrveranstaltungen	60 h eigenverantwortliches Lernen

Studien- und Prüfungsleistung	
Prüfungsleistung: Klausur, Dauer: 60 min	
Zugelassene Hilfsmittel für Leistungsnachweis	
siehe Studienplan	

Inhalte

Die Studierenden haben grundlegende Kenntnisse in den Bereichen:

- Differential- und Integralrechnung von Funktionen mehrerer Veränderlicher
- Lineare Algebra
- Komplexe Zahlen
- Differentialgleichungen

Differential- und Integralrechnung von Funktionen mehrerer Veränderlicher:

Definition einer Funktion mehrerer Veränderlicher, graphische Darstellung, Differentiation (partielle Ableitungen 1. Ordnung, partielle Ableitungen höherer Ordnung, Anwendungen: Tangentialebene, totales Differential, lokale Extremwerte und Sattelpunkte, Extremwertaufgaben), Mehrfachintegrale (Doppelintegrale, Dreifachintegrale, Anwendungen: Volumen, Schwerpunkt, Momente)

Lineare Algebra:

Matrizen (Definitionen, Beispiele, Rechenoperationen), Determinanten, Rang einer Matrix, lineare Gleichungssysteme (Gaußscher Algorithmus, Lösungsverhalten linearer Gleichungssysteme, Anwendungen), Eigenwerte und Eigenvektoren

Komplexe Zahlen:

Definitionen, Darstellung in der Gaußschen Zahlenebene, Rechnen mit komplexen Zahlen, algebraische Gleichungen im Komplexen: Fundamentalsatz der Algebra

Differentialgleichungen:

Grundbegriffe (Definitionen, Beispiele, Anfangswert- und Randwertprobleme), Differentialgleichungen 1. Ordnung (homogene und inhomogene lineare Differentialgleichungen mit konstanten Koeffizienten, Anwendung: Wärmeübergang), Differentialgleichungen 2. Ordnung (homogene und inhomogene lineare Differentialgleichungen mit konstanten Koeffizienten, Anwendung: mechanische Schwingungen), numerische Integration einer Differentialgleichung (Eulerverfahren, Runge-Kutta-Verfahren)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, aus ihrem späteren Tätigkeitsfeld erwachsende mathematische Probleme als solche zu erkennen, sie korrekt zu formulieren und nach Wahl eines geeigneten Verfahrens zu lösen. Dies bedeutet insbesondere, dass die Studierenden in der Lage sind

- im Bereich der komplexen Zahlen sicher zu arbeiten (2)
- Fertigkeiten und Methoden der Differential- und Integralrechnung mehrerer Veränderlicher bei Aufgabenstellungen aus dem Bauingenieurwesen anzuwenden (2)
- das Lösungsverhalten linearer Gleichungssysteme zu beurteilen (2)
- lineare Gleichungssysteme in mehreren Unbekannten zu lösen (2)
- Eigenwerte und Eigenvektoren von quadratischen Matrizen zu berechnen (2)
- Differentialgleichungen aus dem Bauingenieurwesen zu analysieren (2)
- Lineare Differentialgleichungen analytisch zu lösen
- Differentialgleichungen durch geeignete numerische Verfahren approximativ zu lösen (2)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mathematische Aufgabenstellungen zu erfassen (2)
- mathematische Zusammenhänge in korrekter Fachsprache wiederzugeben (2)
- fachliche Fragen zu stellen (2)
- fachliche Fragen angemessen zu beantworten (2)
- fachliche Inhalte in Lerngruppen zu diskutieren (2)
- mathematische Aufgabenstellungen eigenständig oder in einer Lerngruppe zu lösen (3)

Angebotene Lehrunterlagen

Skript zur Vorlesung, Lehrvideos, umfangreiche Sammlung von Übungsaufgaben mit detaillierten Lösungswegen, Probeklausuren mit Lösungen

Lehrmedien

Multimediale Vortragsvorlesung (Simulationen mit MAPLE, Beamer, Tafelanschrieb)

Literatur

Skript zur Vorlesung:

Rockinger, Susanne: Mathematik für Bauingenieure, Teil II, Lehrplattform ELO

Lehrbücher:

Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler. Band 2. Springer Vieweg, Wiesbaden 2015.

Rießinger, Thomas: Mathematik für Ingenieure. Springer, Berlin-Heidelberg 2017. Rjasanowa, Kerstin: Mathematik für Bauingenieure. Hanser, München-Wien 2006.

Sanal, Ziya: Mathematik für Ingenieure. Springer Vieweg, Wiesbaden 2020.

Stingl, Peter: Mathematik für Fachhochschulen. Hanser, München 2009.

Westermann, Thomas: Mathematik für Ingenieure. Springer, Berlin-Heidelberg 2020.

Formelsammlung:

Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler. Springer Vieweg, Wiesbaden 2017.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 11 Allgemeinwissenschaftliches Wahlpflichtmodul (B1-AWP)		11
(Mandatory General Studies Elective N		
Modulverantwortliche/r		
Prof. Dr. Gabriele Blod Angewandte Natur- und Kulturwissenschaften		urwissenschaften

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
·			[ECTS-Credits]
2.	1.	Pflicht	4

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 11.1 Allgem. Wissenschaftl. Modul I (B1-AWP I)	2 SWS	2
2.	Nr. 11.2 Allgem. Wissenschaftl. Modul II (B1-AWP II)	2 SWS	2

Teilmodul		TM-Kurzbezeichnung	
Nr. 11.1 Allgem. Wissenschaftl. Modul I (B1-AWP I)		B2-AWP I	
(Mandatory General Studies Elective N	Nodule I)		
Verantwortliche/r Fakultät			
Prof. Dr. Gabriele Blod	Angewandte Natur- und Kulturwissenschaften		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
N.N.	in jedem Semester		
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 Stunden seminaristischer Unterricht	30 Stunden eigenverantwortliches Lernen
(Präsenz)	(Eigenstudium)

Studien- und Prüfungsleistung

Mündlicher Leistungsnachweis und/oder Klausur und/oder Studienarbeit

Inhalte

Je nach Veranstaltung

Die Studierenden haben die Möglichkeit, aus einem breit gefächerten Veranstaltungskatalog auszuwählen. Der Katalog wird jeweils rechtzeitig vor Semesterbeginn von der Hochschule veröffentlicht.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Veranstaltung

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Veranstaltung

Angebotene Lehrunterlagen

Je nach Veranstaltung

Lehrmedien

Je nach Veranstaltung (Tafel, Flipchart, Overhead, Beamer, Metaplanwand)

Literatur

Je nach Veranstaltung

Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20222)

Weitere Informationen zur Lehrveranstaltung

Kenntnisse: Die Studierenden erwerben Wissen über allgemeinwissenschaftliche Themen – in den Bereichen Schlüsselqualifikationen / Sprachen / Orientierungswissen wie z. B. BWL, Recht, Naturwissenschaften, Technik

Fertigkeiten und Kompetenzen: Die Studierenden sind in der Lage, dieses theoretische Wissen in praktischen Situationen (Studium, Beruf) anzuwenden

Teilmodul		TM-Kurzbezeichnung	
Nr. 11.2 Allgem. Wissenschaftl. Modul II (B1-AWP II)		B2-AWP II	
(Mandatory General Studies Elective Module II)			
Verantwortliche/r Fakultät			
Prof. Dr. Gabriele Blod	Angewandte Natur- und Kulturwissenschaften		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
N.N.	in jedem Semester		
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
3	[SWS oder UE]		[ECTS-Credits]
2	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 Stunden seminaristischer Unterricht	30 Stunden eigenverantwortliches Lernen
(Präsenz)	(Eigenstudium)

Studien- und Prüfungsleistung

Mündlicher Leistungsnachweis und/oder Klausur und/oder Studienarbeit

Inhalte

Je nach Veranstaltung

Die Studierenden haben die Möglichkeit, aus einem breit gefächerten Veranstaltungskatalog auszuwählen. Der Katalog wird jeweils rechtzeitig vor Semesterbeginn von der Hochschule veröffentlicht.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Veranstaltung

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Je nach Veranstaltung

Angebotene Lehrunterlagen

Je nach Veranstaltung

Lehrmedien

Je nach Veranstaltung (Tafel, Flipchart, Overhead, Beamer, Metaplanwand)

Literatur

Je nach Veranstaltung

Name des Studiengangs: Bachelor Bauingenieurwesen (PO: 20222)

Weitere Informationen zur Lehrveranstaltung

Kenntnisse: Die Studierenden erwerben Wissen über allgemeinwissenschaftliche Themen – in den Bereichen Schlüsselqualifikationen / Sprachen / Orientierungswissen wie z. B. BWL, Recht, Naturwissenschaften, Technik

Fertigkeiten und Kompetenzen: Die Studierenden sind in der Lage, dieses theoretische Wissen in praktischen Situationen (Studium, Beruf) anzuwenden

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 12 Baubetrieb (B2-BB)		12
Modulverantwortliche/r Fakultät		
Prof. Klaus Hager Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
3. und 4.	2.	Pflicht	8

Verpflichtende Voraussetzungen
Keine
Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 12.1 Baubetrieb I (B2-BB I)	4 SWS	4
2.	Nr. 12.2 Baubetrieb II (B2-BB II)	4 SWS	4

Teilmodul		TM-Kurzbezeichnung	
Nr. 12.1 Baubetrieb I (B2-BB I)		B2-BB I	
Verantwortliche/r	Fakultät		
Prof. Klaus Hager Bauingenieurwesen			
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Bernhard Denk in jedem Semester			
Lehrform			
Seminaristischer Unterricht mit Übungen und Praktikum			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 Stunden seminaristischer Unterricht	60 Stunden eigenverantwortliches Lernen
(Präsenz) und Praktikum	(Eigenstudium) und praktische Übungen

Studien- und Prüfungsleistung
Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten

Inhalte

Allgemeine Einführung in Baubetrieb

Aufgaben des Bauleiters

Rechte, Pflichten und Verantwortung des Bauleiters

Einführung in VOB

Vertragsarten

Schalung und Rüstung: Lastannahmen und Bemessung

Betonarbeiten aus baubetrieblicher Sicht Ausschreibung und Leistungsbeschreibung

Verdeutlichung des Lehrinhalts durch praktische Übungen und Exkursionen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Einsatz von Schalung und Rüstung zu planen und zu bemessen (2)
- Die im Bauwesen vorkommende Verträge zu kennen, zu unterscheiden und auf verschiedene Projekte anzuwenden (2)
- Die Grundzüge der VOB zu kennen und anzuwenden (1)
- Ausschreibungen zu erstellen (2)
- Bauhilfspodukte kennen und richtig anzuwenden (2)
- Verwendbarkeitsnachweise für Baustoffe zu prüfen (1)
- Aufgaben und Verantwortlichkeiten des Bauleiters -auch in der Abgrenzung zu den Planern- zu kennen (2)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die Besonderheiten des Bauablaufs und der Bauindustrie wiederzugeben (3)
- Den Baufachlichen Terminus in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen und zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- Leistungsverzeichnisse auf ihre Sinnhaftigkeit zu prüfen (1)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb Exkursionen, Exponate

Literatur

VOB, BGB in der aktuellen Fassung. VOB Teil A,B und C Grundlagen der Baubetriebslehre, Berner, Kochendörfer, Springer, Vieweg Verlag Baubetrieb in Beispielen, Kohl, Gerster, Werner Verlag Skriptum und Foliensätze zur Vorlesung und zum Praktikum "Baubetrieb", OTH Regensburg (mit weiteren Literaturhinweisen)

Teilmodul		TM-Kurzbezeichnung	
Nr. 12.2 Baubetrieb II (B2-BB II)		B2-BB II	
Verantwortliche/r	Fakultät		
Prof. Klaus Hager	Bauingenieurwesen		
Lehrende/r / Dozierende/r Angebotsfrequenz			
Prof. Bernhard Denk in jedem Semester Prof. Klaus Hager			
Lehrform			
Seminaristischer Unterricht mit Übungen und Praktikum			

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
4.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 Stunden seminaristischer Unterricht	60 Stunden eigenverantwortliches Lernen,
(Präsenz) und praktische Übungen	Studienarbeiten und Prüfungsvorbereitung
	(Eigenstudium)

Studien- und Prüfungsleistung

Studienleistung: Praktikumsauswertung

Prüfungsleistung: schriftliche Prüfung Dauer: 120 Minuten

Inhalte

Grundlagen der Kalkulation

Kalkulationsarten

Begriffe und Definitionen

Kosten- und Mengenansätze

Einzelkosten der Teilleistung

Gemeinkosten der Baustelle

Allgemeine Geschäftskosten

Wagnis und Gewinn

Angewandte Baukalkulation

Elemente der BE, Besetzung der Baustelle mit Geräten, Gebäuden der BE, Lager- und

Verkehrsflächen; Erschließung der Baustelle

Gestaltung der Baustelleninfrastruktur, Einteilung der Baustelle

Baustelleinrichtungsplan

Grundzüge der Terminplanung

Verdeutlichung des Lehrinhalts durch praktische Übungen und Exkursionen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Teil Prof. Denk:

(Wissen)

- die grundlegenden Begriffe und Definitionen aus dem Bereich der Kalkulation zu benennen (1).
- die wichtigsten Kalkulationsarten aufzuzählen (1).
- die Kostenbestandteile einer Baukalkulation anzugeben (1).

(Fertigkeiten)

- Kostenverläufe zu analysieren und Kostenvergleiche durchzuführen (3).
- Einzelkosten der Teilleistungen getrennt nach Kostenarten zu kalkulieren (2).
- Gemeinkosten der Baustelle systematisch zu erfassen und zu kalkulieren (2.)
- mit Hilfe von Formblättern die Einzelkosten, die Angebotssumme und die Einheitspreise anhand von vorgegebenen Ausschreibungsunterlagen zu ermitteln (2).

Teil Prof. Hager:

- Unterschiedliche Elemente der Baustelleneinrichtung richtig anzuwenden (2).
- Eine Baustelleneinrichtung in Ihren Grundzügen zu planen (3)
- Den Einsatz von Baugeräten insbesondere Kran und Bagger zu planen (2)
- Spielzeiten von Baugeräten zu berechnen (2)
- Leistungsstörungen bei Baugeräten zu kennen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Teil Prof. Denk:

(Sozialkompetenz)

- strukturiert an die Kalkulationsaufgabe heran zu gehen (3).
- kalkulatorische Konsequenzen aus einem Bauvertrag abzuleiten und finanziell zu bewerten (2).
- die Zusammenhänge der Baukalkulation zu verstehen und sie als Teamaufgabe zu begreifen (2).

(Selbstständigkeit)

- selbstständig die Preisbildung von kleineren, einfacheren Bauvorhaben durchzuführen (3).
- sich mit Hilfe von Kostenvergleichen zwischen verschiedenen Bauweisen zu entscheiden (3).
- Sich anhand von Lernvideos selbstständig neuen Stoff anzueignen (3)

Teil Prof. Hager:

- konstruktive Aufgabenstellungen zu erfassen (2).
- Baustelleneinrichtung auf Ihre Funktionsfähigkeit hin zu beurteilen (3)

- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen und angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- Den Einsatz von Baugeräten realistisch zu planen (1)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Vorlesung Kalkulation als Screencast in Moodle.

Exkursionen

Literatur

Grundlagen der Kalkulation

Drees, Paul: Kalkulation von Baupreisen, neueste Auflage, Beuth-Verlag Vergabe- und Vertragsordnung von Bauleistungen VOB, Beuth-Verlag Baugeräteliste, Hauptverband der Deutschen Bauindustrie, Bau-Verlag

Berner, Kochendörfer, Schach: Grundlagen der Baubetriebslehre Teil 1 und 2; Teubner Verlag

Stark: Baubetriebslehre - Grundlagen, Vieweg

Hoffmann: Beispiele für die Baubetriebspraxis; Teubner Verlag

StlB Bau, Dynamische Baudaten;

VOB/B und C

Musterleistungsverzeichnisse

Hoffmann: Zahlentafeln für den Baubetrieb

Technische Daten von Großgeräten der Hersteller

Brecheler, Hilmer, Weiß; Baubetriebslehre, Vieweg-Verlag

Plümecke, Baupreisermittlung, Müller Verlag

Jeweils neueste Auflagen.. s. ach BB I

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 13 Baustatik I (B2-BS I)		13
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Bulenda	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	2.	Pflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
siehe Lehrveranstaltungen

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 13 Baustatik I (B2-BS I)	4 SWS	4

Teilmodul		TM-Kurzbezeichnung	
Nr. 13 Baustatik I (B2-BS I)		B2-BS I	
Verantwortliche/r	Fakultät		
Prof. Dr. Joachim Gschwind	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Thomas Bulenda Prof. Dr. Joachim Gschwind	in jedem Semester		
Lehrform			
Seminaristischer Unterricht ohne Praktikum			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gomaio etaaionpian	[SWS oder UE]		[ECTS-Credits]
3.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 Stunden seminaristischer Unterricht	60 Stunden eigenverantwortliches Lernen,
	Studienarbeiten

Studien- und Prüfungsleistung

Studienleistung: 2 anerkannte Studienarbeiten

Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten

Inhalte

Räumliche Statik: Kräfte und Momente im Raum, Gleichgewicht im Raum, Räumliche Fachwerke, Räumliche Stabwerke, Nachtrag zur Festigkeitslehre: Torsion, Seminaraufgabe Arbeit: Der Begriff der mechanischen Arbeit, Gleichheit von Verschiebungsarbeit und Rotationsarbeit, Eigenarbeit und Verschiebungsarbeit, Arbeit der inneren Kräfte – Verzerrungsarbeit, Formänderungsarbeit, Arbeitssatz, Verformungsberechung mit dem Arbeitssatz, Größenverhältnisse der Arbeitsanteile, Satz von Betti, Satz von Maxwell, Äußere Arbeit von Lastkollektiven

Das Prinzip der Virtuellen Kräfte: Herleitung des Prinzips, Integration der Schnittkraftflächen, 4 Grundaufgaben der Formänderung, Beispiel: Räumliches System, Berücksichtigung von Federn im PdVK, Formänderung aus Termperatur

Kraftgrößenverfahren: Einführungsbeispiele, Grad der statischen Unbestimmtheit; Verschieblichkeit von Tragwerken, Aufbaukriterium, Schematisches Vorgehen, Schnittgrößen als stastisch Unbestimmte, Berücksichtigung mehrerer Lastfälle, Federn und Zwangslastfälle, Reduktionssatz, Statisch unbestimmtes Grundsystem

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundlagen der Torsion zu kennen (1).
- Schubspannungen an offenen und geschlossenen Querschnitten zu berechnen (2).
- dreidimensionale Strukturen zu erkennen und zu analysieren (1).

- auf diese Strukturen das Schnittprinzip anzuwenden (2)
- damit Auflagerreaktionen und Schnittkraftlinien von statisch bestimmten räumlichen Systemen zu ermitteln. (3).
- Einzelverformungen mit Hilfe der Arbeitsprinzipien zu ermitteln (2).
- Auflagerkräfte und Schnittkraftlinien an statisch unbestimmten Systemen mit Hilfe des Kraftgrößenverfahrens zu ermitteln (3).

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- statische Aufgabenstellungen an räumlichen Systemen und statisch unbestimmten Systemen zu erfassen (1).
- Eigenschaften, Wirkungsweise und Zusammenhänge der statischen Unbestimmtheit zu erfassen (2).
- Konsequenzen daraus zu diskutieren (2).
- die Arbeitsverfahren und das Prinzip der virtuellen Kräfte zielgerichtet anzuwenden (3).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskrptum, Musterlösungen alter Prüfungen und Studienarbeiten

Lehrmedien

Vortragsvorlesung mit Tafelanschrieb

Literatur

Duddeck H., Ahrens H.: Statik der Stabtragwerke. Im Betonkalender 1998, Teil I, Ernst&Sohn-Verlag Berlin.

Dallmann R. Baustatik 2, Hanser-Verlag, Leipzig, 2006

Krätzig W.B., Wittek U.: Tragwerke. Springer-Verlag, Berlin usw. 3.Auflage 1995

Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse:

Lehrveranstaltungen B1-BTM I und II

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 14 Geotechnik I (B2-GT I)		14
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Wolff Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	2.	Pflicht	6

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
B1-IGB Bodenmechanik und Ingenieurgeologie
(Soil mechanics and geology for civil engineers)

Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage,

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 14 Geotechnik I (B2-GT I)	6 SWS	6

Teilmodul		TM-Kurzbezeichnung	
Nr. 14 Geotechnik I (B2-GT I)		B2-GT I	
Verantwortliche/r	Fakultät		
Prof. Dr. Thomas Wolff	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Thomas Wolff	in jedem Semester		
Lehrform			
Seminaristischer Unterricht mit Übung	gen		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
3	6 SWS	deutsch	6

Präsenzstudium	Eigenstudium
90 Stunden seminaristische	90 Stunden eigenverantwortliches Lernen,
Lehrveranstaltungen	Studienarbeiten

Studien- und Prüfungsleistung

Studienleistung: max. 6 anerkannte Studienarbeiten

Prüfungsleistung: schriftliche Prüfung, Dauer: 120 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

Spannung und Spannungsausbreitung:

Lasten auf der Halbraumoberfläche, Lastausbreitung im Baugrund

Verformungen und Setzungen:

Verformungs- und Setzungsanteile, Annahmen und Vereinfachungen (Linearisierung), direkte und indirekte Setzungsberechnung Sicherheit in der Geotechnik: EC 7-1, DIN 1054 Flachgründungen:

Einzelfundamente und Bodenplatten – Kippen, Gleiten, Grundbruch, aufnehmbarer Sohldruck, Auftrieb; Spannungstrapez- und Bettungsmodul-Verfahren; zul. Grenzwerte für Verformungen und Setzungen.

Erddruck:

Erdruhedruck, Aktiver Erddruck, Passiver Erddruck - Erdwiderstand

Flachgegründete Stützbauwerke:

Gewichtsstützmauern; Stützbauwerke mit Erdballast (z.B. Winkelstützwände); Entwurf, Konstruktion und Dimensionierung, Bemessung und Nachweise der Grenzzustände Wandartige, tiefgegründete Stützbauwerke:

Entwurf, Konstruktion und Dimensionierung von Grabenverbau, Baugrubenwänden und Ufereinfassungswänden; Grabenverbau, Spundwände, Bohrpfahlwände, Schlitzwände, Trägerbohlwände; Berechnungsansätze; Erddruckumlagerung; Bemessung und Nachweise der Grenzzustände; Verankerungen, Steifen, Nachweis der tiefen Gleitfuge, hydraulischer Grundbruch

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Spannungsausbreitung im Lockergesteine zu berechnen (3)
- die Sicherheitsphilosophie in der Geotechnik anzuwenden (3)
- die Tragfähig- und Gebrauchstauglichkeit für Einzel- u. Streifenfundamente nachzuweisen
 (3)
- auf Grund der Kenntnisse die Grundlagen der Erddrucktheorie flach und tiefgegründete Stützbauwerke zu entwerfen, zu dimensionieren und die zugehörigen Nachweise zu führen (2-3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- weiterführenden Vorlesungen im Rahmen der Ausbildung mit einem besseren Grundverständnis zu folgen (2)
- die Erfordernisse ingenieurtechnische Zusammenhänge über die geotechnischen Fragestellungen hinaus zwischen Erkundung, Planung und Ausführung zu erkennen (2)
- weitere Verständnisfrage im Rahmen der interdisziplinäre Ausbildung zum Bauingenieur zu formulieren (2)

Angebotene Lehrunterlagen

Vorlesungsskriptum

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb, Exkursionen, Exponate, Modelle

Literatur

- Das, B. M.: Fundamentals of Geotechnical Engineering; 3rd Edition; Thomson, Toronto, 2008.
- Engel, J. & S. Al-Akel: Einführung in den Grund-, Erd- und Dammbau; Fachbuchverlag Leipzig (Hanser), 2012.
- Kempfert & Raithel: Geotechnik nach Eurocode: Band 1-Bodenmechnik u. Band 2: Grundbau; 4. Auflage, Bauwerk-Verlag, BBB Beuth, Berlin, 2015.
- Lang, H.-J. & J. Huder & P. Amman & A. M. Puzrin: Bodenmechanik und Grundbau; 9. Auflage, Springer-Verlag, Berlin Heidelberg New York, 2011.
- Möller, G., Geotechnik Grundbau, 3. Auflage, 2016, Ernst & Sohn
- Schmidt, H.-H. & R. F. Buchmaier & C. Vogt Breyer: Grundlagen der Geotechnik; 4. Auflage Springer Vieweg, 2014.
- Witt, K. J. (Hrsg.): Grundbau-Taschenbuch. Teile 1 bis 3; 7. Auflage, Ernst & Sohn Verlag, 2018.
- Ziegler, M.: Geotechnische Nachweise nach EC 7 und DIN 1054. Einfürung mit Beispielen. Bauingenieur-Praxis. Ernst & Sohn, Berlin, 2012.
- Türke, H.: Statik im Erdbau; 3. Auflage; Ernst & Sohn (1999)
- Normen und RegelwerkeSkript zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 15 Stahlbau und Holzbau (B2-STHO)		15
Modulverantwortliche/r Fakultät		
Prof. Dr. Othmar Springer Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. und 4.	2.	Pflicht	6

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 15.1 Stahlbau I (B2-ST I)	3 SWS	3
2.	Nr. 15.2 Holzbau I (B2-HO I)	3 SWS	3

Teilmodul		TM-Kurzbezeichnung
Nr. 15.1 Stahlbau I (B2-ST I)		B2-ST I
Verantwortliche/r	Fakultät	
Prof. Dr. Othmar Springer	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Othmar Springer	in jedem Semester	
Lehrform		
Seminaristischer Unterricht mit Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	3 SWS	deutsch	3

Präsenzstudium	Eigenstudium
- 45 Stunden seminaristischer Unterricht	- 45 Stunden eigenverantwortliches Lernen,
(Präsenz)	Studienarbeiten, Prüfungsvorbereitung

Studien- und Prüfungsleistung	
Studienleistung:keine	
Prüfungsleistung: schriftliche Prüfung	Dauer: 90 Minuten

Inhalte

Grundlagen und Anwendungsgebiete des Stahlbaus

Stahlerzeugnisse, Baustoffkennwerte, Baustoffprüfungen

Sicherheitskonzept und elementare Tragsicherheitsnachweise

Schweißverfahren, Schweißeigenspannungen, Tragverhalten und Nachweise von

Schweißverbindungen

Schrauben und Schraubenwerkstoffe, Tragverhalten und Nachweise von Schraubverbindungen Entwurf und Nachweis einfacher Anschlussdetails.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- erworbene grundlegende Kenntnisse über das Werkstoffverhalten des Werkstoffs Stahl anzuwenden und für den jeweiligen Einsatzzweck die erforderlichen Werkstoffkennwerte festzulegen (2).
- die wichtigsten Stahlerzeugnisse und Baustoffprüfungen zu erläutern (1).
- elementare Tragsicherheitsnachweise für einfache Stahlbauteile zu führen (2).
- die wichtigsten Schweißverfahren im Stahlbau zu kennen (1).
- den Einfluss von Schweißeigenspannungen sowie das Tragverhalten von Schweißverbindungen zu verstehen (1).
- Tragsicherheitsnachweise für Schweißverbindungen zu führen (2).
- die Schrauben und Schraubenwerkstoffe im Stahlbau zu kennen (1).

- das Tragverhalten von Schraubenverbindungen zu verstehen und Tragsicherheitsnachweise für Schraubenverbindungen zu führen (2).
- einfache Anschlussdetails im Stahlbau eigenständig zu entwerfen und rechnerisch nachzuweisen (3).

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- einfache konstruktive Aufgabenstellungen zu erfassen (1).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

Roik, K.: Vorlesungen über Stahlbau, Ernst & Sohn, 1983.

Petersen, C.: Stahlbau, Vieweg-Verlag (jeweils aktuelle Auflage).

Wagenknecht, G.: Stahlbau-Praxis nach Eurocode 3, Bauwerk-Verlag (jeweils aktuelle Auflage). Skriptum zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Teilmodul		TM-Kurzbezeichnung
Nr. 15.2 Holzbau I (B2-H0 I)		B2-H0 I
Verantwortliche/r	Fakultät	
Prof. Dr. Joachim Gschwind	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Susanne Hüttner (LB)	in jedem Semester	
Lehrform		
Seminaristischer Unterricht mit Übungen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4. Studiensemester	3 SWS	deutsch	3

Präsenzstudium	Eigenstudium
45 Stunden seminaristischer Unterricht	45 Stunden eigenverantwortliches Lernen,
(Präsenz)	Studienarbeiten, Prüfungsvorbereitung

Studien- und Prüfungsleistung

Studienleistung: keine

Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten

Inhalte

Einführung und Überblick über den Baustoff Holz im Hinblick auf die Bemessung:

Holzarten, Holzwerkstoffe, Begriffe, Bezeichnungen

Holzaufbau, Holzfehler, physik. Eigenschaften, Bedeutung der Holzfeuchte

Sortier-/Festigkeitsklassen

Grundlagen der Bemesung nach EC 5 (DIN EN 1995-1-1):

Einführung in das Bemessungskonzept mit Teilsicherheitsbeiwerten

Bemessungswert der Beanspruchung, Bemessungswert der Beanspruchbarkeit

Tragfähigkeitsnachweise:

Zugstäbe, Biegeträger, Biegung mit Längskraft, Schubspannungsnachweis, Nachweis der Auflagerpressung (Querdruck)

Entwurf, Konstruktion und Nachweis einer Holzbalkendecke

Gebrauchstauglichkeitsnachweise:

Durchbiegungsnachweise, Schwingungsnachweis, Besonderheiten bei Holzbalkendecken Kontaktanschlüsse

Versätze:

Stirnversatz, Brustversatz, Fersenversatz, Doppelter Versatz

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• die wichtigsten Eigenschaften des anisotropen Werkstoffs Holz für eine Bemessung einschätzen zu können (1).

- normgerechte Spannungsnachweise für Biegung, Schub und Auflagerpressung durchzuführen (2).
- die Problemstellung für Kontaktanschlüsse zu erkennen (2).
- die Tragfähigkeit für einfache Tragwerke nachzuweisen (3).
- die Bemessung von einfachen Tragwerken durchzuführen (3).
- Gebrauchstauglichkeitsnachweise normenkonform durchzuführen (3).

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mit dem Werkstoff Holz ingenieurtechnisch sinn vollumzugehen (1).
- eigenständig einfache Entwürfe für dauerhafte und wirtschaftliche Holzkonstruktionen erstellen zu können (2).
- kritische und bemessungsrelevante Bereiche zu identifizieren und nachzuweisen. (3).
- Holzkonstruktionen ingenieurtechnisch hinsichtlich Sicherheit und Gebrauchstauglichkeit zu bewerten (3).
- ingenieurtechnische Zusammenhänge zu erkennen und bewerten (3).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Berechnungsbeispiele, Bemessungstabellen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb

Literatur

- Colling, Francois: Holzbau, Grundlagen und Bemessung nach EC 5, Springer Fachmedien Wiesbaden GmbH, 6. Auflage 2019.
- Colling, Francois: Holzbau-Beispiele, Springer Fachmedien Wiesbaden GmbH, 4. Auflage 2014
- Mönck, Willi; Rug, Wolfgang: Holzbau; 16. Auflage, Beuth Verlag, 2015.
- Werner, G.; Zimmer, K.: Holzbau, Teil I und II, 4. Aufl., Springer-Verlag, 2009/2010.
- DIN EN 1995-1- Bemessung und Konstruktion von Holzbauten; 2010-12, incl. zugehörigem Nationalen Anhang.
- Umdrucke zur Lehrveranstaltung (mit weiteren Literaturhinweisen zu Normentexten, Fachund Handbüchern).

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse:

Lehrveranstaltungen B1-BTM I und II

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 16 Baustatik II und CBS (B2-BS II)		16
Modulverantwortliche/r	Fakultät	
Prof. Dr. Thomas Bulenda	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
3. und 4.	2.	Pflicht	8

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
siehe Lehrveranstaltungen	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 16.1 Baustatik II (B2-BS II)	4 SWS	4

Teilmodul		TM-Kurzbezeichnung
Nr. 16.1 Baustatik II (B2-BS II)		B2-BS II
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Bulenda	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Thomas Bulenda Prof. Dr. Joachim Gschwind	in jedem Semester	
Lehrform		
Seminaristischer Unterricht ohne Praktikum		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 Stunden seminaristischer Unterricht	60 Stunden eigenverantwortliches Lernen,
(Präsenz)	Studienarbeiten

Studien- und Prüfungsleistung

Studienleistung: 3 anerkannte Studienarbeiten

Prüfungsleistung: schriftliche Prüfung Dauer: 90 Minuten

Inhalte

Weggrößenverfahren in Matrizenform:

Dehnfeder: Steifigkeitsmatrix, Fachwerkstab, Ebenes Fachwerk mit beliebiger Lage der Stäbe, Allgemeines Vorgehen, Stabelemente, Beispiel, Seminaraufgabe

Stabilitätsprobleme:

Stabilität von Gleichgewichtslagen, Stabilität elastischer Systeme, Theorie II. Ordnung, Einflusslinien:

Punktweise Ermittlung von Einflußlinien, Träger auf zwei Stützen, Träger mit Kragarm, Kinematische Ermittlung von Kraftgrößen- Einflußlinien, Geneigte Träger und wanderndes Moment, Hinweise zum Aufstellen von EFL, Gerberträger, Beispiel: Rahmentragwerk, Fachwerke, Einflußlinien für Verformungen, Efl bei statisch unbestimmten Systemen, Durchlaufträger, Auswertung von Einflußlinien, Seminaraufgabe

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Theoretischen Grundlagen der FE-Methode (Prinzip vom Minimum der Potentiellen Energie; Prinzip der virtuellen Verrückungen; Galerkin-Verfahren) insbesondere als Näherungsverfahren verstehen (3)
- Grundlagen der FE-Modellierung zu verstehen

- Grundlagen der Scheibentheorie zu verstehen (2)
- Grundlagen der Plattentheorie zu verstehen (2)
- Flächentragwerke zu modellieren unter Berücksichtigung der Einflüsse von Lagerung, Lastaufbringung, Querdehnzahl und Singularitäten (2)
- Fehlerschätzung und Kontrollmöglichkeiten bei der FE-Methode zu verstehen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Fachsprache der FE-Programme zu verstehen (2).
- die Ergebnisse und Ausgaben eines FE-Programms zu verstehen (2)
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Musterlösungen alter Prüfungen und Studienarbeiten

Lehrmedien

Vortragsvorlesung mit Tafelanschrieb

Literatur

- Duddeck H., Ahrens H.: Statik der Stabtragwerke. Im Betonkalender 1998, Teil I, Ernst&Sohn-Verlag Berlin.
- Dallmann R. Baustatik 2, Hanser-Verlag, Leipzig, 2006
- Krätzig W.B., Wittek U.: Tragwerke. Springer-Verlag, Berlin usw. 3.Auflage 1995
- Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 17 Verkehrswesen I (B2-VW I)		17
Modulverantwortliche/r Fakultät		
Prof. Andreas Appelt	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
			[LO10-Orealis]
3. / 4.	2.	Pflicht	6

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 17.1 Straßenbau I (B2-SR I)	4 SWS	4
2.	Nr. 17.2 Bahnbau I (B2-BN I)	2SWS	2

Hinweise zur Belegungspflicht oder zu Optionen		
Pflichtmodul des zweiten Studienabschnitts im Bachelor-Studiengang Bauingenieurwesen.		

Teilmodul		TM-Kurzbezeichnung
Nr. 17.1 Straßenbau I (B2-SR I)		B2-SR I
Verantwortliche/r	Fakultät	
Prof. Andreas Appelt	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Andreas Appelt	in jedem Semester	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. / 4.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
60 Stunden seminaristischer Unterricht	60 Stunden eigenverantwortliches Lernen,
(Präsenz)	Studienarbeiten

Studien- und Prüfungsleistung

Studienleistung: anerkannte Studienarbeit

Prüfungsleistung: Die Lehrveranstaltungen 17.1 und 17.2 werden in einer gemeinsamen schriftlichen Prüfung (Modul 17) mit einer Gesamtdauer von 150 min geprüft.

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

- Einführung in die Verkehrsentwicklung, Straßennetzgestaltung, rechtliche Grundlagen, Verkehrssicherheit, Unfalluntersuchung, Umweltverträglichkeit und Planungsphasen.
- Grundlegende Kenntnisse in der Linienführung mit Trassierung, Geschwindigkeit, Lageplan, Querschnitt, Höhenplan, Sicht, Verkehrsräume, Querschnittsformen und Wirtschaftlichkeit.
- Bemessung von Straßen und Nachweis der Verkehrsqualität
- Grundformen und Einsatz von plangleichen, teilplangleichen, teilplanfreien und planfreien Knotenpunkten
- Bemessung und Leistungsfähigkeit von Knotenpunkten
- Grundlagen der BIM Methodik sowie des digitalen Planungsablaufes in der Straßenplanung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundlagen der Verkehrsplanung sowie Unfallkenngrößen zu kennen (1).
- die wichtigsten Faktoren der verkehrssicheren Straßengestaltung zu kennen und anzuwenden (2).

- die Grundlagen der Trassierung von Straßen in Lage-, Höhenplan sowie Querschnitt auf Beispiele zu übertragen, zu verstehen und anzuwenden (3).
- die Grundlagen der Knotenpunktformen von Autobahn- und Landstraßenknotenpunkten zu kennen und auf Beispiele anwenden zu können (2)
- einfache Nachweise der Verkehrsqualität von Strecken und Knotenpunkten anzuwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Aufgabenstellungen der Straßenplanung zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- teamorientiert und interdisziplinär zu arbeiten und die gefundenen Lösungen fachlich zu vertreten (2)

Angebotene Lehrunterlagen

Skriptum

Digitales Lehrprojekt Straßenplanung

Lehrmedien

Vortragsvorlesung mit Beamerunterstützung

Literatur

Die Literaturangaben beziehen sich auf die jeweils aktuelle Fassung

- Bösl / Appelt: Straßenplanung, Reguvis Fachmedien
- Richtlinien (z.B. RAA, RAL), Merkblätter, Empfehlungen, Hinweise und Arbeitsanleitungen der Forschungsgesellschaft für Straßen- und Verkehrswesen
- Handbuch für die Bemessung von Straßenverkehrsanlagen, Forschungsgesellschaft für Straßen- und Verkehrswesen
- Skriptum zur Lehrveranstaltung mit weiteren Literaturhinweisen

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Teilmodul		TM-Kurzbezeichnung	
Nr. 17.2 Bahnbau I (B2-BN I)		B2-BN I	
Verantwortliche/r	Fakultät		
Prof. Dr. Thomas Neidhart	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Thomas Neidhart Jan Petrat (LB)	in jedem Semester		
Lehrform			
Seminaristischer Unterricht mit Übung	gen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 Stunden seminaristischer Unterricht	30 Stunden eigenverantwortliches Lernen,
(Präsenz)	ergänzendes Literaturstudium

Studien- und Prüfungsleistung

Prüfungsleistung: Die Lehrveranstaltungen 17.1 und 17.2 werden in einer gemeinsamen schriftlichen Prüfung (Modul 17) mit einer Gesamtdauer von 150 min geprüft.

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

Fahrdynamische Grundlagen: Freie Strecke; Kräftegleichgewicht / ausgleichende Überhöhung im Bogen;Beschleunigung und Bremsvorgänge; Steigungen und Gefälle, Fahrkraftlinien, ;Lichtraumprofil EBO, Regelquerschnitte, Entgleisungssicherheit im Bogen

Trassierung auf freier Strecke: Zusammenhänge Fahrgeschwindigkeit zu Radien und Überhöhungen; Regelüberhögung, Überhöhungsfehlbetrag und – überschuss; Überhöhungsrampen; Übergangskonstruktionen inkl. der geometrischen Bedingungen, Krümmungswechsel ohne Übergangsbogen

Weichen, Zwangspunkte: Darstellung von Weichen und Kreuzungen; Grundformen der Weichen, Weichen in Rangierbereichen, Weichen auf freier Strecke, Bogenweichen mit und ohne Überhöhung, Gleisverbindungen mit Weichen, Geschwindigkeiten in Weichen, Bauteile von Weichen, Krümmungs- und Überhöhungsdarstellungen

Oberbau: Kräfte am und Elemente des Oberbaus; Grundlagen der Oberbaubemessung.

Unterbau: Streckenkategorien, Belastungen des Unterbaus, Statische und dynamische Einwirkungen, Beanspruchung durch Witterung;

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Trassierungselemente der Strecke auszuwählen und zu bemessen (3)
- Die in den Trassierungselementen wirkenden dynamischen Kräfte aus der Fahrsituation zu ermitteln (3).
- Elemente des Ober- und Unterbaus auszuwählen (2)
- Kräfte und Einwirkungen zu ermitteln und (3)
- Bemessung von Ober- und Unterbau durchzuführen. (2)

Fertigkeiten:

Der Studierende ist in der Lage auf der Genauigkeit eines Vorentwurfes eine Strecke zu trassieren bzw. eine bestehende Trassierung zu beurteilen und Verbesserungsvorschläge zu erarbeiten.

Die Studierenden erwerben Grundkenntnisse der Ober- und Unterbaubemessung, sowie deren Planung und Ausführung.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die Besonderheiten des Bahnbaus und der Bemessung wiederzugeben (3)
- Die baufachlichen Termini in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen und zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).
- Trassierung und Bemessung auf ihre Sinnhaftigkeit zu prüfen (2)

Angebotene Lehrunterlagen

Skript, Übungsaufgaben, Lehrvideos, bebilderte Präsentationen

Lehrmedien

Vortragsvorlesung mit Video-Streaming / Beamer, IPad

Literatur

- AEG, EBO, Richtlinien der DB AG zum Themenbereich Oberbau (-bemessung) und Regelwerke der FGSV.
- Menius, R. & V. Matthews (2020): Bahnbau und Bahninfrastruktur Ein Leitfaden zu bahnbezogenen Infrastrukturthemen, 10. Auflage, Springer Fachmedien Wiesbaden GmbH (Verlag)
- Göbel, C & K. Lieberenz & U. Weisemann (2022): Handbuch Erdbauwerke der Bahnen: Planung – Bemessung – Ausführung – Instandhaltung; 3., komplett überarbeitete und erweiterte Auflage, Trackomedia.
- Lichtberger, B. (2010): Handbuch Gleis: Unterbau Oberbau Instandhaltung Wirtschaftlichkeit; 3. überarbeite Auflage; Trackomedia
- Munke, M. & H. Freystein & P. Schollmeier (2015): Entwerfen von Bahnanlagen: Regelwerke, Planfeststellung, Bau, Betrieb, Instandhaltung. 3. Auflage. Trackomedia.

Weitere Informationen zur Lehrveranstaltung

Empfohlene Vorkenntnisse: Technische Mechanik, Mathematik für Bauingenieure, Ingenieurgeologie und Bodenmechanik

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 18 Wasser und Umwelt (B2-WuU)		18
Modulverantwortliche/r	Fakultät	
Prof. Andreas Ottl	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
4. Studiensemester	2.	Pflicht	6

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 18.1 Wasserbau I (B2-WB I)	4 SWS	4
2.	Nr. 18.2 Siedlungswasserwirtschaft I	2 SWS	2
	(B2-SWG I)		

Teilmodul		TM-Kurzbezeichnung	
Nr. 18.1 Wasserbau I (B2-WB I)		B2-WB I	
Verantwortliche/r	Fakultät		
Prof. Dr. Mathias Müller	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Mathias Müller	in jedem Semester		
Lehrform			
Seminaristischer Unterricht mit Übungen und Praktikum			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3. Studiensemester	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium
ca. 62 Stunden angeleitete Lehre, davon 56 Stunden seminaristischer Unterricht in der Lehrform inverted classroom und 6 Stunden Laborpraktikum (fakultativ)	ca. 58 Stunden, davon 15 Stunden Vor- und Nachbereitung der Vorlesung, 3 Stunden Auswertung der Praktika sowie Berichte verfassen, 10 Stunden Übungsrechnungen (ggf. Tutorium), 4 Stunden eigenständige Recherche sowie Studium vertiefender Literatur, 8 Stunden Bearbeitung der Semester-Hausübung, 16 Stunden Prüfungsvorbereitung und 2 Stunden Prüfung

Studien- und Prüfungsleistung

Studienleistung

- erfolgreiche Teilnahme am Praktikum (fakultativ) und anerkannter Praktikumsbericht
- erfolgreiche Teilnahme an der Semester-Hausübung mit Abgabe der bearbeiteten Hausübung

Prüfungsleistung:

• schriftliche Modulprüfung "Wasser und Umwelt", Dauer insgesamt 150 Minuten dabei werden 2/3 des Prüfungsinhalts dem Lehrstoff des Teilmoduls Wasserbau 1 zugeordnet

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

(Hinweis: Die Prüfer*innen tragen die zugelassenen Hilfsmittel im Studienplan ein)

Inhalte

- Für den Ingenieurbau wesentliche physikalische Eigenschaften des Wassers
- Hydrostatische Berechnungen: Hydrostatische Kräfte, Druck auf ebene, zusammengesetzte und auf gewölbte Flächen, Auftrieb.
- Hydrodynamische Berechnungen: Stationäre Abflüsse in Druckrohren und in offenen Gerinnen mit Berechnung der Fließzustände, Überfall und Ausfluss.
- Einsatzgebiete und Leistungsbereiche von Pumpen.
- Grundlegende gewässerkundliche Zusammenhänge: Wasserkreislauf, Hydrologie, Wasserbewirtschaftung, Gewässermorphologie
- Grundlegende Einführung in den Gewässerausbau: Feststoffe im Fluss, Bauwerke im Gewässer, Naturnaher Wasserbau, Hochwasserschutz

Eine detaillierte Beschreibung der Lehrinhalte und der erwarteten Lernergebnisse wird auf der Lernplattform ELO als "Inhalt und Erwartungen WB1" bereitgestellt.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die physikalischen Eigenschaften des Wassers und anderer Fluide in ingenieurgerechte Modelle und Methoden einzuordnen (2)
- hydraulische Berechnungsverfahren anzuwenden (2), insbesondere hydrostatische Berechnungen (Hydrostatische Kräfte, Druck auf ebene, zusammengesetzte und auf gewölbte Flächen, Auftrieb) auszuführen (3).
- hydrodynamische Berechnungen (Stationäre Abflüsse in Druckrohren und in offenen Gerinnen mit Berechnung der Fließzustände, Überfall und Ausfluss) auszuführen (3).
- den Fachbegriff "Kontrollquerschnitt" in der Gerinnehydraulik zu verstehen und für hydrodynamische Modelle einzusetzen (1).
- im Rahmen von Übungen die erlernten Kenntnisse unmittelbar auf kleine Beispiele zu übertragen. (2)
- Pumpen (insbesondere Kreiselpumpen) in der Funktionsweise anhand der Kennlinien zu verstehen und für konkrete Förderaufgaben auswählen zu können (2).
- grundlegende gewässerkundliche Zusammenhänge (Wasserkreislauf, Hydrologie, Wasserbewirtschaftung, Gewässermorphologie) zu beschreiben und ingenieurgerecht zu verwenden (1).
- Grundlagen des Gewässerausbaus zu verstehen und einzuordnen (Feststoffe und deren Transport im Fluss, Bauwerke im Gewässer, Naturnaher Wasserbau, Hochwasserschutz) (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage.

- Basis-Ingenieurwissen der Hydromechanik anzuwenden (3).
- die wasserbauliche Berufspraxis mit Ingenieurbauwerken des Wasserbaus, des Hochwasserschutzes und des Naturnahem Wasserbaus zu beurteilen. (1)
- insbesondere durch die gruppenorientierte Erarbeitung und Diskussion von Vorlesungsinhalten, Studienarbeiten und Praktikumsausarbeitungen soziale Fähigkeiten zur Teamarbeit und zum vernetzen Arbeiten unter Einbeziehung anderer Fachmodule (Statik, Geomechanik, Tunnelbau, Massivbau) zu entwickeln. (2)

Angebotene Lehrunterlagen

Vorlesungsskriptum, Lehrvideos, Berechnungsbeispiele, ergänzende Materialien als Anleitung zu individueller Vertiefung und Übertragung der Lehrinhalte im Ingenieurwissenschaftlichen Kontext.

Lehrmedien

Multimediale Lehrveranstaltung im Format inverted classroom mit Lehrvideos, mit Tafelanschrieb, Praktikum, Exponaten.

Vorlesungsbegleitende Materialien werden auf der Lernplattform ELO bereitgestellt.

Literatur

- Bollrich, Gerhard: "Technische Hydromechanik 1, Grundlagen"; 7. Auflage; Verlag Bauwesen; Berlin 2013
- Schneider: "Bautabellen für Ingenieure", 20. Auflage, Kapitel 13A; Werner Verlag, Düsseldorf 2012
- Vischer, D., Huber, A.: "Wasserbau"; 6. Auflage Springer-Verlag Berlin 2002
- Schröder, Wolfgang: "Grundlagen des Wasserbaus"; 4. Auflage; Werner Verlag; Düsseldorf 1999
- Lattermann, Eberhard: "Wasserbau-Praxis"; 3. Auflage; Bauwerk-Verlag GmbH, Berlin 2010
- Skriptum und Foliensätze zur Vorlesung und zum Praktikum "Wasserbau und Hydromechanik I", OTH Regensburg (mit weiteren Literaturhinweisen)

Eine ausführlichere Liste mit Literaturempfehlungen findet sich im Moodle-Kurs online

Teilmodul		TM-Kurzbezeichnung
Nr. 18.2 Siedlungswasserwirtschaft I (B2-SWG I)		B2-SWG I
Verantwortliche/r	Fakultät	
Prof. Andreas Ottl	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Gerald Angermair (LB) in jedem Semester Prof. Andreas Ottl		
Lehrform		
Seminaristischer Unterricht mit Übungen und Praktikum		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4. Studiensemester	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 Stunden seminaristischer Unterricht	30 Stunden eigenverantwortliches Lernen,
(Präsenz)	Studienarbeiten und Prüfungsvorbereitung
	(Eigenstudium)

Studien- und Prüfungsleistung

Studienleistung:

• Teilnahme am Praktikum (freiwillig)

Prüfungsleistung:

• schriftliche Prüfung Dauer: 60 Minuten

Inhalte

- Überblick über die Systematik der öffentlichen und betrieblichen Wasserversorgung
- Grundlegende Kenntnisse in den Bereichen Wasserbedarf, Wasservorkommen, Wassergewinnung, Wasseraufbereitung, Wasserförderung, Wasserspeicherung und Wasserverteilung
- Grundlagen des Baus und Unterhalts von Wasserversorgungs- und Abwasserleitungssystemen
- Überblick über die Systematik der öffentlichen und betrieblichen Abwasserbeseitigung und Entwässerungssysteme
- Ermittlung der maßgebenden Abwassermengen und der Abwasserzusammensetzung
- Zusammenhänge von Bauleitplanung, Wasserversorgung und Abwasserbeseitigung.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Alle wesentlichen Zusammenhänge der Wassergewinnung aus Grundwasser und Oberflächengewässer, der hydraulischen Maschinen, der Wasseraufbereitung und dem Bau von Speicheranlagen anzugeben (1)
- den Aufbau und die Dimensionierung eines Verikalfilterbohrbrunnens sowie die Bemessung von Speicheranlagen und Leitungssystemen auszuführen und die Bauwerke zu entwerfen (3)
- Laboranalysen der relevanten Trinkwasserinhaltsstoffe durchzuführen und die Ergebnisse zu benutzen (2)
- eine Wasseraufbereitung zu konstruieren und bemessen (2)
- die Trassierung und dem Bau von Leitungssystemen zu planen (2)
- Die Abwasserarten auszuwählen und die Abwassermengen zu bestimmen (2)
- Die Bauwerke der Entwässerungsnetze grundlegend zu nennen (1).
- EDV-gestützte Rechenprogramme zur Rohrnetzberechnung anzugeben (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich im Team zu organisieren (1)
- konstruktive Aufgabenstellungen zu erfassen und eigenständig zu lösen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele, alte Prüfungen

Lehrmedien

Multimediale Vortragsvorlesung mit Tafelanschrieb Exkursionen, Praktikum

Literatur

- Deutsche Vereinigung des Gas- und Wasserfaches (DVGW); Bonn: Regelwerk.
- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA); Hennef: Regelwerk.
- Karger/Cord-Landwehr/Hoffmann: Wasserversorgung, jeweils aktuelle Auflage; Vieweg/ Teubner Verlag.
- Mutschmann/Stimmelmayer: Taschenbuch der Wasserversorgung, jeweils aktuelle Auflage; Vieweg Verlag.
- Imhof: Taschenbuch der Stadtentwässerung. Oldenbourg.
- Hosang/Bischof: Abwassertechnik, jeweils aktuelle Auflage; Teubner Verlag.
- Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstal-tungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstal-tung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 19 Massivbau (B2-MB)		19
(Design of Concrete and Masonry Structures)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Fritsche	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3. und 4.	2.	Pflicht	8

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
Siehe Lehrveranstaltung

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 19.1 Stahlbetonbau I (B2-SB I)	4 SWS	4
2.	Nr. 19.2 Stahlbetonbau II und Mauerwerk (B2-SB II)	4 SWS	4

Teilmodul		TM-Kurzbezeichnung
Nr. 19.1 Stahlbetonbau I (B2-SB I)		B2-SB I
(Design of Concrete Structures I)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Fritsche	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Ursula Albertin-Hummel Prof. Dr. Wolfgang Finckh	in jedem Semester	
Prof. Dr. Thomas Fritsche		
Lehrform		
Seminaristischer Unterricht mit Übunge	en und Praktikum	

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]

Präsenzstudium	Eigenstudium
60 Stunden seminaristische	60 Stunden eigenverantwortliches Lernen,
Lehrveranstaltungen	Studienarbeit

Studien- und Prüfungsleistung
Prüfungsleistung: Klausur , Dauer: 90 Minuten
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplan

Inhalte

Einführung in die Grundlagen der Bemessung und Konstruktion schlaff bewehrter Tragelemente des Stahlbetonbaues.

Im Detail:

Überblick über die Grundlagen: Entwicklung, Begriffe, Vorschriften, Literatur

Baustoffe des Stahlbetons: Bestandteile des Betons, Frischbeton, Festbeton; Betonstahl;

Stahlbeton unter Umwelteinflüssen

<u>Tragwerksidealisierung:</u> Tragwerkselemente, Systemfindung, Auflager und Stützweiten;

Schnittgrößenermittlung; Bernoulli- und Diskontinuitätsbereiche von Tragwerken

Grundlagen der Bemessung: Bemessungskonzepte; Grenzzustand der Tragfähigkeit

Biegebemessung von Stahlbetonbauteilen: Bemessungsmomente, Grenzdehnungen und

Dehnungsbereiche, Biegebemessung mit rechteckiger Druckzone für einachsige Biegung,

Bemessungshilfen, Biegebemessung von Plattenbalken

<u>Bemessung für Querkräfte:</u> Allgemeine Grundlagen und Fachwerkmodell; Bemessungswert der einwirkenden Querkraft; Bauteile ohne Querkraftbewehrung, Bauteile mit Querkraftbewehrung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die im Stahlbetonbau vorkommenden Bemessungsaufgaben des üblichen Hochbaues im Grenzzustand der Tragfähigkeit zu kennen (1),
- die wichtigen Zusammenhänge des Zusammenwirkens Beton und Betonstahl zu verstehen (2),
- übliche Bemessungsaufgaben im Grenzzustand der Tragfähigkeit für Biegung, Normalkraft und Querkraft zu verstehen und anzuwenden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Tragverhalten des Stahlbetonbaues zu kennen und Bemessungsaufgaben zu erfassen (2)
- Technische Bemessungsaufgaben des Hochbaues in Diskussion fachlich darzustellen (2),
- Fachliche Fragen zu stellen und auch fachliche Fragen zu beantworten (2) und
- Ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Vorlesungsskriptum, Berechnungsbeispiele

Lehrmedien

Multimediale Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb Exkursionen, Exponate

Literatur

- DIN EN 1992-1-1 (Eurocode 2): Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauwerken. Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau mit nationalem Anhang.
- Zilch, K.; Zehetmaier, G.: Bemessung im konstruktiven Betonbau nach DIN 1045-1 (Fassung 2008) und EN 1992-1-1 (Eurocode 2)
- Goris, A.; Richter, G.; Schmitz U.P.: Stahlbeton und Spannbeton nach Eurocode 2. In Schneider, K.-J. (Hrsg.): Bautabellen für Ingenieure. 20. Aufl. Düsseldorf: Werner 2012.
- Finckh, W.: Stahlbetonkonstruktion; Von der Bemessung über die Konstruktionsregeln zum Bewehrungsplan, Wiesbaden: Springer 2023
- DAfStb (Hrsg.): DAfStb-Heft 600 Erläuterungen zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA (Eurocode 2)
- Fingerloos, F.; Hegger, J.; Zilch, K.: Eurocode 2 für Deutschland Kommentierte Fassung. Berlin: Beuth 2012.
- Ständig aktualisiertes Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Weitere Informationen zur Lehrveranstaltung

[1] Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Teilmodul		TM-Kurzbezeichnung
Nr. 19.2 Stahlbetonbau II und Mauerwerk (B2-SB II)		B2-SB II
(Reinforced Concrete Structures II and Masonry Design)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Fritsche	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Ursula Albertin-Hummel	in jedem Semester	
Prof. Dr. Wolfgang Finckh		
Prof. Dr. Thomas Fritsche		
Prof. Dr. Detleff Schermer		
Lehrform		
Seminaristischer Unterricht mit Übunge	en und Praktikum	

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
4.	4 SWS	deutsch	4

Präsenzstudium	Eigenstudium	
60 Stunden seminaristische	60 Stunden eigenverantwortliches Lernen	
Lehrveranstaltungen		

Studien- und Prüfu	ngsleistung
Prüfungsleistung:	schriftliche Prüfung, Dauer: 120 Minuten
Zugelassene Hilfsn	nittel für Leistungsnachweis
siehe Studienplan	

Inhalte

Stahlbetonbau II:

Nachweis der Tragfähigkeit: Torsionsbemessung

Nachweis der Gebrauchstauglichkeit: Nachweis der Spannungsbegrenzung; Begrenzung der Rissbreite, Rissentwicklung, Eintragungslänge, Rissabstand, Nachweis der Beschränkung der Rissbreite; Begrenzung der Verformung, Verformungen von Stahlbetonbauteilen, Begrenzung der Biegeschlankheit

Allgemeine Bewehrungs- und Konstruktionsregeln: Betondeckung, Umweltbedingungen, Verbund, Brandschutz; Biegerollendurchmesser; Verankerung von Betonstäben; Stöße von Betonstahl; Grenzwerte der Biegezugbewehrung; Zugkraftdeckung; Mindestquerkraftbewehrung und Höchstabstände; Schubkraftdeckung; Bewehrungsführung bei Torsion; Auf- und Einhängebewehrung

<u>Tragwerkselemente des Hochbaues:</u> Balken, Plattenbalken, Unterzüge; einachsig und zweiachsig gespannte Massivplatten, Tragverhalten, Näherungsverfahren für mehrfeldrige Platten; Hochbaustütze, Vorschriften zur konstruktiven Gestaltung.

Mauerwerk:

Einführung in die Grundlagen der Bemessung und Konstruktion unbewehrter Mauerwerksbauten.

<u>Baustoffe:</u> Mauersteine, Mauermörtel mit zugehörigen Einsatzgebieten, Festigkeiten und Verformungseigenschaften

Ausführung: Maßordnung und konstruktive Durchbildung

<u>Tragverhalten:</u> Verhalten des Verbundbaustoffes Mauerwerk unter Druck-, Schub-, sowie Zugund Biegebeanspruchung

<u>Aussteifung:</u> Anforderungen an die Aussteifung in Bezug auf die Anordnung von Deckenscheiben, Ringankern und -balken

<u>Grundlagen der Bemessung:</u> Grenzzustände, Nachweisformen und erforderliche Nachweisführungen

Bemessung nach dem vereinfachten Verfahren

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Die im Stahlbetonbau vorkommenden Bemessungsaufgaben des üblichen Hochbaues im Grenzzustand der Tragfähigkeit und Gebrauchstauglichkeit zu kennen (1)
- die wichtigen Zusammenhänge des Zusammenwirkens Beton und Betonstahl zu verstehen
 (2)
- übliche Bemessungsaufgaben im Grenzzustand der Tragfähigkeit für Biegung, Normalkraft, Querkraft und Torsion und auch im Grenzzustand der Gebrauchstauglichkeit für die Beschränkungen der Durchbiegung und der Rissbreiten zu verstehen und anzuwenden (3)
- die Grundlagen des Verhaltens von unbewehrtem Mauerwerk unter den verschiedenen Einwirkungsarten zu verstehen (2).
- Dabei sind die Besonderheiten des orthotropen Materials mit fehlender vertikaler Zugfestigkeit einzubeziehen (1).
- Des Weiteren wird das Verständnis für die konstruktiven Ausbildungen üblicher massiver Hochbauten erlangt und die Interaktion von Beton- und Mauerwerksbauteilen – mit dem Schwerpunkt der Ablastung von 1- und 2-achsig gespannten Betondecken – erfasst (2).

• Als Ergebnis soll die Bemessung von unbewehrten Mauerwerksbauteilen nach dem vereinfachten Verfahren beherrscht werden (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Tragverhalten des Stahlbetonbaues zu kennen und Bemessungsaufgaben zu erfassen (2)
- übliche Konstruktionen hinsichtlich des Einsatzes von unbewehrtem Mauerwerk eigenständig zu entwerfen und die möglichen Baustoffe (Stein-Mörtel-Kombination) und Wandaufbauten zu bewerten (3).
- Die Studenten sind des Weiteren in der Lage, technische Bemessungsaufgaben des Hochbaues in Diskussion fachlich darzustellen, fachliche Fragen zu behandeln und ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Angebotene Lehrunterlagen

Ständig aktualisiertes Umdruckmaterial zu den Lehrveranstaltungen

Lehrmedien

Multimediale Vortragsvorlesung mit Beamerunterstützung, Overheadprojektor und Tafelanschrieb, Exkursionen, Exponate

Literatur

Stahlbetonbau II:

- DIN EN 1992-1-1 (Eurocode 2): Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauwerken. Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbaumit nationalem Anhang.
- Zilch, K.; Zehetmaier, G.: Bemessung im konstruktiven Betonbau nach DIN 1045-1 (Fassung2008) und EN 1992-1-1 (Eurocode 2)
- Goris, A.; Richter, G.; Fischer J.: Stahlbeton und Spannbeton nach Eurocode 2. In Schneider, K.-J. (Hrsg.): Bautabellen für Ingenieure. 25. Aufl. Düsseldorf: Werner 2022.
- Finckh, W.: Stahlbetonkonstruktion; Von der Bemessung über die Konstruktionsregeln zum Bewehrungsplan, Wiesbaden: Springer 2023
- DAfStb (Hrsg.): DAfStb-Heft 600 Erläuterungen zu DIN EN 1992-1-1 und DIN EN 1992-1-1/NA(Eurocode 2)
- Fingerloos, F.; Hegger, J.; Zilch, K.: Eurocode 2 für Deutschland Kommentierte Fassung. Berlin: Beuth 2012.
- Ständig aktualisiertes Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen).

Mauerwerk:

- Mauerwerkkalender (Verlag Ernst & Sohn, Berlin).
- Graubner A.: Mauerwerksbau. In Schneider, K.-J. (Hrsg.): Bautabellen für Ingenieure. 25. Aufl. Düsseldorf: Werner 2022.
- DIN EN 1996-1-1: 2005 + AC:2012 + DIN EN 1996-1-1/NA: 2012-05 + DIN EN 1996-1-1/NA/A1: 2014-03 + DIN EN 1996-1-1/NA/A2: 2014-08 + DIN EN 1996-1-1/NA/A3: 2019-12: Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk
- DIN EN 1996-2 + AC:2009 + DIN EN 1996-2/NA: 2012-01: Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 2: Planung, Auswahl der Baustoffe und Ausführung von Mauerwerk; Deutsche Fassung EN 1996-2:2006 + AC:2009 + Nationaler Anhang NA: 2012-01
- DIN EN 1996-3 + AC:2009 + DIN EN 1996-2/NA: 2012-01+ DIN EN 1996-3/NA/A1: 2014-03 + DIN EN 1996-3/NA/A2: 2014-08 + DIN EN 1996-3/NA/A3: 2019-12:Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte Mauerwerksbauten
- Ständig aktualisiertes Umdruckmaterial zur Lehrveranstaltung (mit weiteren Literaturhinweisen)

Weitere Informationen zur Lehrveranstaltung

[1] Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 20 Nachhaltigkeit im Bauwesen (B2-NHB)		20
(Sustainability in construction)		
Modulverantwortliche/r	Fakultät	
Prof. Andreas Ottl	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 20.1 Wassersensibles Bauen (B2-WSB)	2 SWS	2
2.	Nr. 20.2 Grundlagen des nachhaltigen Bauens (B2-GNB)	1.5 SWS	1.5
3.	Nr. 20.3 Ressourcenschonendes Bauen (B2-RSB)	1.5 SWS	1.5

Hinweise zur Belegungspflicht oder zu Optionen
Pflichtmodul

Teilmodul		TM-Kurzbezeichnung	
Nr. 20.1 Wassersensibles Bauen (B2-WSB)		B2-WSB	
Verantwortliche/r	Fakultät		
Prof. Andreas Ottl	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Andreas Ottl	in jedem Semester		
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gement construction	[SWS oder UE]		[ECTS-Credits]
3	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 h	30 h

Studien- und Prüfungsleistung

Prüfungsleistung: Schriftliche Prüfung (60 Minuten)

Zugelassene Hilfsmittel für Leistungsnachweis

siehe Studienplan

Inhalte

Schwerpunkt: Wasser als nachhaltiges Element (15 Doppelstunden)

Wasserkreislauf (1 Doppelstunde)

Wasserbedarf/Virtueller Wasserbedarf (2)

Wasservorkommen und Wassernutzung (1)

Wassergewinnung (1)

Wasseraufbereitung (2)

Abwasser und Gewässerschutz (2)

Wassersensible Planung (2)

Entwässerungssysteme (2)

Bauwerke (2)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- den Wasserkreislauf und seine Einflussgrößen zu kennen (1),
- die Qualität des Rohwassers zu ermitteln und zu beurteilen (2)
- den Wasserbedarf und die Abwassermengen zu ermitteln (3).
- die Grundlagen der Wasseraufbereitung zu kennen (1),
- die Grundsätze einer wassersensiblen urbanen Siedlungsplanung zu beherrschen (2) und
- die erforderlichen Bauwerke zu kennen und zu bemessen (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Bedeutung des Wassers zum Erhalt des Lebens zu kennen (2),
- die Gefahren für das Wasser und Lösungswege zu beurteilen (2)
- Sie begründen das eigene berufliche Handeln mit theoretischem und methodischem Wissen und können die eigenen Fähigkeiten einschätzen, (3)
- sie reflektieren autonom sachbezogene Gestaltungs- und Entscheidungsfreiheiten und nutzen diese unter Anleitung. (2)

Angebotene Lehrunterlagen

Angebotene Lehrunterlagen (Skriptum, Anschauungsmaterial)

Lehrmedien

Multimediale Lehrmedien, Tafelanschrieb

Literatur

DWA-Arbeits-/Merkblattsammlung DWGW-Arbeits-/Merkblattsammlung

Weitere Informationen zur Lehrveranstaltung

Bestandteil der Lehrveranstaltung ist ein Laborpraktikum, eine Rechenübung und in der Regel eine Exkursion.

Teilmodul		TM-Kurzbezeichnung
Nr. 20.2 Grundlagen des nachhaltigen Bauens (B2-GNB)		B2-GNB
Verantwortliche/r	Fakultät	
Susanne Hüttner (LB)	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Susanne Hüttner (LB)	in jedem Semester	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	1.5 SWS	deutsch	1.5

Präsenzstudium	Eigenstudium
22,5 Stunden seminaristischer Unterricht	22,5 h Vor- und Nachbearbeitung der
(Präsenz)	Vorlesungen

Studien- und Prüfungsleistung
Schriftliche Prüfung (45 Minuten) als Teil einer Portfolioprüfung
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplan

Inhalte

Begriffe wie Klimawandel und Ressourcenknappheit, Armut, Hunger, Bildungsgerechtigkeit und viele mehr sind täglich in den Medien zu hören. Auf allen Ebenen fordern globale Entwicklungen nach nachhaltigem Handeln. Wie können wir beim Planen und Bauen verschiedene Aspekte der Nachhaltigkeit in Zukunft berücksichtigen? Ziel dieses Moduls ist es, die Studierenden in die Lage zu versetzten mit Fachvertretern sowie Fachfremden konstruktiv und ganzheitlich Nachhaltigkeitsaspekte zu diskutieren.

- Relevanz Nachhaltigen Bauens (CO2-Fußabdruck)
- Über Nachhaltigkeit sprechen/ Nachhaltigkeit in den Medien/ Zertifikate, Labels
- Nachhaltigkeitsmodelle (Drei-Säulen-Modell/ Vorrangmodell)
- Nachhaltigkeitsprinzipien (Effizienz, Konsistenz, Suffizienz Rethink, Refuse, Reduce, Reuse, Recycle)
- Ökologische Dimension (Klima, Energiekonzepte, Fläche, Biodiversität)
- Ökonomische Dimension (LCA, Sustainable Finance)
- Soziokulturelle Dimension (Partizipation, Nutzerzufriedenheit, Gesundheit)
- Ganzheitlichkeit/ Planen & Bewerten
- · Nachhaltiges Bauen in Regensburg

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fachbegriffe zu erläutern (1)
- die grundlegenden Bewertungskriterien des nachhaltigen Bauens zu benennen (1)
- sich selbst Fachwissen in diesem zukunftsrelevanten Thema zu erarbeiten (3)
- die komplexen Zusammenhänge der Nachhaltigkeits-Kriterien in Bezug auf ein Projekt zu beurteilen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ganzheitlich und interdisziplinär zu denken (3)
- fachliche Inhalte darzustellen (2)
- mit Fachvertretern/ fachfremden Personen über nachhaltiges Bauen zu diskutieren (2)

Angebotene Lehrunterlagen

Vorlesungsunterlagen, Fachliteratur

Lehrmedien

Multimediale Lehrmedien

Literatur

- Skript (Vorlesungsfolien) der Lehrveranstaltungen. Eine Mitschrift durch die Studierenden ist erforderlich.
- DIN EN 15643: Nachhaltigkeit von Bauwerken Allgemeine Rahmenbedingungen zur Bewertung von Gebäuden und Ingenieurbauwerken
- Leitfaden Nachhaltiges Bauen des Bundesministeriums für Verkehr, Bau und Stadtentwicklung
- Bauer Michael, Mösle Peter, Schwarz Michael: Green Building, Leitfaden für nachhaltiges Bauen, Wiesbaden: Springer Vieweg 2013.
- Friedrichsen Stefanie: Nachhaltiges Planen, Bauen und Wohnen: Kriterien für Neubau und Bauen im Bestand, Berlin/ Heidelberg: Springer 2018
- https://www.nachhaltigesbauen.de/
- https://www.dgnb.de

Weitere Informationen zur Lehrveranstaltung

Weitere Informationen erhalten Sie auf Anfrage bei susanne1.huettner@oth-regensburg.de.

Teilmodul		TM-Kurzbezeichnung
Nr. 20.3 Ressourcenschonendes Bauen (B2-RSB)		B2-RSB
Verantwortliche/r	Fakultät	
Prof. Charlotte Thiel	lotte Thiel Bauingenieurwesen	
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Marcus Schreyer in jedem Semester Prof. Charlotte Thiel		
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
•	[SWS oder UE]		[ECTS-Credits]
3.	1.5 SWS	deutsch	1.5

Präsenzstudium	Eigenstudium
22,5 h	22,5 h

Studien- und Prüfungsleistung
siehe Studienplan
Zugelassene Hilfsmittel für Leistungsnachweis
siehe Studienplan

Inhalte

- Einführung Nachhaltigkeit, Strategien zur Erreichung der Nachhaltigkeitsziele
- Klimawandel und sich daraus ergebende Herausforderungen & Gestaltungsmöglichkeiten für Bauingenieur*innen
- Ressourcenschonung, Linearwirtschaft und Kreislaufwirtschaft
- Lebenszyklus von Baustoffen, Bauteilen und Bauwerken
- Inhaltliche und methodische Grundlagen von Ökobilanzen (Life Cycle Assessment)
- Formen der Weiternutzung, des Recyclings oder der Verwertung für Werkstoffe, Bauteile und Konstruktionen
- Bewertung der Umwelt- und Gesundheitsverträglichkeit von ausgewählten Baustoffen, Bauteilen und Konstruktionen
- Anwendung der Ökobilanzierung als Werkzeug zur Bewertung der ökologischen Nachhaltigkeit von Baustoffen, Bauwerken und Bauverfahren insbesondere dem Rückbau
- Methoden und Beispiele aus der akademischen Praxis zur Erstellung wissenschaftlicher Ausarbeitungen und Präsentationen
- Beschreibung der potenziellen Umweltwirkungen von Baustoffen in Environmental Product Declarations (EPDs)
- Datenbanken und Datenunsicherheiten der Ökobilanzierung
- Umsetzung der Ökobilanzierung in der Planung mit digitalen Bauwerksmodellen
- Einflussmöglichkeiten auf die Klimaschädlichkeit von Bauwerken am Übungsbeispiel

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Methode der Ökobilanzierung zu verstehen und anzuwenden sowie das Prinzip des vernetzten Denkens in Bezug auf ökologische Entscheidungskriterien, Abhängigkeiten und deren Interpretation zu beherrschen (3)
- eine Ökobilanzierung auf Basis eines digitalen Bauwerksmodells mit einer aktuellen Software zu erstellen (3)
- einen Entwurf ökobilanziell zu optimieren und die Einflussgrößen von Optimierungsansätzen kennen zu lernen

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- fremde Sachverhalte kritisch zu analysieren (2)
- Zusätzlich erweitern die Studierenden ihre Kompetenzen in Gruppen kooperativ und verantwortlich zu arbeiten sowie komplexe fachbezogene Inhalte klar und zielgruppeorientiert in einem schriftlichen Format zu präsentieren. (3))

Angebotene Lehrunterlagen

Skriptum, Anschauungsmaterial

Lehrmedien

Multimediale Lehrmedien

Literatur

Skript (Vorlesungsfolien) der Lehrveranstaltungen. Eine Mitschrift durch die Studierenden ist erforderlich.

Frischknecht, R.: Lehrbuch der Ökobilanzierung,

https://www.springerprofessional.de/lehrbuch-der-oekobilanzierung/17761950

https://www.wingisonline.de/

ISO 14040, ISO 14044, https://www.oekobaudat.de/, https://www.wecobis.de/, https://www.wingisonline.de/, R. Frischknecht: Lehrbuch der Ökobilanzierung, EN15804 and/or ISO 14025 standards

http://www.oneclicklca.com

Weitere Literaturempfehlungen werden im Kurs gegeben.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 21 Vermessungskunde I (B2-VK I)		21
Modulverantwortliche/r Fakultät		
Prof. Wolfgang Stockbauer	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
			[LC13-Cledis]
3. oder 4. Semester	2.	Pflicht	5

Verpflichtende Voraussetzungen
erfolgreiche Teilnahme am Praktikum und Abgabe der Ausarbeitungen
Empfohlene Vorkenntnisse
keine

Zugeordnete Teilmodule:

1	Vr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
			[SWS o. UE]	[ECTS-Credits]
[1.	Nr. 21 Vermessungskunde (B2-VK I)	5 SWS	5

Teilmodul		TM-Kurzbezeichnung
Nr. 21 Vermessungskunde (B2-VK I)		B2-VK I
Verantwortliche/r	Fakultät	
Prof. Wolfgang Stockbauer	Bauingenieurwesen	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Wolfgang Stockbauer	f. Wolfgang Stockbauer in jedem Semester	
Lehrform		
3 SWS Seminaristischer Unterricht 2 SWS Praktikum		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
3. oder 4. Semester	5 SWS	deutsch	5

Präsenzstudium	Eigenstudium
45 Stunden seminaristischer Unterricht	75 Stunden eigenverantwortliches Lernen,
(Präsenz); 30 Stunden Praktikum (Präsenz	Studienarbeiten

Studien- und Prüfungsleistung

Studienleistung: erfolgreiche Teilnahme am Praktikum und Abgabe der Ausarbeitungen Prüfungsleistung: schriftliche Prüfung Dauer: 120 Minuten

Inhalte

Tachymetrischen Lage- und Höhenmessung:

Einarbeitung in verschiedene Theodolit und Tachymetersysteme; Horizontal-und Vertikalwinkelmessungen;

Tachymetrische Messung von Polygonzügen; Tachymetrische Geländeaufnahme und Absteckungen;

Verfahren der Höhenmessung:

Nivellierinstrumente, Nivellierverfahren; Liniennivellment; Flächennivellement, Profilmessungen; Koordinatenberechnung:

Koordinatensysteme, einfache Koordinatenberechnungen, Polygonierung, Einschneideverfahren; REB – konforme Flächen und Mengenermittlung:

REB-Konforme Datenarten; Mengen zwischen Horizonten;

Digitale Geländemodelle in der Planung, Ausführung und Abrechnung:

Anwendung von Digitalen Geländemodellen in der Ingenieurvermessung; Einsatz von CAD-Systemen im Strassen-und Tiefbau in der Theorie und Praxis; Visualisierungsmethoden;

Digitale Bestandsplanerstellung:

Erstellung von Bestandsplänen im Baubereich, Einführung in Geoinformationssysteme Grundlagen der Überwachungsmessung :

Messmethoden im Bauwerks-Monitoring

GNSS - gestützte Vermessungsmethoden:

Grundlagen und Einsatz von Satellitennavigation in der Theorie und Praxis, Aufnahme und Absteckung; Maschinensteuerung mit GNSS

Moderne Aufnahmeverfahren in der Ingenieurvermessung:

Terrestrisches Laserscanning und photogrammetrische Aufnahmeverfahren, Digitale Bildverarbeitung, Luftbildphotogrammetrie, UAV – autonom fliegende Multicopter;

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die in der geodätischen Bestandsaufnahme und Absteckung vorkommenden Messtechnologien zu kennen (1).
- Problemstellungen in der Ingenieurvermessung einzuschätzen (2).
- Analoge und Digitale Messmethoden eigenständig anzuwenden (2).
- Durch die erworbene Methodenkompetenz eigenständige Messprogramme zu entwickeln (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Vermessungstechnische Aufgabenstellungen zu erfassen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- fachliche Fragen zu stellen (2).
- fachliche Fragen angemessen zu beantworten (2).
- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (2).

Lehrmedien

Vortragsvorlesung Multimedial

Praktische Übungen; Präsentation von Meßsensorik über Emulationen

Literatur

DIN - Normen (Ingenieurvermessung DIN 18710)

Resnik/Bill: Vermessungskunde für den Planungs-,Bau-und Umweltbereich

Möser/Müller/Schlemmer/Werner u.a.: Handbücher Ingenieurgeodäsie

Matthews/Vermessungskunde ½

Vorlesungsskript, Vorträge (pdf-Dateien) und Umdruckmaterialien

u.a.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 22 Praktisches Studiensemester (B2-PF I)		22
Modulverantwortliche/r Fakultät		
Prof. Wolfgang Stockbauer	Bauingenieurwesen	

Studiensemester gemäß Studienplan	Studienabschnitt	, , , , , , , , , , , , , , , , , , ,	Arbeitsaufwand
			[ECTS-Credits]
5. Semester	2.	Pflicht	23

Verpflichtende Voraussetzungen

Nach § 8 der SPO darf in das praktische Studiensemester nur eintreten, wer bis zu diesem Zeitpunkt mindestens 80 ECTS-Punkte erreicht hat.

An der Praktikumsstelle muss ein Betreuer mit der Qualifikation Dipl.- Ing. oder B.Eng./M.Eng. für die Betreuung des Studierenden zur Verfügung stehen.

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 22 Praktisches Studiensemester		23
	(B2-PF I)		

Teilmodul	TM-Kurzbezeichnung			
Nr. 22 Praktisches Studiensemester (B2-PF I)		B2-PF I		
Verantwortliche/r	Fakultät			
Prof. Wolfgang Stockbauer	Bauingenieurwesen			
Lehrende/r / Dozierende/r	Angebotsfrequenz			
N.N. in jedem Semester				
Lehrform				
Praktikum, 18 Wochen Vollzeit im Betrieb / Ingenieurbüro				
_				

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
5. Semester		deutsch	23

Präsenzstudium	Eigenstudium

Studien- und Prüfungsleistung

Abgabe eines Praktikumsberichtes nach Vorgabe des Praxisbeauftragten mit Anerkennung durch das Praktikumsunternehmen und des Praxisbeauftragten (siehe Hinweise auf der Homepage OTH Regensburg)

Inhalte

Mitwirken bei der konstruktiven Planung, bei Ausschreibung, Vergabe und Abrechnung (AVA) sowie Begleitung des Gesamtprozesses Bauen(Kalkulation, Ablaufplanung, Arbeitsvorbereitung, Disposition, Betriebstechnik, Schalungseinsatz, Personalführung, Bauleitung, Maschineneinsatz, Abrechnung, Ingenieurvermessung, Aufmaß, Bauüberwachung, Bauabnahme)

Das Praxissemester kann wahlweise bei Bauunternehmungen, Baubehörden oder Ingenieurbüros abgeleistet werden. Andere Einsatzgebiete bedürfen der vorherigen Genehmigung durch den Praxisbeauftragten.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, planerische, konstruktive und betriebliche Abläufe in der Bauindustrie, in Ingenieurbüros und in der öffentlichen Verwaltung richtig einzuschätzen und zu bewerten (1).

Sie erhalten Einblicke in technische und organisatorische Details im Bauwesen (1). Die Studierenden sind in der Lage die in der bisherigen Ausbildung erworbenen theoretischen Kenntnisse in der Praxis zu vertiefen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, technische, logistische und organisatorische Abläufe im Bauwesen zu bewerten (2).

Der Studierende lernt im Praxissemester den Umgang mit unterschiedlichsten Personenstrukturen kennen und gewinnt erste Erfahrungen im Bereich Teamarbeit, Kommunikation und Mitarbeiterführung (1).

Literatur

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Nr. 23 Praxisbegleitende Lehrveranstaltungen (B2-PF II)		23
Modulverantwortliche/r Fakultät		
Prof. Wolfgang Stockbauer Bauingenieurwesen		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3./4./5. Studiensemester	2.	Pflicht	7

Verpflichtende Voraussetzungen

B2-PFR1: Anerkanntes Vorpraktikum B2-PFV: keine Voraussetzungen B2-PFB: keine Voraussetzungen

B2-PFR2: Absolvierung des 18-wöchigen Praktikums B2-PFÖ: Absolvierung des 18-wöchigen Praktikums

Empfohlene Vorkenntnisse

keine

Zugeordnete Teilmodule:

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Nr. 23.1 Praxisfach Vorbereitung Praxissemester (B2-PFV)	2 SWS	2
2.	Nr. 23.2 Praxisfach BGB und Bauvertragsrecht (B2-PFB)	1.5 SWS	1.5
3.	Nr. 23.3 Praxisfach Öffentliches Baurecht (B2-PFÖ)	1.5 SWS	1.5
4.	Nr. 23.4 Praxisfach Referat I (B2-PFR I)	2SWS	2
5.	Nr. 23.5 Praxisfach Referat I (B2-PFR II)	2SWS	2

Teilmodul	TM-Kurzbezeichnung		
Nr. 23.1 Praxisfach Vorbereitung Praxissemester (B2-PFV)		B2-PFV	
Verantwortliche/r Fakultät			
Prof. Wolfgang Stockbauer	Bauingenieurwesen		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Matthias Deufel in jedem Semester			
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gement construction	[SWS oder UE]		[ECTS-Credits]
5.	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 h Präsenz	30 h eigenverantwortliches Lernen

Studien- und Prüfungsleistung

Studienleistung: Anwesenheit während Vorlesung und Präsentationen

Prüfungsleistung: Klausur 60 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

Keine

Inhalte

Einführung in die Bereiche

- Bauleitung
- Lean Management
- Sicherheits- und Gesundheitsschutzkoordination

sowie Vermittlung eines Einblicks in verschiedene Tätigkeitsfelder von Bauingenieuren und Bauingenieurinnen sowohl für das bevorstehende Praxissemester als auch für den späteren Berufseinstieg anhand von mehreren Praxis-Präsentationen, darunter i. d. R. ein Ingenieurbüro, eine Bauunternehmung und ein Bereich aus dem öffentlichen Dienst.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- den Begriff des "Bauleiters" und seine Aufgaben zu differenzieren (2)
- über Grundkenntnisse zum Lean Management, sogenannte "Verschwendungsarten" und zu "5S" zu verfügen (2)
- die Pflichten nach der Baustellenverordnung und deren wesentliche Umsetzung zu beherrschen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- einen großen Teil der Breite und Vielfalt des "Bauens" einzuschätzen (1)
- im anstehenden Praxissemester entsprechende Fachbegriffe anzuwenden (2)
- Interessen für eine weitere Vertiefung zu erkennen (2)

Angebotene Lehrunterlagen

Skript/Handout

Lehrmedien

V. a. Powerpoint, Tafel

Literatur

- Vorlesungsaffines Skript und rein fakultativ darüber hinaus:
- Bauch, Ullrich; Bargstädt, Hans-Joachim: Praxis-Handbuch Bauleiter: Rudolf Müller
- Kollmer, Norbert; Ketterling, Dimitri; Kollmer, Gero: BaustellV: C.H.Beck
- Fiedler, Martin (Hrsg): Lean Construction Das Managementhandbuch: Springer Gabler

Weitere Informationen zur Lehrveranstaltung

Bei der Berechnung der Präsenzzeit wird jede Semesterwochenstunde (SWS) als eine Zeitstunde berechnet, da für die Studierenden durch das Zeitraster der Veranstaltungen, den Wechsel der Räume und Fragen an die Dozenten nach der Veranstaltung ein Zeitaufwand von etwa 60 Minuten angesetzt werden muss.

Teilmodul		TM-Kurzbezeichnung	
Nr. 23.2 Praxisfach BGB und Bauvertragsrecht (B2-PFB)		B2-PFB	
Verantwortliche/r Fakultät			
Prof. Wolfgang Stockbauer Bauingenieurwesen			
Lehrende/r / Dozierende/r Angebotsfrequenz			
Thomas Schreiner (LB) in jedem Semester			
Lehrform			
Vorlesung			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4. Semester	1.5 SWS	deutsch	1.5

Präsenzstudium	Eigenstudium
22,5 Stunden Vorlesung mit integriertem	22,5 Stunden eigenverantwortliche
Konversatiorium	Nachbereitung, Fallübung

Studien- und Prüfungsleistung	
Prüfungsleistung: Klausur; 45 Minuten m.E.	

Inhalte

BGB und Bauvertragsrecht (4. Semester)

- Grundzüge und Abgrenzung des BGB-Bauvertragsrechts, insb. der Werkvertrag, der Bauvertrag, der Verbraucherbauvertrag, der Bauvertrag mit einem Verbraucher, der Bauträgervertrag, (der Architekten- und Ingenieurvertrag)
- Vertragsschluss,
- Abnahmeformen,
- · Gefahrtragung,
- Einseitige Leistungsänderungen und deren Vergütung,
- Widerrufsrechte,
- · Rücktritt und Kündigung sowie
- Mängelansprüche

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundkenntnisse im BGB-Bauvertragsrecht zu kennen (3),
- Strukturen zu erkennen sowie gerichtliche Durchsetzung und Abwehr von Ansprüchen (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

fachliche Fragen zu stellen.(2)

- fachliche Fragen angemessen zu beantworten. (2)
- den eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen. (2)
- Empfehlungen für das weitere Vorgehen abzugeben. (2)

Lehrmedien

Vortrag zur Vorlesung mit Tafelanschrieb

Literatur

Gesetzestexte: Baugesetzbuch, Bayerische Bauordnung, Baunutzungsverordnung BGB in einer Fassung ab 2018

Teilmodul		TM-Kurzbezeichnung
Nr. 23.3 Praxisfach Öffentliches Baurecht (B2-PFÖ)		B2-PFÖ
Verantwortliche/r	Fakultät	
Prof. Wolfgang Stockbauer	Bauingenieurwesen	
Lehrende/r / Dozierende/r	nrende/r / Dozierende/r Angebotsfrequenz	
Klaus Bloch (LB) in jedem Semester		
Lehrform		
Vorlesung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4. und 5. Semester	1.5 SWS	deutsch	1.5

Präsenzstudium	Eigenstudium
22,5 Stunden Vorlesung mit integriertem	22,5 Stunden eigenverantwortliche
Konversatiorium	Nachbereitung, Fallübung

Studien- und Prüfungsleistung

Studienleistung: Zulassungsvoraussetzung TN (Teilnahme an Praktikum oder Seminar) Prüfungsleistung: Klausur 45 Minuten m.E.

Inhalte

Öffentliches Recht (5. Semester)

- 1. Grundbegriffe + Rechtsquellen
 - Systematische Einordnung des öffentlichen Baurechts in Rechtssystem, das grundlegendeUnterschiede zwischen Bauplanungs- und Bauordnungsrecht
- 2. Bauleitplanung
 - Herausarbeiten Unterschiede Formen der zwischen den der Bauleitplanung(Flächennutzungsplan und Bebauungsplan)
 - Aufstellungsverfahren und materielle Rechtsmäßigkeit des Bebauungsplans (inkl.Unterschiedlicher Verfahrensarten)
 - Grundzüge des Rechtsschutzes (Normenkontrollverfahren)
- 3. Baugenehmigung
 - Voraussetzungen der Baugenehmigung im Hinblick auf Verfahren und Inhalt
 - insbesondere verfahrensfreie Vorhaben, Hierbei Genehmigungsfreistellungsverfahren, vereinfachtes Verfahren
 - Nachbarbeteiligung
- 4. Recht der Bodennutzung
 - Bauplanungsrechtliche Zulässigkeit nach §§ 29 ff. BauGB
 - Planbereich, Zulässigkeit eines Vorhabens im Bereich eines Bebauungsplans inkl. denVoraussetzungen für Ausnahmen und Befreuung nach § 31 BauGB; inkl. BauNVO; inkl.PlanZVO; Zulässigkeit von Vorhaben während der Aufstellung eines Bebauungsplans (§33 BauGB)
 - Zulässigkeit Bauvorhaben Innenbereich von im 34 BauGB): inkl. GrundzügeInnenbereichsatzung
 - Zulässigkeit von Bauvorhaben im Außenbereich (§ 35 BauGB)
- 5. Bauaufsichtliche Maßnahmen
 - inhaltliche Rechtsmäßigkeit Voraussetzungen und von Baueinstellung, Nutzungsuntersagung, Baubeseitigung
- 6. Baunachbarrecht
 - Beteiligung des Nachbarn im Baugenehmigungsverfahren
 - Rechtsschutzmöglichkeiten des Nachbarn
 - Nachbarschützende Vorschriften
- 7. Sonderproblem Bestandsschutz (Voraussetzungen, Umfang, Ende) 8. Rechtsschutzfragen
 - Grundsätze des verwaltungsgerichtlichen Rechtsschutzes
- 9. Abstandsflächenrecht

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundkenntnisse im öffentlichen Baurecht, insbesondere aus den Bereichen Baugesetzbuch (BauGB), Bayerischer Bauordnung (BayBo) und Baunutzungsverordnung (BauN-VO) zu kennen. (1)
- die Grundkenntnisse verwaltungsrechtlichen Handelns und verwaltungsrechtlicher Strukturen zu kennen, sowie gerichtliche Durchsetzung und Abwehr von Ansprüchen. (1)
- Einfache Fragestellungen des öffentlichen Baurechts zu lösen. (3)
- neue Problemstellungen einzuschätzen und einer Lösung zuzuführen. (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- fachliche Fragen zu stellen.(2)
- fachliche Fragen angemessen zu beantworten. (2)
- den eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen. (2)
- Empfehlungen für das weitere Vorgehen abzugeben. (2)

Lehrmedien

Vortrag zur Vorlesung mit Tafelanschrieb

Literatur

Gesetzestexte: Baugesetzbuch, Bayerische Bauordnung, Baunutzungsverordnung BGB in einer Fassung ab 2018

Teilmodul		TM-Kurzbezeichnung
Nr. 23.4 Praxisfach Referat I (B2-PFR I)		B2-PFR I
Verantwortliche/r	Fakultät	
Prof. Wolfgang Stockbauer	Bauingenieurwesen	
Lehrende/r / Dozierende/r Angebotsfrequenz		
N.N. in jedem Semester		
Lehrform	,	
Vorträge und Präsentationen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
3 • • • • • • • • • • • • • • • • • • •	[SWS oder UE]		[ECTS-Credits]
3./5. Studiensemester	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 Stunden Präsenz	30 Stunden / Vortrag mit Vorbereitung

Studien- und Prüfungsleistung

Studienleistung: jeweils Präsenz bei Vorträgen Prüfungsleistung: je Referat (20 Minuten)

Inhalte

Erweiterte Vermittlung von Grundlagen der Rhetorik, Kommunikation und moderner Präsentationstechniken.

Fachlicher Kurzvortrag des Studierenden innerhalb einer vorgegebenen Zeit.

Beurteilung des Vortrages durch die teilnehmenden Studierenden und den Dozenten.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- einen selbstgewählten Stoff aus dem Vorpraktikum und dem Praxissemester innerhalb einer vorgegebenen Zeit frei vorzutragen (2).
- komplexe Abläufe aus dem Baubereich strukturiert und gebündelt den Zuhörern zu vermitteln (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich vor einem größeren Zuhörerkreis zu präsentieren und frei zu sprechen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- moderne Präsentationstechniken zielgerichtet einzusetzen (2)

Lehrmedien
Präsentation mit Powerpoint
Literatur

Teilmodul		TM-Kurzbezeichnung
Nr. 23.5 Praxisfach Referat I (B2-PFR II)		B2-PFR II
Verantwortliche/r	Fakultät	
Prof. Wolfgang Stockbauer	ng Stockbauer Bauingenieurwesen	
Lehrende/r / Dozierende/r Angebotsfrequenz		
N.N. in jedem Semester		
Lehrform		
Vorträge und Präsentationen		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
3./5. Studiensemester	2 SWS	deutsch	2

Präsenzstudium	Eigenstudium
30 Stunden Präsenz	30 Stunden / Vortrag mit Vorbereitung

Studien- und Prüfungsleistung

Studienleistung: jeweils Präsenz bei Vorträgen Prüfungsleistung: je Referat (20 Minuten)

Inhalte

Erweiterte Vermittlung von Grundlagen der Rhetorik, Kommunikation und moderner Präsentationstechniken.

Fachlicher Kurzvortrag des Studierenden innerhalb einer vorgegebenen Zeit. Beurteilung des Vortrages durch die teilnehmenden Studierenden und den Dozenten.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- einen selbstgewählten Stoff aus dem Vorpraktikum und dem Praxissemester innerhalb einer vorgegebenen Zeit frei vorzutragen (2).
- komplexe Abläufe aus dem Baubereich strukturiert und gebündelt den Zuhörern zu vermitteln (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich vor einem größeren Zuhörerkreis zu präsentieren und frei zu sprechen (2).
- technische Zusammenhänge in korrekter Fachsprache wiederzugeben (2).
- moderne Präsentationstechniken zielgerichtet einzusetzen (2)

Lehrmedien
Präsentation mit Powerpoint
Literatur